d630269593
Replaced the previous implementation for backface collision handling (in test_axis function from SAT algorithm) with much simpler logic in the collision generation phase with face shapes, in order to get rid of wrong contacts when backface collision is disabled. Now it just ignores the generated collision if the contact normal is against the face normal, with a threshold to keep edge contacts. Added a special case for soft bodies to invert the collision instead of ignoring it, because for now it's the best solution to avoid soft bodies to go through concave shapes (they use small spheres). This might be replaced with a better algorithm for soft bodies later.
573 lines
20 KiB
C++
573 lines
20 KiB
C++
/*************************************************************************/
|
|
/* godot_collision_solver_3d.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "godot_collision_solver_3d.h"
|
|
#include "godot_collision_solver_3d_sat.h"
|
|
#include "godot_soft_body_3d.h"
|
|
|
|
#include "gjk_epa.h"
|
|
|
|
#define collision_solver sat_calculate_penetration
|
|
//#define collision_solver gjk_epa_calculate_penetration
|
|
|
|
bool GodotCollisionSolver3D::solve_static_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
|
|
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
|
|
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
|
|
return false;
|
|
}
|
|
Plane p = p_transform_A.xform(world_boundary->get_plane());
|
|
|
|
static const int max_supports = 16;
|
|
Vector3 supports[max_supports];
|
|
int support_count;
|
|
GodotShape3D::FeatureType support_type;
|
|
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
|
|
|
|
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
|
|
ERR_FAIL_COND_V(support_count != 3, false);
|
|
|
|
Vector3 circle_pos = supports[0];
|
|
Vector3 circle_axis_1 = supports[1] - circle_pos;
|
|
Vector3 circle_axis_2 = supports[2] - circle_pos;
|
|
|
|
// Use 3 equidistant points on the circle.
|
|
for (int i = 0; i < 3; ++i) {
|
|
Vector3 vertex_pos = circle_pos;
|
|
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
|
|
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
|
|
supports[i] = vertex_pos;
|
|
}
|
|
}
|
|
|
|
bool found = false;
|
|
|
|
for (int i = 0; i < support_count; i++) {
|
|
supports[i] = p_transform_B.xform(supports[i]);
|
|
if (p.distance_to(supports[i]) >= 0) {
|
|
continue;
|
|
}
|
|
found = true;
|
|
|
|
Vector3 support_A = p.project(supports[i]);
|
|
|
|
if (p_result_callback) {
|
|
if (p_swap_result) {
|
|
p_result_callback(supports[i], 0, support_A, 0, p_userdata);
|
|
} else {
|
|
p_result_callback(support_A, 0, supports[i], 0, p_userdata);
|
|
}
|
|
}
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_separation_ray(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
|
|
const GodotSeparationRayShape3D *ray = static_cast<const GodotSeparationRayShape3D *>(p_shape_A);
|
|
|
|
Vector3 from = p_transform_A.origin;
|
|
Vector3 to = from + p_transform_A.basis.get_axis(2) * (ray->get_length() + p_margin);
|
|
Vector3 support_A = to;
|
|
|
|
Transform3D ai = p_transform_B.affine_inverse();
|
|
|
|
from = ai.xform(from);
|
|
to = ai.xform(to);
|
|
|
|
Vector3 p, n;
|
|
if (!p_shape_B->intersect_segment(from, to, p, n, true)) {
|
|
return false;
|
|
}
|
|
|
|
// Discard contacts when the ray is fully contained inside the shape.
|
|
if (n == Vector3()) {
|
|
return false;
|
|
}
|
|
|
|
// Discard contacts in the wrong direction.
