173 lines
7.8 KiB
C++
173 lines
7.8 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btConvexPlaneCollisionAlgorithm.h"
|
|
|
|
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
|
|
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
|
|
|
|
//#include <stdio.h>
|
|
|
|
btConvexPlaneCollisionAlgorithm::btConvexPlaneCollisionAlgorithm(btPersistentManifold* mf, const btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* col0Wrap, const btCollisionObjectWrapper* col1Wrap, bool isSwapped, int numPerturbationIterations, int minimumPointsPerturbationThreshold)
|
|
: btCollisionAlgorithm(ci),
|
|
m_ownManifold(false),
|
|
m_manifoldPtr(mf),
|
|
m_isSwapped(isSwapped),
|
|
m_numPerturbationIterations(numPerturbationIterations),
|
|
m_minimumPointsPerturbationThreshold(minimumPointsPerturbationThreshold)
|
|
{
|
|
const btCollisionObjectWrapper* convexObjWrap = m_isSwapped ? col1Wrap : col0Wrap;
|
|
const btCollisionObjectWrapper* planeObjWrap = m_isSwapped ? col0Wrap : col1Wrap;
|
|
|
|
if (!m_manifoldPtr && m_dispatcher->needsCollision(convexObjWrap->getCollisionObject(), planeObjWrap->getCollisionObject()))
|
|
{
|
|
m_manifoldPtr = m_dispatcher->getNewManifold(convexObjWrap->getCollisionObject(), planeObjWrap->getCollisionObject());
|
|
m_ownManifold = true;
|
|
}
|
|
}
|
|
|
|
btConvexPlaneCollisionAlgorithm::~btConvexPlaneCollisionAlgorithm()
|
|
{
|
|
if (m_ownManifold)
|
|
{
|
|
if (m_manifoldPtr)
|
|
m_dispatcher->releaseManifold(m_manifoldPtr);
|
|
}
|
|
}
|
|
|
|
void btConvexPlaneCollisionAlgorithm::collideSingleContact(const btQuaternion& perturbeRot, const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
|
{
|
|
const btCollisionObjectWrapper* convexObjWrap = m_isSwapped ? body1Wrap : body0Wrap;
|
|
const btCollisionObjectWrapper* planeObjWrap = m_isSwapped ? body0Wrap : body1Wrap;
|
|
|
|
btConvexShape* convexShape = (btConvexShape*)convexObjWrap->getCollisionShape();
|
|
btStaticPlaneShape* planeShape = (btStaticPlaneShape*)planeObjWrap->getCollisionShape();
|
|
|
|
bool hasCollision = false;
|
|
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
|
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
|
|
|
btTransform convexWorldTransform = convexObjWrap->getWorldTransform();
|
|
btTransform convexInPlaneTrans;
|
|
convexInPlaneTrans = planeObjWrap->getWorldTransform().inverse() * convexWorldTransform;
|
|
//now perturbe the convex-world transform
|
|
convexWorldTransform.getBasis() *= btMatrix3x3(perturbeRot);
|
|
btTransform planeInConvex;
|
|
planeInConvex = convexWorldTransform.inverse() * planeObjWrap->getWorldTransform();
|
|
|
|
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis() * -planeNormal);
|
|
|
|
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
|
|
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
|
|
|
|
btVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
|
|
btVector3 vtxInPlaneWorld = planeObjWrap->getWorldTransform() * vtxInPlaneProjected;
|
|
|
|
hasCollision = distance < m_manifoldPtr->getContactBreakingThreshold();
|
|
resultOut->setPersistentManifold(m_manifoldPtr);
|
|
if (hasCollision)
|
|
{
|
|
/// report a contact. internally this will be kept persistent, and contact reduction is done
|
|
btVector3 normalOnSurfaceB = planeObjWrap->getWorldTransform().getBasis() * planeNormal;
|
|
btVector3 pOnB = vtxInPlaneWorld;
|
|
resultOut->addContactPoint(normalOnSurfaceB, pOnB, distance);
|
|
}
|
|
}
|
|
|
|
