828 lines
31 KiB
C++
828 lines
31 KiB
C++
/**************************************************************************/
|
|
/* navigation_mesh_generator.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef _3D_DISABLED
|
|
|
|
#include "navigation_mesh_generator.h"
|
|
|
|
#include "core/math/convex_hull.h"
|
|
#include "core/os/thread.h"
|
|
#include "scene/3d/mesh_instance_3d.h"
|
|
#include "scene/3d/multimesh_instance_3d.h"
|
|
#include "scene/3d/physics_body_3d.h"
|
|
#include "scene/resources/box_shape_3d.h"
|
|
#include "scene/resources/capsule_shape_3d.h"
|
|
#include "scene/resources/concave_polygon_shape_3d.h"
|
|
#include "scene/resources/convex_polygon_shape_3d.h"
|
|
#include "scene/resources/cylinder_shape_3d.h"
|
|
#include "scene/resources/height_map_shape_3d.h"
|
|
#include "scene/resources/primitive_meshes.h"
|
|
#include "scene/resources/shape_3d.h"
|
|
#include "scene/resources/sphere_shape_3d.h"
|
|
#include "scene/resources/world_boundary_shape_3d.h"
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
#include "editor/editor_node.h"
|
|
#endif
|
|
|
|
#include "modules/modules_enabled.gen.h" // For csg, gridmap.
|
|
|
|
#ifdef MODULE_CSG_ENABLED
|
|
#include "modules/csg/csg_shape.h"
|
|
#endif
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
#include "modules/gridmap/grid_map.h"
|
|
#endif
|
|
|
|
NavigationMeshGenerator *NavigationMeshGenerator::singleton = nullptr;
|
|
|
|
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_vertices) {
|
|
p_vertices.push_back(p_vec3.x);
|
|
p_vertices.push_back(p_vec3.y);
|
|
p_vertices.push_back(p_vec3.z);
|
|
}
|
|
|
|
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
|
|
int current_vertex_count;
|
|
|
|
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
|
|
current_vertex_count = p_vertices.size() / 3;
|
|
|
|
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
|
|
continue;
|
|
}
|
|
|
|
int index_count = 0;
|
|
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
index_count = p_mesh->surface_get_array_index_len(i);
|
|
} else {
|
|
index_count = p_mesh->surface_get_array_len(i);
|
|
}
|
|
|
|
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
|
|
|
|
int face_count = index_count / 3;
|
|
|
|
Array a = p_mesh->surface_get_arrays(i);
|
|
|
|
Vector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
|
|
const Vector3 *vr = mesh_vertices.ptr();
|
|
|
|
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
|
|
Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
|
|
const int *ir = mesh_indices.ptr();
|
|
|
|
for (int j = 0; j < mesh_vertices.size(); j++) {
|
|
_add_vertex(p_xform.xform(vr[j]), p_vertices);
|
|
}
|
|
|
|
for (int j = 0; j < face_count; j++) {
|
|
// CCW
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
|
|
}
|
|
} else {
|
|
face_count = mesh_vertices.size() / 3;
|
|
for (int j = 0; j < face_count; j++) {
|
|
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_vertices);
|
|
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_vertices);
|
|
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_vertices);
|
|
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 0));
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 1));
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 2));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_add_mesh_array(const Array &p_array, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
|
|
Vector<Vector3> mesh_vertices = p_array[Mesh::ARRAY_VERTEX];
|
|
const Vector3 *vr = mesh_vertices.ptr();
|
|
|
|
Vector<int> mesh_indices = p_array[Mesh::ARRAY_INDEX];
|
|
const int *ir = mesh_indices.ptr();
|
|
|
|
const int face_count = mesh_indices.size() / 3;
|
|
const int current_vertex_count = p_vertices.size() / 3;
|
|
|
|
for (int j = 0; j < mesh_vertices.size(); j++) {
|
|
_add_vertex(p_xform.xform(vr[j]), p_vertices);
|
|
}
|
|
|
|
for (int j = 0; j < face_count; j++) {
|
|
// CCW
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
|
|
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_add_faces(const PackedVector3Array &p_faces, const Transform3D &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
|
|
int face_count = p_faces.size() / 3;
|
|
int current_vertex_count = p_vertices.size() / 3;
|
|
|
|
for (int j = 0; j < face_count; j++) {
