godot/thirdparty/thekla_atlas/nvmesh/halfedge/Mesh.cpp
Hein-Pieter van Braam bf05309af7 Import thekla_atlas
As requested by reduz, an import of thekla_atlas into thirdparty/
2017-12-08 15:47:15 +01:00

1285 lines
30 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
#include "nvmesh.h" // pch
#include "Mesh.h"
#include "Edge.h"
#include "Vertex.h"
#include "Face.h"
#include "nvmesh/TriMesh.h"
#include "nvmesh/QuadTriMesh.h"
#include "nvmesh/MeshBuilder.h"
#include "nvmath/Vector.inl"
#include "nvcore/Array.inl"
#include "nvcore/HashMap.inl"
using namespace nv;
using namespace HalfEdge;
Mesh::Mesh() : m_colocalVertexCount(0)
{
errorCount = 0;
}
Mesh::Mesh(const Mesh * mesh)
{
errorCount = 0;
// Copy mesh vertices.
const uint vertexCount = mesh->vertexCount();
m_vertexArray.resize(vertexCount);
for (uint v = 0; v < vertexCount; v++)
{
const Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex->id == v);
m_vertexArray[v] = new Vertex(v);
m_vertexArray[v]->pos = vertex->pos;
m_vertexArray[v]->nor = vertex->nor;
m_vertexArray[v]->tex = vertex->tex;
}
m_colocalVertexCount = vertexCount;
// Copy mesh faces.
const uint faceCount = mesh->faceCount();
Array<uint> indexArray(3);
for (uint f = 0; f < faceCount; f++)
{
const Face * face = mesh->faceAt(f);
for(Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
const Vertex * vertex = it.current()->from();
indexArray.append(vertex->id);
}
addFace(indexArray);
indexArray.clear();
}
}
Mesh::~Mesh()
{
clear();
}
void Mesh::clear()
{
deleteAll(m_vertexArray);
m_vertexArray.clear();
foreach(i, m_edgeMap)
{
delete m_edgeMap[i].value;
}
//deleteAll(m_edgeArray); // edgeArray only contains 1/2 of the edges!
m_edgeArray.clear();
m_edgeMap.clear();
deleteAll(m_faceArray);
m_faceArray.clear();
}
Vertex * Mesh::addVertex(const Vector3 & pos)
{
nvDebugCheck(isFinite(pos));
Vertex * v = new Vertex(m_vertexArray.count());
v->pos = pos;
m_vertexArray.append(v);
return v;
// return addVertex(m_vertexArray.count(), pos);
}
/*Vertex * Mesh::addVertex(uint id, const Vector3 & pos)
{
nvDebugCheck(isFinite(pos));
Vertex * v = new Vertex(id);
v->pos = pos;
m_vertexArray.append(v);
return v;
}*/
/*void Mesh::addVertices(const Mesh * mesh)
{
nvCheck(mesh != NULL);
// Add mesh vertices
for (uint v = 0; v < vertexCount; v++)
{
const Vertex * vertex = mesh->vertexAt(v);
nvDebugCheck(vertex != NULL);
Vertex * v = addVertex(vertex->pos());
nvDebugCheck(v != NULL);
v->setNor(vertex->nor());
v->setTex(vertex->tex());
}
}*/
/// Link colocal vertices based on geometric location only.
void Mesh::linkColocals()
{
nvDebug("--- Linking colocals:\n");
const uint vertexCount = this->vertexCount();
HashMap<Vector3, Vertex *> vertexMap(vertexCount);
for (uint v = 0; v < vertexCount; v++)
{
Vertex * vertex = vertexAt(v);
Vertex * colocal;
if (vertexMap.get(vertex->pos, &colocal))
{
colocal->linkColocal(vertex);
}
else
{
vertexMap.add(vertex->pos, vertex);
}
}
m_colocalVertexCount = vertexMap.count();
nvDebug("--- %d vertex positions.\n", m_colocalVertexCount);
// @@ Remove duplicated vertices? or just leave them as colocals?
