967 lines
32 KiB
C++
967 lines
32 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2018 Google Inc. http://bulletphysics.org
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h"
|
|
|
|
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
|
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
|
|
#include "BulletDynamics/Featherstone/btMultiBodyConstraint.h"
|
|
#include "BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h"
|
|
|
|
#define DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
|
|
|
static bool interleaveContactAndFriction = false;
|
|
|
|
struct btJointNode
|
|
{
|
|
int jointIndex; // pointer to enclosing dxJoint object
|
|
int otherBodyIndex; // *other* body this joint is connected to
|
|
int nextJointNodeIndex; //-1 for null
|
|
int constraintRowIndex;
|
|
};
|
|
|
|
// Helper function to compute a delta velocity in the constraint space.
|
|
static btScalar computeDeltaVelocityInConstraintSpace(
|
|
const btVector3& angularDeltaVelocity,
|
|
const btVector3& contactNormal,
|
|
btScalar invMass,
|
|
const btVector3& angularJacobian,
|
|
const btVector3& linearJacobian)
|
|
{
|
|
return angularDeltaVelocity.dot(angularJacobian) + contactNormal.dot(linearJacobian) * invMass;
|
|
}
|
|
|
|
// Faster version of computeDeltaVelocityInConstraintSpace that can be used when contactNormal and linearJacobian are
|
|
// identical.
|
|
static btScalar computeDeltaVelocityInConstraintSpace(
|
|
const btVector3& angularDeltaVelocity,
|
|
btScalar invMass,
|
|
const btVector3& angularJacobian)
|
|
{
|
|
return angularDeltaVelocity.dot(angularJacobian) + invMass;
|
|
}
|
|
|
|
// Helper function to compute a delta velocity in the constraint space.
|
|
static btScalar computeDeltaVelocityInConstraintSpace(const btScalar* deltaVelocity, const btScalar* jacobian, int size)
|
|
{
|
|
btScalar result = 0;
|
|
for (int i = 0; i < size; ++i)
|
|
result += deltaVelocity[i] * jacobian[i];
|
|
|
|
return result;
|
|
}
|
|
|
|
static btScalar computeConstraintMatrixDiagElementMultiBody(
|
|
const btAlignedObjectArray<btSolverBody>& solverBodyPool,
|
|
const btMultiBodyJacobianData& data,
|
|
const btMultiBodySolverConstraint& constraint)
|
|
{
|
|
btScalar ret = 0;
|
|
|
|
const btMultiBody* multiBodyA = constraint.m_multiBodyA;
|
|
const btMultiBody* multiBodyB = constraint.m_multiBodyB;
|
|
|
|
if (multiBodyA)
|
|
{
|
|
const btScalar* jacA = &data.m_jacobians[constraint.m_jacAindex];
|
|
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
|
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
|
ret += computeDeltaVelocityInConstraintSpace(deltaA, jacA, ndofA);
|
|
}
|
|
else
|
|
{
|
|
const int solverBodyIdA = constraint.m_solverBodyIdA;
|
|
btAssert(solverBodyIdA != -1);
|
|
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
|
|
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
|
|
ret += computeDeltaVelocityInConstraintSpace(
|
|
constraint.m_relpos1CrossNormal,
|
|
invMassA,
|
|
constraint.m_angularComponentA);
|
|
}
|
|
|
|
if (multiBodyB)
|
|
{
|
|
const btScalar* jacB = &data.m_jacobians[constraint.m_jacBindex];
|
|
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
|
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
|
ret += computeDeltaVelocityInConstraintSpace(deltaB, jacB, ndofB);
|
|
}
|
|
else
|
|
{
|
|
const int solverBodyIdB = constraint.m_solverBodyIdB;
|
|
btAssert(solverBodyIdB != -1);
|
|
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
|
|
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
|
|
ret += computeDeltaVelocityInConstraintSpace(
|
|
constraint.m_relpos2CrossNormal,
|
|
invMassB,
|
|
constraint.m_angularComponentB);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static btScalar computeConstraintMatrixOffDiagElementMultiBody(
|
|
const btAlignedObjectArray<btSolverBody>& solverBodyPool,
|
|
const btMultiBodyJacobianData& data,
|
|