void btConvexPlaneCollisionAlgorithm::processCollision(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
|
{
|
|
(void)dispatchInfo;
|
|
if (!m_manifoldPtr)
|
|
return;
|
|
|
|
const btCollisionObjectWrapper* convexObjWrap = m_isSwapped ? body1Wrap : body0Wrap;
|
|
const btCollisionObjectWrapper* planeObjWrap = m_isSwapped ? body0Wrap : body1Wrap;
|
|
|
|
btConvexShape* convexShape = (btConvexShape*)convexObjWrap->getCollisionShape();
|
|
btStaticPlaneShape* planeShape = (btStaticPlaneShape*)planeObjWrap->getCollisionShape();
|
|
|
|
bool hasCollision = false;
|
|
const btVector3& planeNormal = planeShape->getPlaneNormal();
|
|
const btScalar& planeConstant = planeShape->getPlaneConstant();
|
|
btTransform planeInConvex;
|
|
planeInConvex = convexObjWrap->getWorldTransform().inverse() * planeObjWrap->getWorldTransform();
|
|
btTransform convexInPlaneTrans;
|
|
convexInPlaneTrans = planeObjWrap->getWorldTransform().inverse() * convexObjWrap->getWorldTransform();
|
|
|
|
btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis() * -planeNormal);
|
|
btVector3 vtxInPlane = convexInPlaneTrans(vtx);
|
|
btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
|
|
|
|
btVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
|
|
btVector3 vtxInPlaneWorld = planeObjWrap->getWorldTransform() * vtxInPlaneProjected;
|
|
|
|
hasCollision = distance < m_manifoldPtr->getContactBreakingThreshold()+ resultOut->m_closestPointDistanceThreshold;
|
|
resultOut->setPersistentManifold(m_manifoldPtr);
|
|
if (hasCollision)
|
|
{
|
|
/// report a contact. internally this will be kept persistent, and contact reduction is done
|
|
btVector3 normalOnSurfaceB = planeObjWrap->getWorldTransform().getBasis() * planeNormal;
|
|
btVector3 pOnB = vtxInPlaneWorld;
|
|
resultOut->addContactPoint(normalOnSurfaceB, pOnB, distance);
|
|
}
|
|
|
|
//the perturbation algorithm doesn't work well with implicit surfaces such as spheres, cylinder and cones:
|
|
//they keep on rolling forever because of the additional off-center contact points
|
|
//so only enable the feature for polyhedral shapes (btBoxShape, btConvexHullShape etc)
|
|
if (convexShape->isPolyhedral() && resultOut->getPersistentManifold()->getNumContacts() < m_minimumPointsPerturbationThreshold)
|
|
{
|
|
btVector3 v0, v1;
|
|
btPlaneSpace1(planeNormal, v0, v1);
|
|
//now perform 'm_numPerturbationIterations' collision queries with the perturbated collision objects
|
|
|
|
const btScalar angleLimit = 0.125f * SIMD_PI;
|
|
btScalar perturbeAngle;
|
|
btScalar radius = convexShape->getAngularMotionDisc();
|
|
perturbeAngle = gContactBreakingThreshold / radius;
|
|
if (perturbeAngle > angleLimit)
|
|
perturbeAngle = angleLimit;
|
|
|
|
btQuaternion perturbeRot(v0, perturbeAngle);
|
|
for (int i = 0; i < m_numPerturbationIterations; i++)
|
|
{
|
|
btScalar iterationAngle = i * (SIMD_2_PI / btScalar(m_numPerturbationIterations));
|
|
btQuaternion rotq(planeNormal, iterationAngle);
|
|
collideSingleContact(rotq.inverse() * perturbeRot * rotq, body0Wrap, body1Wrap, dispatchInfo, resultOut);
|
|
}
|
|
}
|
|
|
|
if (m_ownManifold)
|
|
{
|
|
if (m_manifoldPtr->getNumContacts())
|
|
{
|
|
resultOut->refreshContactPoints();
|
|
}
|
|
}
|
|
}
|
|
|
|
btScalar btConvexPlaneCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* col0, btCollisionObject* col1, const btDispatcherInfo& dispatchInfo, btManifoldResult* resultOut)
|
|
{
|
|
(void)resultOut;
|
|
(void)dispatchInfo;
|
|
(void)col0;
|
|
(void)col1;
|
|
|
|
//not yet
|
|
return btScalar(1.);
|
|
}
|