}
void Mesh::linkColocalsWithCanonicalMap(const Array<uint> & canonicalMap)
{
nvDebug("--- Linking colocals:\n");
uint vertexMapSize = 0;
foreach(i, canonicalMap) {
vertexMapSize = max(vertexMapSize, canonicalMap[i] + 1);
}
Array<Vertex *> vertexMap;
vertexMap.resize(vertexMapSize, NULL);
m_colocalVertexCount = 0;
const uint vertexCount = this->vertexCount();
for (uint v = 0; v < vertexCount; v++)
{
Vertex * vertex = vertexAt(v);
Vertex * colocal = vertexMap[canonicalMap[v]];
if (colocal != NULL)
{
nvDebugCheck(vertex->pos == colocal->pos);
colocal->linkColocal(vertex);
}
else
{
vertexMap[canonicalMap[v]] = vertex;
m_colocalVertexCount++;
}
}
nvDebug("--- %d vertex positions.\n", m_colocalVertexCount);
}
Face * Mesh::addFace()
{
Face * f = new Face(m_faceArray.count());
m_faceArray.append(f);
return f;
}
Face * Mesh::addFace(uint v0, uint v1, uint v2)
{
Array<uint> indexArray(3);
indexArray << v0 << v1 << v2;
return addFace(indexArray, 0, 3);
}
Face * Mesh::addFace(uint v0, uint v1, uint v2, uint v3)
{
Array<uint> indexArray(4);
indexArray << v0 << v1 << v2 << v3;
return addFace(indexArray, 0, 4);
}
Face * Mesh::addFace(const Array<uint> & indexArray)
{
return addFace(indexArray, 0, indexArray.count());
}
Face * Mesh::addFace(const Array<uint> & indexArray, uint first, uint num)
{
nvDebugCheck(first < indexArray.count());
nvDebugCheck(num <= indexArray.count()-first);
nvDebugCheck(num > 2);
if (!canAddFace(indexArray, first, num)) {
errorCount++;
return NULL;
}
Face * f = new Face(m_faceArray.count());
Edge * firstEdge = NULL;
Edge * last = NULL;
Edge * current = NULL;
for(uint i = 0; i < num-1; i++)
{
current = addEdge(indexArray[first+i], indexArray[first+i+1]);
nvCheck(current != NULL && current->face == NULL);
current->face = f;
if (last != NULL) last->setNext(current);
else firstEdge = current;
last = current;
}
current = addEdge(indexArray[first+num-1], indexArray[first]);
nvCheck(current != NULL && current->face == NULL);
current->face = f;
last->setNext(current);
current->setNext(firstEdge);
f->edge = firstEdge;
m_faceArray.append(f);
return f;
}
/*void Mesh::addFaces(const Mesh * mesh)
{
nvCheck(mesh != NULL);
Array indexArray;
// Add faces
}*/
// Return true if the face can be added to the manifold mesh.
bool Mesh::canAddFace(const Array<uint> & indexArray, uint first, uint num) const
{
for (uint j = num - 1, i = 0; i < num; j = i++) {
if (!canAddEdge(indexArray[first+j], indexArray[first+i])) {
errorIndex0 = indexArray[first+j];
errorIndex1 = indexArray[first+i];
return false;
}
}
// We also have to make sure the face does not have any duplicate edge!
for (uint i = 0; i < num; i++) {
int i0 = indexArray[first + i + 0];
int i1 = indexArray[first + (i + 1)%num];
for (uint j = i + 1; j < num; j++) {
int j0 = indexArray[first + j + 0];
int j1 = indexArray[first + (j + 1)%num];
if (i0 == j0 && i1 == j1) {
return false;
}
}
}
return true;
}
// Return true if the edge doesn't exist or doesn't have any adjacent face.
bool Mesh::canAddEdge(uint i, uint j) const
{
if (i == j) {
// Skip degenerate edges.
return false;
}
// Same check, but taking into account colocal vertices.
const Vertex * v0 = vertexAt(i);
const Vertex * v1 = vertexAt(j);
for(Vertex::ConstVertexIterator it(v0->colocals()); !it.isDone(); it.advance())
{
if (it.current() == v1)
{
// Skip degenerate edges.
return false;
}
}
// Make sure edge has not been added yet.