const btMultiBodySolverConstraint& constraint,
|
|
const btMultiBodySolverConstraint& offDiagConstraint)
|
|
{
|
|
btScalar offDiagA = btScalar(0);
|
|
|
|
const btMultiBody* multiBodyA = constraint.m_multiBodyA;
|
|
const btMultiBody* multiBodyB = constraint.m_multiBodyB;
|
|
const btMultiBody* offDiagMultiBodyA = offDiagConstraint.m_multiBodyA;
|
|
const btMultiBody* offDiagMultiBodyB = offDiagConstraint.m_multiBodyB;
|
|
|
|
// Assumed at least one system is multibody
|
|
btAssert(multiBodyA || multiBodyB);
|
|
btAssert(offDiagMultiBodyA || offDiagMultiBodyB);
|
|
|
|
if (offDiagMultiBodyA)
|
|
{
|
|
const btScalar* offDiagJacA = &data.m_jacobians[offDiagConstraint.m_jacAindex];
|
|
|
|
if (offDiagMultiBodyA == multiBodyA)
|
|
{
|
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
|
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacA, ndofA);
|
|
}
|
|
else if (offDiagMultiBodyA == multiBodyB)
|
|
{
|
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
|
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacA, ndofB);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const int solverBodyIdA = constraint.m_solverBodyIdA;
|
|
const int solverBodyIdB = constraint.m_solverBodyIdB;
|
|
|
|
const int offDiagSolverBodyIdA = offDiagConstraint.m_solverBodyIdA;
|
|
btAssert(offDiagSolverBodyIdA != -1);
|
|
|
|
if (offDiagSolverBodyIdA == solverBodyIdA)
|
|
{
|
|
btAssert(solverBodyIdA != -1);
|
|
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
|
|
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(
|
|
offDiagConstraint.m_relpos1CrossNormal,
|
|
offDiagConstraint.m_contactNormal1,
|
|
invMassA, constraint.m_angularComponentA,
|
|
constraint.m_contactNormal1);
|
|
}
|
|
else if (offDiagSolverBodyIdA == solverBodyIdB)
|
|
{
|
|
btAssert(solverBodyIdB != -1);
|
|
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
|
|
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(
|
|
offDiagConstraint.m_relpos1CrossNormal,
|
|
offDiagConstraint.m_contactNormal1,
|
|
invMassB,
|
|
constraint.m_angularComponentB,
|
|
constraint.m_contactNormal2);
|
|
}
|
|
}
|
|
|
|
if (offDiagMultiBodyB)
|
|
{
|
|
const btScalar* offDiagJacB = &data.m_jacobians[offDiagConstraint.m_jacBindex];
|
|
|
|
if (offDiagMultiBodyB == multiBodyA)
|
|
{
|
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
|
const btScalar* deltaA = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacAindex];
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(deltaA, offDiagJacB, ndofA);
|
|
}
|
|
else if (offDiagMultiBodyB == multiBodyB)
|
|
{
|
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
|
const btScalar* deltaB = &data.m_deltaVelocitiesUnitImpulse[constraint.m_jacBindex];
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(deltaB, offDiagJacB, ndofB);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const int solverBodyIdA = constraint.m_solverBodyIdA;
|
|
const int solverBodyIdB = constraint.m_solverBodyIdB;
|
|
|
|
const int offDiagSolverBodyIdB = offDiagConstraint.m_solverBodyIdB;
|
|
btAssert(offDiagSolverBodyIdB != -1);
|
|
|
|
if (offDiagSolverBodyIdB == solverBodyIdA)
|
|
{
|
|
btAssert(solverBodyIdA != -1);
|
|
const btSolverBody* solverBodyA = &solverBodyPool[solverBodyIdA];
|
|
const btScalar invMassA = solverBodyA->m_originalBody ? solverBodyA->m_originalBody->getInvMass() : 0.0;
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(
|
|
offDiagConstraint.m_relpos2CrossNormal,
|
|
offDiagConstraint.m_contactNormal2,
|
|
invMassA, constraint.m_angularComponentA,
|
|
constraint.m_contactNormal1);
|
|
}
|
|
else if (offDiagSolverBodyIdB == solverBodyIdB)
|
|
{
|
|
btAssert(solverBodyIdB != -1);
|
|
const btSolverBody* solverBodyB = &solverBodyPool[solverBodyIdB];
|
|
const btScalar invMassB = solverBodyB->m_originalBody ? solverBodyB->m_originalBody->getInvMass() : 0.0;
|
|
offDiagA += computeDeltaVelocityInConstraintSpace(
|