|
|
if (n.dot(from - to) < CMP_EPSILON) {
|
|
return false;
|
|
}
|
|
|
|
Vector3 support_B = p_transform_B.xform(p);
|
|
if (ray->get_slide_on_slope()) {
|
|
Vector3 global_n = ai.basis.xform_inv(n).normalized();
|
|
support_B = support_A + (support_B - support_A).length() * global_n;
|
|
}
|
|
|
|
if (p_result_callback) {
|
|
if (p_swap_result) {
|
|
p_result_callback(support_B, 0, support_A, 0, p_userdata);
|
|
} else {
|
|
p_result_callback(support_A, 0, support_B, 0, p_userdata);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
struct _SoftBodyContactCollisionInfo {
|
|
int node_index = 0;
|
|
GodotCollisionSolver3D::CallbackResult result_callback = nullptr;
|
|
void *userdata = nullptr;
|
|
bool swap_result = false;
|
|
int contact_count = 0;
|
|
};
|
|
|
|
void GodotCollisionSolver3D::soft_body_contact_callback(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, void *p_userdata) {
|
|
_SoftBodyContactCollisionInfo &cinfo = *(_SoftBodyContactCollisionInfo *)(p_userdata);
|
|
|
|
++cinfo.contact_count;
|
|
|
|
if (!cinfo.result_callback) {
|
|
return;
|
|
}
|
|
|
|
if (cinfo.swap_result) {
|
|
cinfo.result_callback(p_point_B, cinfo.node_index, p_point_A, p_index_A, cinfo.userdata);
|
|
} else {
|
|
cinfo.result_callback(p_point_A, p_index_A, p_point_B, cinfo.node_index, cinfo.userdata);
|
|
}
|
|
}
|
|
|
|
struct _SoftBodyQueryInfo {
|
|
GodotSoftBody3D *soft_body = nullptr;
|
|
const GodotShape3D *shape_A = nullptr;
|
|
const GodotShape3D *shape_B = nullptr;
|
|
Transform3D transform_A;
|
|
Transform3D node_transform;
|
|
_SoftBodyContactCollisionInfo contact_info;
|
|
#ifdef DEBUG_ENABLED
|
|
int node_query_count = 0;
|
|
int convex_query_count = 0;
|
|
#endif
|
|
};
|
|
|
|
bool GodotCollisionSolver3D::soft_body_query_callback(uint32_t p_node_index, void *p_userdata) {
|
|
_SoftBodyQueryInfo &query_cinfo = *(_SoftBodyQueryInfo *)(p_userdata);
|
|
|
|
Vector3 node_position = query_cinfo.soft_body->get_node_position(p_node_index);
|
|
|
|
Transform3D transform_B;
|
|
transform_B.origin = query_cinfo.node_transform.xform(node_position);
|
|
|
|
query_cinfo.contact_info.node_index = p_node_index;
|
|
bool collided = solve_static(query_cinfo.shape_A, query_cinfo.transform_A, query_cinfo.shape_B, transform_B, soft_body_contact_callback, &query_cinfo.contact_info);
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
++query_cinfo.node_query_count;
|
|
#endif
|
|
|
|
// Stop at first collision if contacts are not needed.
|
|
return (collided && !query_cinfo.contact_info.result_callback);
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::soft_body_concave_callback(void *p_userdata, GodotShape3D *p_convex) {
|
|
_SoftBodyQueryInfo &query_cinfo = *(_SoftBodyQueryInfo *)(p_userdata);
|
|
|
|
query_cinfo.shape_A = p_convex;
|
|
|
|
// Calculate AABB for internal soft body query (in world space).
|
|
AABB shape_aabb;
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis;
|
|
axis[i] = 1.0;
|
|
|
|
real_t smin, smax;
|
|
p_convex->project_range(axis, query_cinfo.transform_A, smin, smax);
|
|
|
|
shape_aabb.position[i] = smin;
|
|
shape_aabb.size[i] = smax - smin;
|
|
}
|
|
|
|
shape_aabb.grow_by(query_cinfo.soft_body->get_collision_margin());
|
|
|
|
query_cinfo.soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
|
|
|
|
bool collided = (query_cinfo.contact_info.contact_count > 0);
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
++query_cinfo.convex_query_count;
|
|
#endif
|
|
|
|
// Stop at first collision if contacts are not needed.