Edge * edge = findEdge(i, j);
return edge == NULL || edge->face == NULL; // We ignore edges that don't have an adjacent face yet, since this face could become the edge's face.
}
Edge * Mesh::addEdge(uint i, uint j)
{
nvCheck(i != j);
Edge * edge = findEdge(i, j);
if (edge != NULL) {
// Edge may already exist, but its face must not be set.
nvDebugCheck(edge->face == NULL);
// Nothing else to do!
}
else {
// Add new edge.
// Lookup pair.
Edge * pair = findEdge(j, i);
if (pair != NULL)
{
// Create edge with same id.
edge = new Edge(pair->id + 1);
// Link edge pairs.
edge->pair = pair;
pair->pair = edge;
// @@ I'm not sure this is necessary!
pair->vertex->setEdge(pair);
}
else
{
// Create edge.
edge = new Edge(2*m_edgeArray.count());
// Add only unpaired edges.
m_edgeArray.append(edge);
}
edge->vertex = m_vertexArray[i];
m_edgeMap.add(Key(i,j), edge);
}
// Face and Next are set by addFace.
return edge;
}
/// Find edge, test all colocals.
Edge * Mesh::findEdge(uint i, uint j) const
{
Edge * edge = NULL;
const Vertex * v0 = vertexAt(i);
const Vertex * v1 = vertexAt(j);
// Test all colocal pairs.
for(Vertex::ConstVertexIterator it0(v0->colocals()); !it0.isDone(); it0.advance())
{
for(Vertex::ConstVertexIterator it1(v1->colocals()); !it1.isDone(); it1.advance())
{
Key key(it0.current()->id, it1.current()->id);
if (edge == NULL) {
m_edgeMap.get(key, &edge);
#if !defined(_DEBUG)
if (edge != NULL) return edge;
#endif
}
else {
// Make sure that only one edge is found.
nvDebugCheck(!m_edgeMap.get(key));
}
}
}
return edge;
}
/// Link boundary edges once the mesh has been created.
void Mesh::linkBoundary()
{
nvDebug("--- Linking boundaries:\n");
int num = 0;
// Create boundary edges.
uint edgeCount = this->edgeCount();
for(uint e = 0; e < edgeCount; e++)
{
Edge * edge = edgeAt(e);
if (edge != NULL && edge->pair == NULL) {
Edge * pair = new Edge(edge->id + 1);
uint i = edge->from()->id;
uint j = edge->next->from()->id;
Key key(j,i);
nvCheck(!m_edgeMap.get(key));
pair->vertex = m_vertexArray[j];
m_edgeMap.add(key, pair);
edge->pair = pair;
pair->pair = edge;
num++;
}
}
// Link boundary edges.
for (uint e = 0; e < edgeCount; e++) {
Edge * edge = edgeAt(e);
if (edge != NULL && edge->pair->face == NULL) {
linkBoundaryEdge(edge->pair);
}
}
nvDebug("--- %d boundary edges.\n", num);
}
/// Link this boundary edge.
void Mesh::linkBoundaryEdge(Edge * edge)
{
nvCheck(edge->face == NULL);
// Make sure next pointer has not been set. @@ We want to be able to relink boundary edges after mesh changes.
//nvCheck(edge->next() == NULL);
Edge * next = edge;
while(next->pair->face != NULL) {
// Get pair prev
Edge * e = next->pair->next;
while (e->next != next->pair) {
e = e->next;
}
next = e;
}
edge->setNext(next->pair);
// Adjust vertex edge, so that it's the boundary edge. (required for isBoundary())
if (edge->vertex->edge != edge)
{
// Multiple boundaries in the same edge.