|
offDiagConstraint.m_relpos2CrossNormal,
|
|
offDiagConstraint.m_contactNormal2,
|
|
invMassB, constraint.m_angularComponentB,
|
|
constraint.m_contactNormal2);
|
|
}
|
|
}
|
|
|
|
return offDiagA;
|
|
}
|
|
|
|
void btMultiBodyMLCPConstraintSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
createMLCPFastRigidBody(infoGlobal);
|
|
createMLCPFastMultiBody(infoGlobal);
|
|
}
|
|
|
|
void btMultiBodyMLCPConstraintSolver::createMLCPFastRigidBody(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
int numContactRows = interleaveContactAndFriction ? 3 : 1;
|
|
|
|
int numConstraintRows = m_allConstraintPtrArray.size();
|
|
|
|
if (numConstraintRows == 0)
|
|
return;
|
|
|
|
int n = numConstraintRows;
|
|
{
|
|
BT_PROFILE("init b (rhs)");
|
|
m_b.resize(numConstraintRows);
|
|
m_bSplit.resize(numConstraintRows);
|
|
m_b.setZero();
|
|
m_bSplit.setZero();
|
|
for (int i = 0; i < numConstraintRows; i++)
|
|
{
|
|
btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
|
|
if (!btFuzzyZero(jacDiag))
|
|
{
|
|
btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
|
|
btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
|
|
m_b[i] = rhs / jacDiag;
|
|
m_bSplit[i] = rhsPenetration / jacDiag;
|
|
}
|
|
}
|
|
}
|
|
|
|
// btScalar* w = 0;
|
|
// int nub = 0;
|
|
|
|
m_lo.resize(numConstraintRows);
|
|
m_hi.resize(numConstraintRows);
|
|
|
|
{
|
|
BT_PROFILE("init lo/ho");
|
|
|
|
for (int i = 0; i < numConstraintRows; i++)
|
|
{
|
|
if (0) //m_limitDependencies[i]>=0)
|
|
{
|
|
m_lo[i] = -BT_INFINITY;
|
|
m_hi[i] = BT_INFINITY;
|
|
}
|
|
else
|
|
{
|
|
m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
|
|
m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
int m = m_allConstraintPtrArray.size();
|
|
|
|
int numBodies = m_tmpSolverBodyPool.size();
|
|
btAlignedObjectArray<int> bodyJointNodeArray;
|
|
{
|
|
BT_PROFILE("bodyJointNodeArray.resize");
|
|
bodyJointNodeArray.resize(numBodies, -1);
|
|
}
|
|
btAlignedObjectArray<btJointNode> jointNodeArray;
|
|
{
|
|
BT_PROFILE("jointNodeArray.reserve");
|
|
jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
|
|
}
|
|
|
|
btMatrixXu& J3 = m_scratchJ3;
|
|
{
|
|
BT_PROFILE("J3.resize");
|
|
J3.resize(2 * m, 8);
|
|
}
|
|
btMatrixXu& JinvM3 = m_scratchJInvM3;
|
|
{
|
|
BT_PROFILE("JinvM3.resize/setZero");
|
|
|
|
JinvM3.resize(2 * m, 8);
|
|
JinvM3.setZero();
|
|
J3.setZero();
|
|
}
|
|
int cur = 0;
|
|
int rowOffset = 0;
|
|
btAlignedObjectArray<int>& ofs = m_scratchOfs;
|
|
{
|
|
BT_PROFILE("ofs resize");
|
|
ofs.resize(0);
|
|
ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
|
|
}
|
|
{
|
|
BT_PROFILE("Compute J and JinvM");
|
|
int c = 0;
|
|
|
|
int numRows = 0;
|
|
|
|
for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
|
|
{
|
|
ofs[c] = rowOffset;
|
|
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
|
|
int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
|
|
btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
|
|
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
|
|
|
|
numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
|
|
if (orgBodyA)
|
|
{
|
|
{
|
|
int slotA = -1;
|
|
//find free jointNode slot for sbA
|
|
slotA = jointNodeArray.size();
|
|
jointNodeArray.expand(); //NonInitializing();
|
|
int prevSlot = bodyJointNodeArray[sbA];
|
|
bodyJointNodeArray[sbA] = slotA;
|
|
jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
|
|
jointNodeArray[slotA].jointIndex = c;
|
|
jointNodeArray[slotA].constraintRowIndex = i;
|
|
jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
|
|
}
|
|
for (int row = 0; row < numRows; row++, cur++)
|
|
{
|
|
btVector3 normalInvMass = m_allConstraintPtrArray[i + row]->m_contactNormal1 * orgBodyA->getInvMass();
|
|
btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
|
|
|
|
for (int r = 0; r < 3; r++)
|
|
{
|
|
J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal1[r]);
|
|