|
|
return (collided && !query_cinfo.contact_info.result_callback);
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_soft_body(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
|
|
const GodotSoftBodyShape3D *soft_body_shape_B = static_cast<const GodotSoftBodyShape3D *>(p_shape_B);
|
|
|
|
GodotSoftBody3D *soft_body = soft_body_shape_B->get_soft_body();
|
|
const Transform3D &world_to_local = soft_body->get_inv_transform();
|
|
|
|
const real_t collision_margin = soft_body->get_collision_margin();
|
|
|
|
GodotSphereShape3D sphere_shape;
|
|
sphere_shape.set_data(collision_margin);
|
|
|
|
_SoftBodyQueryInfo query_cinfo;
|
|
query_cinfo.contact_info.result_callback = p_result_callback;
|
|
query_cinfo.contact_info.userdata = p_userdata;
|
|
query_cinfo.contact_info.swap_result = p_swap_result;
|
|
query_cinfo.soft_body = soft_body;
|
|
query_cinfo.node_transform = p_transform_B * world_to_local;
|
|
query_cinfo.shape_A = p_shape_A;
|
|
query_cinfo.transform_A = p_transform_A;
|
|
query_cinfo.shape_B = &sphere_shape;
|
|
|
|
if (p_shape_A->is_concave()) {
|
|
// In case of concave shape, query convex shapes first.
|
|
const GodotConcaveShape3D *concave_shape_A = static_cast<const GodotConcaveShape3D *>(p_shape_A);
|
|
|
|
AABB soft_body_aabb = soft_body->get_bounds();
|
|
soft_body_aabb.grow_by(collision_margin);
|
|
|
|
// Calculate AABB for internal concave shape query (in local space).
|
|
AABB local_aabb;
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis(p_transform_A.basis.get_axis(i));
|
|
real_t axis_scale = 1.0 / axis.length();
|
|
|
|
real_t smin = soft_body_aabb.position[i];
|
|
real_t smax = smin + soft_body_aabb.size[i];
|
|
|
|
smin *= axis_scale;
|
|
smax *= axis_scale;
|
|
|
|
local_aabb.position[i] = smin;
|
|
local_aabb.size[i] = smax - smin;
|
|
}
|
|
|
|
concave_shape_A->cull(local_aabb, soft_body_concave_callback, &query_cinfo, true);
|
|
} else {
|
|
AABB shape_aabb = p_transform_A.xform(p_shape_A->get_aabb());
|
|
shape_aabb.grow_by(collision_margin);
|
|
|
|
soft_body->query_aabb(shape_aabb, soft_body_query_callback, &query_cinfo);
|
|
}
|
|
|
|
return (query_cinfo.contact_info.contact_count > 0);
|
|
}
|
|
|
|
struct _ConcaveCollisionInfo {
|
|
const Transform3D *transform_A;
|
|
const GodotShape3D *shape_A;
|
|
const Transform3D *transform_B;
|
|
GodotCollisionSolver3D::CallbackResult result_callback;
|
|
void *userdata;
|
|
bool swap_result;
|
|
bool collided;
|
|
int aabb_tests;
|
|
int collisions;
|
|
bool tested;
|
|
real_t margin_A;
|
|
real_t margin_B;
|
|
Vector3 close_A, close_B;
|
|
};
|
|
|
|
bool GodotCollisionSolver3D::concave_callback(void *p_userdata, GodotShape3D *p_convex) {
|
|
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
|
|
cinfo.aabb_tests++;
|
|
|
|
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
|
|
if (!collided) {
|
|
return false;
|
|
}
|
|
|
|
cinfo.collided = true;
|
|
cinfo.collisions++;
|
|
|
|
// Stop at first collision if contacts are not needed.