//nvCheck( edge->vertex()->edge() == NULL || edge->vertex()->edge()->face() != NULL );
edge->vertex->edge = edge;
}
}
/// Convert to tri mesh.
TriMesh * Mesh::toTriMesh() const
{
uint triangleCount = 0;
// Count triangle faces.
const uint faceCount = this->faceCount();
for(uint f = 0; f < faceCount; f++)
{
const Face * face = faceAt(f);
triangleCount += face->edgeCount() - 2;
}
TriMesh * triMesh = new TriMesh(triangleCount, vertexCount());
// Add vertices.
Array<TriMesh::Vertex> & vertices = triMesh->vertices();
const uint vertexCount = this->vertexCount();
for(uint v = 0; v < vertexCount; v++)
{
const Vertex * vertex = vertexAt(v);
TriMesh::Vertex triVertex;
triVertex.id = vertices.count();
triVertex.pos = vertex->pos;
triVertex.nor = vertex->nor;
triVertex.tex = vertex->tex;
vertices.append(triVertex);
}
// Add triangles.
Array<TriMesh::Face> & triangles = triMesh->faces();
for(uint f = 0; f < faceCount; f++)
{
const Face * face = faceAt(f);
// @@ Triangulate arbitrary polygons correctly.
const uint v0 = face->edge->vertex->id;
uint v1 = face->edge->next->vertex->id;
for(Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
{
uint v2 = it.current()->vertex->id;
// Skip the first two vertices.
if (v2 == v0 || v2 == v1) continue;
TriMesh::Face triangle;
triangle.id = triangles.count();
triangle.v[0] = v0;
triangle.v[1] = v1;
triangle.v[2] = v2;
v1 = v2;
triangles.append(triangle);
}
}
return triMesh;
}
QuadTriMesh * Mesh::toQuadTriMesh() const
{
MeshBuilder builder;
const uint vertexCount = this->vertexCount();
builder.hintVertexCount(vertexCount);
for(uint v = 0; v < vertexCount; v++)
{
const Vertex * vertex = vertexAt(v);
builder.addPosition(vertex->pos);
builder.addNormal(vertex->nor);
builder.addTexCoord(vertex->tex);
}
const uint faceCount = this->faceCount();
builder.hintTriangleCount(faceCount);
for(uint f = 0; f < faceCount; f++)
{
const Face * face = faceAt(f);
builder.beginPolygon();
for(Face::ConstEdgeIterator it(face->edges()); !it.isDone(); it.advance())
{
uint v = it.current()->vertex->id;
builder.addVertex(v, v, v);
}
builder.endPolygon();
}
builder.done();
return builder.buildQuadTriMesh();
}
// Triangulate in place.
void Mesh::triangulate() {
bool all_triangles = true;
const uint faceCount = m_faceArray.count();
for (uint f = 0; f < faceCount; f++) {
Face * face = m_faceArray[f];
if (face->edgeCount() != 3) {
all_triangles = false;
break;
}
}
if (all_triangles) {
return;
}
// Do not touch vertices, but rebuild edges and faces.
Array<Edge *> edgeArray;
Array<Face *> faceArray;
swap(edgeArray, m_edgeArray);
swap(faceArray, m_faceArray);
m_edgeMap.clear();
for (uint f = 0; f < faceCount; f++) {
Face * face = faceArray[f];
// Trivial fan-like triangulation.
const uint v0 = face->edge->vertex->id;
uint v2, v1 = -1;
for (Face::EdgeIterator it(face->edges()); !it.isDone(); it.advance()) {
Edge * edge = it.current();
v2 = edge->to()->id;
if (v2 == v0) break;
if (v1 != -1) addFace(v0, v1, v2);
v1 = v2;
}
}
nvDebugCheck(m_faceArray.count() > faceCount); // triangle count > face count
linkBoundary();
deleteAll(edgeArray);
deleteAll(faceArray);
}
/*
Fixing T-junctions.