J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal[r]);
|
|
JinvM3.setElem(cur, r, normalInvMass[r]);
|
|
JinvM3.setElem(cur, r + 4, relPosCrossNormalInvInertia[r]);
|
|
}
|
|
J3.setElem(cur, 3, 0);
|
|
JinvM3.setElem(cur, 3, 0);
|
|
J3.setElem(cur, 7, 0);
|
|
JinvM3.setElem(cur, 7, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cur += numRows;
|
|
}
|
|
if (orgBodyB)
|
|
{
|
|
{
|
|
int slotB = -1;
|
|
//find free jointNode slot for sbA
|
|
slotB = jointNodeArray.size();
|
|
jointNodeArray.expand(); //NonInitializing();
|
|
int prevSlot = bodyJointNodeArray[sbB];
|
|
bodyJointNodeArray[sbB] = slotB;
|
|
jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
|
|
jointNodeArray[slotB].jointIndex = c;
|
|
jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
|
|
jointNodeArray[slotB].constraintRowIndex = i;
|
|
}
|
|
|
|
for (int row = 0; row < numRows; row++, cur++)
|
|
{
|
|
btVector3 normalInvMassB = m_allConstraintPtrArray[i + row]->m_contactNormal2 * orgBodyB->getInvMass();
|
|
btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
|
|
|
|
for (int r = 0; r < 3; r++)
|
|
{
|
|
J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal2[r]);
|
|
J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal[r]);
|
|
JinvM3.setElem(cur, r, normalInvMassB[r]);
|
|
JinvM3.setElem(cur, r + 4, relPosInvInertiaB[r]);
|
|
}
|
|
J3.setElem(cur, 3, 0);
|
|
JinvM3.setElem(cur, 3, 0);
|
|
J3.setElem(cur, 7, 0);
|
|
JinvM3.setElem(cur, 7, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cur += numRows;
|
|
}
|
|
rowOffset += numRows;
|
|
}
|
|
}
|
|
|
|
//compute JinvM = J*invM.
|
|
const btScalar* JinvM = JinvM3.getBufferPointer();
|
|
|
|
const btScalar* Jptr = J3.getBufferPointer();
|
|
{
|
|
BT_PROFILE("m_A.resize");
|
|
m_A.resize(n, n);
|
|
}
|
|
|
|
{
|
|
BT_PROFILE("m_A.setZero");
|
|
m_A.setZero();
|
|
}
|
|
int c = 0;
|
|
{
|
|
int numRows = 0;
|
|
BT_PROFILE("Compute A");
|
|
for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
|
|
{
|
|
int row__ = ofs[c];
|
|
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
|
|
int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
|
|
// btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
|
|
// btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
|
|
|
|
numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
|
|
|
|
const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
|
|
|
|
{
|
|
int startJointNodeA = bodyJointNodeArray[sbA];
|
|
while (startJointNodeA >= 0)
|
|
{
|
|
int j0 = jointNodeArray[startJointNodeA].jointIndex;
|
|
int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
|
|
if (j0 < c)
|
|
{
|
|
int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
|
|
size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8 * numRowsOther : 0;
|
|
//printf("%d joint i %d and j0: %d: ",count++,i,j0);
|
|
m_A.multiplyAdd2_p8r(JinvMrow,
|
|
Jptr + 2 * 8 * (size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__, ofs[j0]);
|
|
}
|
|
startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
|
|
}
|
|
}
|
|
|
|
{
|
|
int startJointNodeB = bodyJointNodeArray[sbB];
|
|
while (startJointNodeB >= 0)
|
|
{
|
|
int j1 = jointNodeArray[startJointNodeB].jointIndex;
|
|
int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
|
|
|
|
if (j1 < c)
|
|
{
|
|
int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
|
|
size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8 * numRowsOther : 0;
|
|
m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)numRows,
|
|
Jptr + 2 * 8 * (size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__, ofs[j1]);
|
|
}
|
|
startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
BT_PROFILE("compute diagonal");
|
|
// compute diagonal blocks of m_A
|
|
|
|
int row__ = 0;
|
|
int numJointRows = m_allConstraintPtrArray.size();
|
|
|
|
int jj = 0;
|
|
for (; row__ < numJointRows;)
|
|
{
|
|