|
|
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_vertices);
|
|
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_vertices);
|
|
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_vertices);
|
|
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 0));
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 2));
|
|
p_indices.push_back(current_vertex_count + (j * 3 + 1));
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_parse_geometry(const Transform3D &p_navmesh_transform, Node *p_node, Vector<float> &p_vertices, Vector<int> &p_indices, NavigationMesh::ParsedGeometryType p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
|
|
if (Object::cast_to<MeshInstance3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
|
|
MeshInstance3D *mesh_instance = Object::cast_to<MeshInstance3D>(p_node);
|
|
Ref<Mesh> mesh = mesh_instance->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
_add_mesh(mesh, p_navmesh_transform * mesh_instance->get_global_transform(), p_vertices, p_indices);
|
|
}
|
|
}
|
|
|
|
if (Object::cast_to<MultiMeshInstance3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
|
|
MultiMeshInstance3D *multimesh_instance = Object::cast_to<MultiMeshInstance3D>(p_node);
|
|
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
|
|
if (multimesh.is_valid()) {
|
|
Ref<Mesh> mesh = multimesh->get_mesh();
|
|
if (mesh.is_valid()) {
|
|
int n = multimesh->get_visible_instance_count();
|
|
if (n == -1) {
|
|
n = multimesh->get_instance_count();
|
|
}
|
|
for (int i = 0; i < n; i++) {
|
|
_add_mesh(mesh, p_navmesh_transform * multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i), p_vertices, p_indices);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_CSG_ENABLED
|
|
if (Object::cast_to<CSGShape3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
|
|
CSGShape3D *csg_shape = Object::cast_to<CSGShape3D>(p_node);
|
|
Array meshes = csg_shape->get_meshes();
|
|
if (!meshes.is_empty()) {
|
|
Ref<Mesh> mesh = meshes[1];
|
|
if (mesh.is_valid()) {
|
|
_add_mesh(mesh, p_navmesh_transform * csg_shape->get_global_transform(), p_vertices, p_indices);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (Object::cast_to<StaticBody3D>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
|
|
StaticBody3D *static_body = Object::cast_to<StaticBody3D>(p_node);
|
|
|
|
if (static_body->get_collision_layer() & p_collision_mask) {
|
|
List<uint32_t> shape_owners;
|
|
static_body->get_shape_owners(&shape_owners);
|
|
for (uint32_t shape_owner : shape_owners) {
|
|
if (static_body->is_shape_owner_disabled(shape_owner)) {
|
|
continue;
|
|
}
|
|
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
|
|
for (int i = 0; i < shape_count; i++) {
|
|
Ref<Shape3D> s = static_body->shape_owner_get_shape(shape_owner, i);
|
|
if (s.is_null()) {
|
|
continue;
|
|
}
|
|
|
|
const Transform3D transform = p_navmesh_transform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
|
|
|
|
BoxShape3D *box = Object::cast_to<BoxShape3D>(*s);
|
|
if (box) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
BoxMesh::create_mesh_array(arr, box->get_size());
|
|
_add_mesh_array(arr, transform, p_vertices, p_indices);
|
|
}
|
|
|
|
CapsuleShape3D *capsule = Object::cast_to<CapsuleShape3D>(*s);
|
|
if (capsule) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height());
|
|
_add_mesh_array(arr, transform, p_vertices, p_indices);
|
|
}
|
|
|
|
CylinderShape3D *cylinder = Object::cast_to<CylinderShape3D>(*s);
|
|
if (cylinder) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height());
|
|
_add_mesh_array(arr, transform, p_vertices, p_indices);
|
|
}
|
|
|
|
SphereShape3D *sphere = Object::cast_to<SphereShape3D>(*s);
|
|
if (sphere) {
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0);
|
|
_add_mesh_array(arr, transform, p_vertices, p_indices);
|
|
}
|
|
|
|
ConcavePolygonShape3D *concave_polygon = Object::cast_to<ConcavePolygonShape3D>(*s);
|
|
if (concave_polygon) {
|
|
_add_faces(concave_polygon->get_faces(), transform, p_vertices, p_indices);
|
|
}
|
|
|
|
ConvexPolygonShape3D *convex_polygon = Object::cast_to<ConvexPolygonShape3D>(*s);
|
|
if (convex_polygon) {
|
|
Vector<Vector3> varr = Variant(convex_polygon->get_points());
|
|
Geometry3D::MeshData md;
|
|
|
|