- Find T-junctions. Find vertices that are on an edge.
- This test is approximate.
- Insert edges on a spatial index to speedup queries.
- Consider only open edges, that is edges that have no pairs.
- Consider only vertices on boundaries.
- Close T-junction.
- Split edge.
*/
bool Mesh::splitBoundaryEdges() {
Array<Vertex *> boundaryVertices;
foreach(i, m_vertexArray) {
Vertex * v = m_vertexArray[i];
if (v->isBoundary()) {
boundaryVertices.append(v);
}
}
nvDebug("Fixing T-junctions:\n");
int splitCount = 0;
foreach(v, boundaryVertices) {
Vertex * vertex = boundaryVertices[v];
Vector3 x0 = vertex->pos;
// Find edges that this vertex overlaps with.
foreach(e, m_edgeArray) {
//for (uint e = 0; e < m_edgeArray.count(); e++) {
Edge * edge = m_edgeArray[e];
if (edge != NULL && edge->isBoundary()) {
if (edge->from() == vertex || edge->to() == vertex) {
continue;
}
Vector3 x1 = edge->from()->pos;
Vector3 x2 = edge->to()->pos;
Vector3 v01 = x0 - x1;
Vector3 v21 = x2 - x1;
float l = length(v21);
float d = length(cross(v01, v21)) / l;
if (isZero(d)) {
float t = dot(v01, v21) / (l * l);
// @@ Snap x0 to x1 or x2, if too close? No, do vertex snapping elsewhere.
/*if (equal(t, 0.0f, 0.01f)) {
//vertex->setPos(x1);
}
else if (equal(t, 1.0f, 0.01f)) {
//vertex->setPos(x2);
}
else*/
if (t > 0.0f + NV_EPSILON && t < 1.0f - NV_EPSILON) {
nvDebugCheck(equal(lerp(x1, x2, t), x0));
Vertex * splitVertex = splitBoundaryEdge(edge, t, x0);
vertex->linkColocal(splitVertex); // @@ Should we do this here?
splitCount++;
}
}
}
}
}
nvDebug(" - %d edges split.\n", splitCount);
nvDebugCheck(isValid());
return splitCount != 0;
}
// For this to be effective, we have to fix the boundary junctions first.
Edge * Mesh::sewBoundary(Edge * startEdge) {
nvDebugCheck(startEdge->face == NULL);
// @@ We may want to be more conservative linking colocals in order to preserve the input topology. One way of doing that is by linking colocals only
// if the vertices next to them are linked as well. That is, by sewing boundaries after detecting them. If any pair of consecutive edges have their first
// and last vertex in the same position, then it can be linked.
Edge * lastBoundarySeen = startEdge;
nvDebug("Sewing Boundary:\n");
int count = 0;
int sewnCount = 0;
Edge * edge = startEdge;
do {
nvDebugCheck(edge->face == NULL);
Edge * edge_a = edge;
Edge * edge_b = edge->prev;
Edge * pair_a = edge_a->pair;
Edge * pair_b = edge_b->pair;
Vertex * v0a = edge_a->to();
Vertex * v0b = edge_b->from();
Vertex * v1a = edge_a->from();
Vertex * v1b = edge_b->to();
nvDebugCheck(v1a->isColocal(v1b));
/*
v0b + _+ v0a
\ /
b \ / a
\|/
v1b + v1a
*/
// @@ This should not happen while sewing, but it may be produced somewhere else.
nvDebugCheck(edge_a != edge_b);
if (v0a->pos == v0b->pos) {
// Link vertices.
v0a->linkColocal(v0b);
// Remove edges to be collapsed.
disconnect(edge_a);
disconnect(edge_b);
disconnect(pair_a);
disconnect(pair_b);
// Link new boundary edges.