//int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
|
|
int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
|
|
// btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
|
|
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
|
|
|
|
const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
|
|
|
|
const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
|
|
const btScalar* Jrow = Jptr + 2 * 8 * (size_t)row__;
|
|
m_A.multiply2_p8r(JinvMrow, Jrow, infom, infom, row__, row__);
|
|
if (orgBodyB)
|
|
{
|
|
m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)infom, Jrow + 8 * (size_t)infom, infom, infom, row__, row__);
|
|
}
|
|
row__ += infom;
|
|
jj++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (1)
|
|
{
|
|
// add cfm to the diagonal of m_A
|
|
for (int i = 0; i < m_A.rows(); ++i)
|
|
{
|
|
m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
|
|
}
|
|
}
|
|
|
|
///fill the upper triangle of the matrix, to make it symmetric
|
|
{
|
|
BT_PROFILE("fill the upper triangle ");
|
|
m_A.copyLowerToUpperTriangle();
|
|
}
|
|
|
|
{
|
|
BT_PROFILE("resize/init x");
|
|
m_x.resize(numConstraintRows);
|
|
m_xSplit.resize(numConstraintRows);
|
|
|
|
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
|
{
|
|
for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
|
|
{
|
|
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
|
|
m_x[i] = c.m_appliedImpulse;
|
|
m_xSplit[i] = c.m_appliedPushImpulse;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_x.setZero();
|
|
m_xSplit.setZero();
|
|
}
|
|
}
|
|
}
|
|
|
|
void btMultiBodyMLCPConstraintSolver::createMLCPFastMultiBody(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
const int multiBodyNumConstraints = m_multiBodyAllConstraintPtrArray.size();
|
|
|
|
if (multiBodyNumConstraints == 0)
|
|
return;
|
|
|
|
// 1. Compute b
|
|
{
|
|
BT_PROFILE("init b (rhs)");
|
|
|
|
m_multiBodyB.resize(multiBodyNumConstraints);
|
|
m_multiBodyB.setZero();
|
|
|
|
for (int i = 0; i < multiBodyNumConstraints; ++i)
|
|
{
|
|
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
|
|
const btScalar jacDiag = constraint.m_jacDiagABInv;
|
|
|
|
if (!btFuzzyZero(jacDiag))
|
|
{
|
|
// Note that rhsPenetration is currently always zero because the split impulse hasn't been implemented for multibody yet.
|
|
const btScalar rhs = constraint.m_rhs;
|
|
m_multiBodyB[i] = rhs / jacDiag;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 2. Compute lo and hi
|
|
{
|
|
BT_PROFILE("init lo/ho");
|
|
|
|
m_multiBodyLo.resize(multiBodyNumConstraints);
|
|
m_multiBodyHi.resize(multiBodyNumConstraints);
|
|
|
|
for (int i = 0; i < multiBodyNumConstraints; ++i)
|
|
{
|
|
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
|
|
m_multiBodyLo[i] = constraint.m_lowerLimit;
|
|
m_multiBodyHi[i] = constraint.m_upperLimit;
|
|
}
|
|
}
|
|
|
|
// 3. Construct A matrix by using the impulse testing
|
|
{
|
|
BT_PROFILE("Compute A");
|
|
|
|
{
|
|
BT_PROFILE("m_A.resize");
|
|
m_multiBodyA.resize(multiBodyNumConstraints, multiBodyNumConstraints);
|
|
}
|
|
|
|
for (int i = 0; i < multiBodyNumConstraints; ++i)
|
|
{
|
|
// Compute the diagonal of A, which is A(i, i)
|
|
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
|
|
const btScalar diagA = computeConstraintMatrixDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint);
|
|
m_multiBodyA.setElem(i, i, diagA);
|
|
|
|
// Computes the off-diagonals of A:
|
|
// a. The rest of i-th row of A, from A(i, i+1) to A(i, n)
|
|
// b. The rest of i-th column of A, from A(i+1, i) to A(n, i)
|
|
for (int j = i + 1; j < multiBodyNumConstraints; ++j)
|
|
{
|
|
const btMultiBodySolverConstraint& offDiagConstraint = *m_multiBodyAllConstraintPtrArray[j];
|
|
const btScalar offDiagA = computeConstraintMatrixOffDiagElementMultiBody(m_tmpSolverBodyPool, m_data, constraint, offDiagConstraint);
|
|
|
|
// Set the off-diagonal values of A. Note that A is symmetric.