|
|
return !cinfo.result_callback;
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_concave(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
|
|
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
|
|
|
|
_ConcaveCollisionInfo cinfo;
|
|
cinfo.transform_A = &p_transform_A;
|
|
cinfo.shape_A = p_shape_A;
|
|
cinfo.transform_B = &p_transform_B;
|
|
cinfo.result_callback = p_result_callback;
|
|
cinfo.userdata = p_userdata;
|
|
cinfo.swap_result = p_swap_result;
|
|
cinfo.collided = false;
|
|
cinfo.collisions = 0;
|
|
cinfo.margin_A = p_margin_A;
|
|
cinfo.margin_B = p_margin_B;
|
|
|
|
cinfo.aabb_tests = 0;
|
|
|
|
Transform3D rel_transform = p_transform_A;
|
|
rel_transform.origin -= p_transform_B.origin;
|
|
|
|
//quickly compute a local AABB
|
|
|
|
AABB local_aabb;
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis(p_transform_B.basis.get_axis(i));
|
|
real_t axis_scale = 1.0 / axis.length();
|
|
axis *= axis_scale;
|
|
|
|
real_t smin, smax;
|
|
p_shape_A->project_range(axis, rel_transform, smin, smax);
|
|
smin -= p_margin_A;
|
|
smax += p_margin_A;
|
|
smin *= axis_scale;
|
|
smax *= axis_scale;
|
|
|
|
local_aabb.position[i] = smin;
|
|
local_aabb.size[i] = smax - smin;
|
|
}
|
|
|
|
concave_B->cull(local_aabb, concave_callback, &cinfo, false);
|
|
|
|
return cinfo.collided;
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_static(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
|
|
PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
|
|
PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
|
|
bool concave_A = p_shape_A->is_concave();
|
|
bool concave_B = p_shape_B->is_concave();
|
|
|
|
bool swap = false;
|
|
|
|
if (type_A > type_B) {
|
|
SWAP(type_A, type_B);
|
|
SWAP(concave_A, concave_B);
|
|
swap = true;
|
|
}
|
|
|
|
if (type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
|
|
if (type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
|
|
return false;
|
|
}
|
|
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
|
|
return false;
|
|
}
|
|
if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
|
|
return false;
|
|
}
|
|
|
|
if (swap) {
|
|
return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
|
|
} else {
|
|
return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
|
|
}
|
|
|
|
} else if (type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
|
|
if (type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY) {
|
|
return false;
|
|
}
|
|
|
|
if (swap) {
|
|
return solve_separation_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
|
|
} else {
|
|
return solve_separation_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
|
|
}
|
|
|
|
} else if (type_B == PhysicsServer3D::SHAPE_SOFT_BODY) {
|
|
if (type_A == PhysicsServer3D::SHAPE_SOFT_BODY) {
|
|
// Soft Body / Soft Body not supported.
|
|
return false;
|
|
}
|
|
|
|
if (swap) {
|
|
return solve_soft_body(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
|
|
} else {
|
|
return solve_soft_body(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
|
|
}
|
|
|
|
} else if (concave_B) {
|
|
if (concave_A) {
|
|
return false;
|
|
}
|
|
|
|
if (!swap) {
|
|
return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
|
|
} else {
|
|
return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
|
|
}
|
|
|
|
} else {
|
|
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
|
|
}
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::concave_distance_callback(void *p_userdata, GodotShape3D *p_convex) {
|
|
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
|
|
cinfo.aabb_tests++;
|
|
|
|
Vector3 close_A, close_B;
|
|
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
|
|
|
|
if (cinfo.collided) {
|
|
// No need to process any more result.
|
|
return true;
|
|
}
|
|
|
|
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
|
|
cinfo.close_A = close_A;
|
|
cinfo.close_B = close_B;
|
|
cinfo.tested = true;
|
|
}
|
|
|
|
cinfo.collisions++;
|
|
return false;
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_distance_world_boundary(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
|
|
const GodotWorldBoundaryShape3D *world_boundary = static_cast<const GodotWorldBoundaryShape3D *>(p_shape_A);
|
|
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
|
|
return false;
|
|
}
|
|
Plane p = p_transform_A.xform(world_boundary->get_plane());
|
|
|
|
static const int max_supports = 16;
|
|
Vector3 supports[max_supports];
|
|
int support_count;
|
|
GodotShape3D::FeatureType support_type;
|
|
|
|
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
|
|
|
|
if (support_type == GodotShape3D::FEATURE_CIRCLE) {
|
|
ERR_FAIL_COND_V(support_count != 3, false);
|
|
|
|
Vector3 circle_pos = supports[0];
|
|
Vector3 circle_axis_1 = supports[1] - circle_pos;
|
|
Vector3 circle_axis_2 = supports[2] - circle_pos;
|
|
|
|
// Use 3 equidistant points on the circle.