Edge * prevBoundary = edge_b->prev;
Edge * nextBoundary = edge_a->next;
if (nextBoundary != NULL) {
nvDebugCheck(nextBoundary->face == NULL);
nvDebugCheck(prevBoundary->face == NULL);
nextBoundary->setPrev(prevBoundary);
// Make sure boundary vertex points to boundary edge.
v0a->setEdge(nextBoundary); // This updates all colocals.
}
lastBoundarySeen = prevBoundary;
// Creat new edge.
Edge * newEdge_a = addEdge(v0a->id, v1a->id); // pair_a->from()->id, pair_a->to()->id
Edge * newEdge_b = addEdge(v1b->id, v0b->id);
newEdge_a->pair = newEdge_b;
newEdge_b->pair = newEdge_a;
newEdge_a->face = pair_a->face;
newEdge_b->face = pair_b->face;
newEdge_a->setNext(pair_a->next);
newEdge_a->setPrev(pair_a->prev);
newEdge_b->setNext(pair_b->next);
newEdge_b->setPrev(pair_b->prev);
delete edge_a;
delete edge_b;
delete pair_a;
delete pair_b;
edge = nextBoundary; // If nextBoundary is NULL we have closed the loop.
sewnCount++;
}
else {
edge = edge->next;
}
count++;
} while(edge != NULL && edge != lastBoundarySeen);
nvDebug(" - Sewn %d out of %d.\n", sewnCount, count);
if (lastBoundarySeen != NULL) {
nvDebugCheck(lastBoundarySeen->face == NULL);
}
return lastBoundarySeen;
}
// @@ We must always disconnect edge pairs simultaneously.
void Mesh::disconnect(Edge * edge) {
nvDebugCheck(edge != NULL);
// Remove from edge list.
if ((edge->id & 1) == 0) {
nvDebugCheck(m_edgeArray[edge->id / 2] == edge);
m_edgeArray[edge->id / 2] = NULL;
}
// Remove edge from map. @@ Store map key inside edge?
nvDebugCheck(edge->from() != NULL && edge->to() != NULL);
bool removed = m_edgeMap.remove(Key(edge->from()->id, edge->to()->id));
nvDebugCheck(removed == true);
// Disconnect from vertex.
if (edge->vertex != NULL) {
if (edge->vertex->edge == edge) {
if (edge->prev && edge->prev->pair) {
edge->vertex->edge = edge->prev->pair;
}
else if (edge->pair && edge->pair->next) {
edge->vertex->edge = edge->pair->next;
}
else {
edge->vertex->edge = NULL;
// @@ Remove disconnected vertex?
}
}
//edge->setVertex(NULL);
}
// Disconnect from face.
if (edge->face != NULL) {
if (edge->face->edge == edge) {
if (edge->next != NULL && edge->next != edge) {
edge->face->edge = edge->next;
}
else if (edge->prev != NULL && edge->prev != edge) {
edge->face->edge = edge->prev;
}
else {
edge->face->edge = NULL;
// @@ Remove disconnected face?
}
}
//edge->setFace(NULL);
}
// @@ Hack, we don't disconnect from pair, because pair needs us to remove itself from the map.
// Disconect from pair.
/*if (edge->pair != NULL) {
if (edge->pair->pair == edge) {
edge->pair->setPair(NULL);
}
//edge->setPair(NULL);
}*/
// Disconnect from previous.
if (edge->prev) {
if (edge->prev->next == edge) {
edge->prev->setNext(NULL);
}
//edge->setPrev(NULL);
}
// Disconnect from next.
if (edge->next) {
if (edge->next->prev == edge) {
edge->next->setPrev(NULL);
}
//edge->setNext(NULL);
}
}
void Mesh::remove(Edge * edge) {
nvDebugCheck(edge != NULL);
disconnect(edge);
delete edge;
}
void Mesh::remove(Vertex * vertex) {
nvDebugCheck(vertex != NULL);
// Remove from vertex list.
m_vertexArray[vertex->id] = NULL;
// Disconnect from colocals.
vertex->unlinkColocal();
// Disconnect from edges.
if (vertex->edge != NULL) {
// @@ Removing a connected vertex is asking for trouble...