|
|
m_multiBodyA.setElem(i, j, offDiagA);
|
|
m_multiBodyA.setElem(j, i, offDiagA);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add CFM to the diagonal of m_A
|
|
for (int i = 0; i < m_multiBodyA.rows(); ++i)
|
|
{
|
|
m_multiBodyA.setElem(i, i, m_multiBodyA(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
|
|
}
|
|
|
|
// 4. Initialize x
|
|
{
|
|
BT_PROFILE("resize/init x");
|
|
|
|
m_multiBodyX.resize(multiBodyNumConstraints);
|
|
|
|
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
|
{
|
|
for (int i = 0; i < multiBodyNumConstraints; ++i)
|
|
{
|
|
const btMultiBodySolverConstraint& constraint = *m_multiBodyAllConstraintPtrArray[i];
|
|
m_multiBodyX[i] = constraint.m_appliedImpulse;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
m_multiBodyX.setZero();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool btMultiBodyMLCPConstraintSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
bool result = true;
|
|
|
|
if (m_A.rows() != 0)
|
|
{
|
|
// If using split impulse, we solve 2 separate (M)LCPs
|
|
if (infoGlobal.m_splitImpulse)
|
|
{
|
|
const btMatrixXu Acopy = m_A;
|
|
const btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
|
|
// TODO(JS): Do we really need these copies when solveMLCP takes them as const?
|
|
|
|
result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
|
|
if (result)
|
|
result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo, m_hi, limitDependenciesCopy, infoGlobal.m_numIterations);
|
|
}
|
|
else
|
|
{
|
|
result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
|
|
}
|
|
}
|
|
|
|
if (!result)
|
|
return false;
|
|
|
|
if (m_multiBodyA.rows() != 0)
|
|
{
|
|
result = m_solver->solveMLCP(m_multiBodyA, m_multiBodyB, m_multiBodyX, m_multiBodyLo, m_multiBodyHi, m_multiBodyLimitDependencies, infoGlobal.m_numIterations);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlySetup(
|
|
btCollisionObject** bodies,
|
|
int numBodies,
|
|
btPersistentManifold** manifoldPtr,
|
|
int numManifolds,
|
|
btTypedConstraint** constraints,
|
|
int numConstraints,
|
|
const btContactSolverInfo& infoGlobal,
|
|
btIDebugDraw* debugDrawer)
|
|
{
|
|
// 1. Setup for rigid-bodies
|
|
btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(
|
|
bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
|
|
|
|
// 2. Setup for multi-bodies
|
|
// a. Collect all different kinds of constraint as pointers into one array, m_allConstraintPtrArray
|
|
// b. Set the index array for frictional contact constraints, m_limitDependencies
|
|
{
|
|
BT_PROFILE("gather constraint data");
|
|
|
|
int dindex = 0;
|
|
|
|
const int numRigidBodyConstraints = m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size();
|
|
const int numMultiBodyConstraints = m_multiBodyNonContactConstraints.size() + m_multiBodyNormalContactConstraints.size() + m_multiBodyFrictionContactConstraints.size();
|
|
|
|
m_allConstraintPtrArray.resize(0);
|
|
m_multiBodyAllConstraintPtrArray.resize(0);
|
|
|
|
// i. Setup for rigid bodies
|
|
|
|
m_limitDependencies.resize(numRigidBodyConstraints);
|
|
|
|
for (int i = 0; i < m_tmpSolverNonContactConstraintPool.size(); ++i)
|
|
{
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
|
|
m_limitDependencies[dindex++] = -1;
|
|
}
|
|
|
|
int firstContactConstraintOffset = dindex;
|
|
|
|
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
|
|
if (interleaveContactAndFriction)
|
|
{
|
|
for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
|
|
{
|
|
const int numFrictionPerContact = m_tmpSolverContactConstraintPool.size() == m_tmpSolverContactFrictionConstraintPool.size() ? 1 : 2;
|
|
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
|
|
m_limitDependencies[dindex++] = -1;