|
|
for (int i = 0; i < 3; ++i) {
|
|
Vector3 vertex_pos = circle_pos;
|
|
vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
|
|
vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
|
|
supports[i] = vertex_pos;
|
|
}
|
|
}
|
|
|
|
bool collided = false;
|
|
Vector3 closest;
|
|
real_t closest_d = 0;
|
|
|
|
for (int i = 0; i < support_count; i++) {
|
|
supports[i] = p_transform_B.xform(supports[i]);
|
|
real_t d = p.distance_to(supports[i]);
|
|
if (i == 0 || d < closest_d) {
|
|
closest = supports[i];
|
|
closest_d = d;
|
|
if (d <= 0) {
|
|
collided = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
r_point_A = p.project(closest);
|
|
r_point_B = closest;
|
|
|
|
return collided;
|
|
}
|
|
|
|
bool GodotCollisionSolver3D::solve_distance(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
|
|
if (p_shape_A->is_concave()) {
|
|
return false;
|
|
}
|
|
|
|
if (p_shape_B->get_type() == PhysicsServer3D::SHAPE_WORLD_BOUNDARY) {
|
|
Vector3 a, b;
|
|
bool col = solve_distance_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
|
|
r_point_A = b;
|
|
r_point_B = a;
|
|
return !col;
|
|
|
|
} else if (p_shape_B->is_concave()) {
|
|
if (p_shape_A->is_concave()) {
|
|
return false;
|
|
}
|
|
|
|
const GodotConcaveShape3D *concave_B = static_cast<const GodotConcaveShape3D *>(p_shape_B);
|
|
|
|
_ConcaveCollisionInfo cinfo;
|
|
cinfo.transform_A = &p_transform_A;
|
|
cinfo.shape_A = p_shape_A;
|
|
cinfo.transform_B = &p_transform_B;
|
|
cinfo.result_callback = nullptr;
|
|
cinfo.userdata = nullptr;
|
|
cinfo.swap_result = false;
|
|
cinfo.collided = false;
|
|
cinfo.collisions = 0;
|
|
cinfo.aabb_tests = 0;
|
|
cinfo.tested = false;
|
|
|
|
Transform3D rel_transform = p_transform_A;
|
|
rel_transform.origin -= p_transform_B.origin;
|
|
|
|
//quickly compute a local AABB
|
|
|
|
bool use_cc_hint = p_concave_hint != AABB();
|
|
AABB cc_hint_aabb;
|
|
if (use_cc_hint) {
|
|
cc_hint_aabb = p_concave_hint;
|
|
cc_hint_aabb.position -= p_transform_B.origin;
|
|
}
|
|
|
|
AABB local_aabb;
|
|
for (int i = 0; i < 3; i++) {
|
|
Vector3 axis(p_transform_B.basis.get_axis(i));
|
|
real_t axis_scale = ((real_t)1.0) / axis.length();
|
|
axis *= axis_scale;
|
|
|
|
real_t smin, smax;
|
|
|
|
if (use_cc_hint) {
|
|
cc_hint_aabb.project_range_in_plane(Plane(axis), smin, smax);
|
|
} else {
|
|
p_shape_A->project_range(axis, rel_transform, smin, smax);
|
|
}
|
|
|
|
smin *= axis_scale;
|
|
smax *= axis_scale;
|
|
|
|
local_aabb.position[i] = smin;
|
|
local_aabb.size[i] = smax - smin;
|
|
}
|
|
|
|
concave_B->cull(local_aabb, concave_distance_callback, &cinfo, false);
|
|
if (!cinfo.collided) {
|
|
r_point_A = cinfo.close_A;
|
|
r_point_B = cinfo.close_B;
|
|
}
|
|
|
|
return !cinfo.collided;
|
|
} else {
|
|
return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
|
|
}
|
|
}
|