if (vertex->edge->vertex == vertex) {
// @@ Connect edge to a colocal?
vertex->edge->vertex = NULL;
}
vertex->setEdge(NULL);
}
delete vertex;
}
void Mesh::remove(Face * face) {
nvDebugCheck(face != NULL);
// Remove from face list.
m_faceArray[face->id] = NULL;
// Disconnect from edges.
if (face->edge != NULL) {
nvDebugCheck(face->edge->face == face);
face->edge->face = NULL;
face->edge = NULL;
}
delete face;
}
void Mesh::compactEdges() {
const uint edgeCount = m_edgeArray.count();
uint c = 0;
for (uint i = 0; i < edgeCount; i++) {
if (m_edgeArray[i] != NULL) {
if (i != c) {
m_edgeArray[c] = m_edgeArray[i];
m_edgeArray[c]->id = 2 * c;
if (m_edgeArray[c]->pair != NULL) {
m_edgeArray[c]->pair->id = 2 * c + 1;
}
}
c++;
}
}
m_edgeArray.resize(c);
}
void Mesh::compactVertices() {
const uint vertexCount = m_vertexArray.count();
uint c = 0;
for (uint i = 0; i < vertexCount; i++) {
if (m_vertexArray[i] != NULL) {
if (i != c) {
m_vertexArray[c] = m_vertexArray[i];
m_vertexArray[c]->id = c;
}
c++;
}
}
m_vertexArray.resize(c);
// @@ Generate xref array for external attributes.
}
void Mesh::compactFaces() {
const uint faceCount = m_faceArray.count();
uint c = 0;
for (uint i = 0; i < faceCount; i++) {
if (m_faceArray[i] != NULL) {
if (i != c) {
m_faceArray[c] = m_faceArray[i];
m_faceArray[c]->id = c;
}
c++;
}
}
m_faceArray.resize(c);
}
Vertex * Mesh::splitBoundaryEdge(Edge * edge, float t, const Vector3 & pos) {
/*
We want to go from this configuration:
+ +
| ^
edge |<->| pair
v |
+ +
To this one:
+ +
| ^
e0 |<->| p0
v |
vertex + +
| ^
e1 |<->| p1
v |
+ +
*/
Edge * pair = edge->pair;
// Make sure boundaries are linked.
nvDebugCheck(pair != NULL);
// Make sure edge is a boundary edge.
nvDebugCheck(pair->face == NULL);
// Add new vertex.
Vertex * vertex = addVertex(pos);
vertex->nor = lerp(edge->from()->nor, edge->to()->nor, t);
vertex->tex = lerp(edge->from()->tex, edge->to()->tex, t);
vertex->col = lerp(edge->from()->col, edge->to()->col, t);
disconnect(edge);
disconnect(pair);
// Add edges.
Edge * e0 = addEdge(edge->from()->id, vertex->id);
Edge * p0 = addEdge(vertex->id, pair->to()->id);
Edge * e1 = addEdge(vertex->id, edge->to()->id);
Edge * p1 = addEdge(pair->from()->id, vertex->id);
// Link edges.
e0->setNext(e1);
p1->setNext(p0);
e0->setPrev(edge->prev);
e1->setNext(edge->next);
p1->setPrev(pair->prev);
p0->setNext(pair->next);
nvDebugCheck(e0->next == e1);
nvDebugCheck(e1->prev == e0);
nvDebugCheck(p1->next == p0);
nvDebugCheck(p0->prev == p1);
nvDebugCheck(p0->pair == e0);
nvDebugCheck(e0->pair == p0);
nvDebugCheck(p1->pair == e1);
nvDebugCheck(e1->pair == p1);
// Link faces.
e0->face = edge->face;
e1->face = edge->face;
// Link vertices.
edge->from()->setEdge(e0);
vertex->setEdge(e1);
delete edge;
delete pair;
return vertex;
}
#if 0
// Without introducing new vertices.