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact]);
|
|
int findex = (m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact].m_frictionIndex * (1 + numFrictionPerContact));
|
|
m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
|
|
if (numFrictionPerContact == 2)
|
|
{
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact + 1]);
|
|
m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
|
|
{
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
|
|
m_limitDependencies[dindex++] = -1;
|
|
}
|
|
for (int i = 0; i < m_tmpSolverContactFrictionConstraintPool.size(); i++)
|
|
{
|
|
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
|
|
m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex + firstContactConstraintOffset;
|
|
}
|
|
}
|
|
|
|
if (!m_allConstraintPtrArray.size())
|
|
{
|
|
m_A.resize(0, 0);
|
|
m_b.resize(0);
|
|
m_x.resize(0);
|
|
m_lo.resize(0);
|
|
m_hi.resize(0);
|
|
}
|
|
|
|
// ii. Setup for multibodies
|
|
|
|
dindex = 0;
|
|
|
|
m_multiBodyLimitDependencies.resize(numMultiBodyConstraints);
|
|
|
|
for (int i = 0; i < m_multiBodyNonContactConstraints.size(); ++i)
|
|
{
|
|
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNonContactConstraints[i]);
|
|
m_multiBodyLimitDependencies[dindex++] = -1;
|
|
}
|
|
|
|
firstContactConstraintOffset = dindex;
|
|
|
|
// The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
|
|
if (interleaveContactAndFriction)
|
|
{
|
|
for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
|
|
{
|
|
const int numtiBodyNumFrictionPerContact = m_multiBodyNormalContactConstraints.size() == m_multiBodyFrictionContactConstraints.size() ? 1 : 2;
|
|
|
|
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
|
|
m_multiBodyLimitDependencies[dindex++] = -1;
|
|
|
|
btMultiBodySolverConstraint& frictionContactConstraint1 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact];
|
|
m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint1);
|
|
|
|
const int findex = (frictionContactConstraint1.m_frictionIndex * (1 + numtiBodyNumFrictionPerContact)) + firstContactConstraintOffset;
|
|
|
|
m_multiBodyLimitDependencies[dindex++] = findex;
|
|
|
|
if (numtiBodyNumFrictionPerContact == 2)
|
|
{
|
|
btMultiBodySolverConstraint& frictionContactConstraint2 = m_multiBodyFrictionContactConstraints[i * numtiBodyNumFrictionPerContact + 1];
|
|
m_multiBodyAllConstraintPtrArray.push_back(&frictionContactConstraint2);
|
|
|
|
m_multiBodyLimitDependencies[dindex++] = findex;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < m_multiBodyNormalContactConstraints.size(); ++i)
|
|
{
|
|
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyNormalContactConstraints[i]);
|
|
m_multiBodyLimitDependencies[dindex++] = -1;
|
|
}
|
|
for (int i = 0; i < m_multiBodyFrictionContactConstraints.size(); ++i)
|
|
{
|
|
m_multiBodyAllConstraintPtrArray.push_back(&m_multiBodyFrictionContactConstraints[i]);
|
|
m_multiBodyLimitDependencies[dindex++] = m_multiBodyFrictionContactConstraints[i].m_frictionIndex + firstContactConstraintOffset;
|
|
}
|
|
}
|
|
|
|
if (!m_multiBodyAllConstraintPtrArray.size())
|
|
{
|
|
m_multiBodyA.resize(0, 0);
|
|
m_multiBodyB.resize(0);
|
|
m_multiBodyX.resize(0);
|
|
m_multiBodyLo.resize(0);
|
|
m_multiBodyHi.resize(0);
|
|
}
|
|
}
|
|
|
|
// Construct MLCP terms
|
|
{
|
|
BT_PROFILE("createMLCPFast");
|
|
createMLCPFast(infoGlobal);
|
|
}
|
|
|
|
return btScalar(0);
|
|
}
|
|
|
|
btScalar btMultiBodyMLCPConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
|
|
{
|
|
bool result = true;
|
|
{
|
|
BT_PROFILE("solveMLCP");
|
|
result = solveMLCP(infoGlobal);
|
|
}
|
|
|
|
// Fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations if the solution isn't valid.