void Mesh::splitBoundaryEdge(Edge * edge, Vertex * vertex) {
/*
We want to go from this configuration:
| | pn
+ +
| ^
| |
edge |<->| pair
| |
v |
+ +
| | pp
To this one:
\ /
\ /
+ +
| ^
e0 |<->| p0
v |
vertex + +
| ^
e1 |<->| p1
v |
+ +
/ \
/ \
*/
Edge * pair = edge->pair;
Edge * pn = pair->next();
Edge * pp = pair->prev();
// Make sure boundaries are linked.
nvDebugCheck(pair != NULL);
// Make sure edge is a boundary edge.
nvDebugCheck(pair->face() == NULL);
nvDebugCheck(edge->isValid());
nvDebugCheck(pair->isValid());
disconnect(edge);
disconnect(pair);
// Add edges.
Edge * e0 = addEdge(edge->from()->id(), vertex->id());
Edge * e1 = addEdge(vertex->id(), edge->to()->id());
// Link faces.
e0->setFace(edge->face());
e1->setFace(edge->face());
// Link pairs.
Edge * p0 = findEdge(vertex->id(), pair->to()->id());
if (p0 == NULL) {
p0 = addEdge(vertex->id(), pair->to()->id());
pn->setPrev(p0);
}
else {
nvDebugCheck(p0->face() != NULL);
if (e0->prev() != NULL) {
pn->setPrev(e0->prev());
}
else {
nvDebugCheck(pn == e0);
}
}
Edge * p1 = findEdge(pair->from()->id(), vertex->id());
if (p1 == NULL) {
p1 = addEdge(pair->from()->id(), vertex->id());
pp->setNext(p1);
}
else {
nvDebugCheck(p1->face() != NULL);
if (e1->next() != NULL) {
pp->setPrev(e1->next());
}
else {
nvDebugCheck(pp == e1);
}
}
// Link edges.
e0->setNext(e1); // e1->setPrev(e0)
if (p0->face() == p1->face()) { // can be null
p1->setNext(p0); // p0->setPrev(p1)
}
else {
//if (p1->face() == NULL) p1->setNext(
}
e0->setPrev(edge->prev());
e1->setNext(edge->next());
nvDebugCheck(e0->pair == p0);
nvDebugCheck(e1->pair == p1);
nvDebugCheck(p0->pair == e0);
nvDebugCheck(p1->pair == e1);
nvDebugCheck(e0->isValid());
nvDebugCheck(e1->isValid());
nvDebugCheck(pp->isValid());
nvDebugCheck(pn->isValid());
nvDebugCheck(e0->pair->isValid());
nvDebugCheck(e1->pair->isValid());
nvDebugCheck(pp->pair->isValid());
nvDebugCheck(pn->pair->isValid());
nvDebugCheck(edge->face->isValid());
if (pn->pair->face != NULL) {
nvDebugCheck(pn->pair->face->isValid());
}
if (pp->pair->face() != NULL) {
nvDebugCheck(pn->pair->face->isValid());
}
if (p0->face != NULL) {
nvDebugCheck(p0->face->isValid());
}
if (p1->face() != NULL) {
nvDebugCheck(p1->face()->isValid());
}
nvDebugCheck(isValid()); // Only for extreme debugging.
// Link vertices.
edge->from()->setEdge(e0);
vertex->setEdge(p0);
delete edge;
delete pair;
}
#endif
bool Mesh::isValid() const
{
// Make sure all edges are valid.
const uint edgeCount = m_edgeArray.count();
for (uint e = 0; e < edgeCount; e++) {
Edge * edge = m_edgeArray[e];
if (edge != NULL) {
if (edge->id != 2*e) {
return false;
}
if (!edge->isValid()) {
return false;
}
if (edge->pair->id != 2*e+1) {
return false;
}
if (!edge->pair->isValid()) {
return false;
}
}
}
// @@ Make sure all faces are valid.
// @@ Make sure all vertices are valid.
return true;
}