|
|
if (!result)
|
|
{
|
|
m_fallback++;
|
|
return btMultiBodyConstraintSolver::solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
|
|
}
|
|
|
|
{
|
|
BT_PROFILE("process MLCP results");
|
|
|
|
for (int i = 0; i < m_allConstraintPtrArray.size(); ++i)
|
|
{
|
|
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
|
|
|
|
const btScalar deltaImpulse = m_x[i] - c.m_appliedImpulse;
|
|
c.m_appliedImpulse = m_x[i];
|
|
|
|
int sbA = c.m_solverBodyIdA;
|
|
int sbB = c.m_solverBodyIdB;
|
|
|
|
btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
|
|
btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
|
|
|
|
solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
|
|
solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
|
|
|
|
if (infoGlobal.m_splitImpulse)
|
|
{
|
|
const btScalar deltaPushImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
|
|
solverBodyA.internalApplyPushImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaPushImpulse);
|
|
solverBodyB.internalApplyPushImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaPushImpulse);
|
|
c.m_appliedPushImpulse = m_xSplit[i];
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < m_multiBodyAllConstraintPtrArray.size(); ++i)
|
|
{
|
|
btMultiBodySolverConstraint& c = *m_multiBodyAllConstraintPtrArray[i];
|
|
|
|
const btScalar deltaImpulse = m_multiBodyX[i] - c.m_appliedImpulse;
|
|
c.m_appliedImpulse = m_multiBodyX[i];
|
|
|
|
btMultiBody* multiBodyA = c.m_multiBodyA;
|
|
if (multiBodyA)
|
|
{
|
|
const int ndofA = multiBodyA->getNumDofs() + 6;
|
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse, c.m_deltaVelAindex, ndofA);
|
|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
|
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
|
|
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
|
|
multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex], deltaImpulse);
|
|
#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
|
}
|
|
else
|
|
{
|
|
const int sbA = c.m_solverBodyIdA;
|
|
btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
|
|
solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
|
|
}
|
|
|
|
btMultiBody* multiBodyB = c.m_multiBodyB;
|
|
if (multiBodyB)
|
|
{
|
|
const int ndofB = multiBodyB->getNumDofs() + 6;
|
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse, c.m_deltaVelBindex, ndofB);
|
|
#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
|
//note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
|
|
//it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
|
|
multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex], deltaImpulse);
|
|
#endif // DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
|
|
}
|
|
else
|
|
{
|
|
const int sbB = c.m_solverBodyIdB;
|
|
btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
|
|
solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
|
|
}
|
|
}
|
|
}
|
|
|
|
return btScalar(0);
|
|
}
|
|
|
|
btMultiBodyMLCPConstraintSolver::btMultiBodyMLCPConstraintSolver(btMLCPSolverInterface* solver)
|
|
: m_solver(solver), m_fallback(0)
|
|
{
|
|
// Do nothing
|
|
}
|
|
|
|
btMultiBodyMLCPConstraintSolver::~btMultiBodyMLCPConstraintSolver()
|
|
{
|
|
// Do nothing
|
|
}
|
|
|
|
void btMultiBodyMLCPConstraintSolver::setMLCPSolver(btMLCPSolverInterface* solver)
|
|
{
|
|
m_solver = solver;
|
|
}
|
|
|
|
int btMultiBodyMLCPConstraintSolver::getNumFallbacks() const
|
|
{
|
|
return m_fallback;
|
|
}
|
|
|
|
void btMultiBodyMLCPConstraintSolver::setNumFallbacks(int num)
|
|
{
|
|
m_fallback = num;
|
|
}
|
|
|
|
btConstraintSolverType btMultiBodyMLCPConstraintSolver::getSolverType() const
|
|
{
|
|
return BT_MLCP_SOLVER;
|
|
}
|