Error err = ConvexHullComputer::convex_hull(varr, md);
|
|
|
|
if (err == OK) {
|
|
PackedVector3Array faces;
|
|
|
|
for (const Geometry3D::MeshData::Face &face : md.faces) {
|
|
for (uint32_t k = 2; k < face.indices.size(); ++k) {
|
|
faces.push_back(md.vertices[face.indices[0]]);
|
|
faces.push_back(md.vertices[face.indices[k - 1]]);
|
|
faces.push_back(md.vertices[face.indices[k]]);
|
|
}
|
|
}
|
|
|
|
_add_faces(faces, transform, p_vertices, p_indices);
|
|
}
|
|
}
|
|
|
|
HeightMapShape3D *heightmap_shape = Object::cast_to<HeightMapShape3D>(*s);
|
|
if (heightmap_shape) {
|
|
int heightmap_depth = heightmap_shape->get_map_depth();
|
|
int heightmap_width = heightmap_shape->get_map_width();
|
|
|
|
if (heightmap_depth >= 2 && heightmap_width >= 2) {
|
|
const Vector<real_t> &map_data = heightmap_shape->get_map_data();
|
|
|
|
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
|
|
Vector2 start = heightmap_gridsize * -0.5;
|
|
|
|
Vector<Vector3> vertex_array;
|
|
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
|
|
int map_data_current_index = 0;
|
|
|
|
for (int d = 0; d < heightmap_depth - 1; d++) {
|
|
for (int w = 0; w < heightmap_width - 1; w++) {
|
|
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
|
|
float top_left_height = map_data[map_data_current_index];
|
|
float top_right_height = map_data[map_data_current_index + 1];
|
|
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
|
|
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
|
|
|
|
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
|
|
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
|
|
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
|
|
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
|
|
|
|
vertex_array.push_back(top_right);
|
|
vertex_array.push_back(bottom_left);
|
|
vertex_array.push_back(top_left);
|
|
vertex_array.push_back(top_right);
|
|
vertex_array.push_back(bottom_right);
|
|
vertex_array.push_back(bottom_left);
|
|
}
|
|
map_data_current_index += 1;
|
|
}
|
|
}
|
|
if (vertex_array.size() > 0) {
|
|
_add_faces(vertex_array, transform, p_vertices, p_indices);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MODULE_GRIDMAP_ENABLED
|
|
GridMap *gridmap = Object::cast_to<GridMap>(p_node);
|
|
|
|
if (gridmap) {
|
|
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
|
|
Array meshes = gridmap->get_meshes();
|
|
Transform3D xform = gridmap->get_global_transform();
|
|
for (int i = 0; i < meshes.size(); i += 2) {
|
|
Ref<Mesh> mesh = meshes[i + 1];
|
|
if (mesh.is_valid()) {
|
|
_add_mesh(mesh, p_navmesh_transform * xform * (Transform3D)meshes[i], p_vertices, p_indices);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES && (gridmap->get_collision_layer() & p_collision_mask)) {
|
|
Array shapes = gridmap->get_collision_shapes();
|
|
for (int i = 0; i < shapes.size(); i += 2) {
|
|
RID shape = shapes[i + 1];
|
|
PhysicsServer3D::ShapeType type = PhysicsServer3D::get_singleton()->shape_get_type(shape);
|
|
Variant data = PhysicsServer3D::get_singleton()->shape_get_data(shape);
|
|
|
|
switch (type) {
|
|
case PhysicsServer3D::SHAPE_SPHERE: {
|
|
real_t radius = data;
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
SphereMesh::create_mesh_array(arr, radius, radius * 2.0);
|
|
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_BOX: {
|
|
Vector3 extents = data;
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
BoxMesh::create_mesh_array(arr, extents * 2.0);
|
|
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CAPSULE: {
|
|
Dictionary dict = data;
|
|
real_t radius = dict["radius"];
|
|
real_t height = dict["height"];
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CapsuleMesh::create_mesh_array(arr, radius, height);
|
|
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CYLINDER: {
|
|
Dictionary dict = data;
|
|
real_t radius = dict["radius"];
|
|
real_t height = dict["height"];
|
|
Array arr;
|
|
arr.resize(RS::ARRAY_MAX);
|
|
CylinderMesh::create_mesh_array(arr, radius, radius, height);
|
|
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CONVEX_POLYGON: {
|
|
PackedVector3Array vertices = data;
|
|
Geometry3D::MeshData md;
|
|
|
|
Error err = ConvexHullComputer::convex_hull(vertices, md);
|
|
|
|
if (err == OK) {
|
|
PackedVector3Array faces;
|
|
|
|
for (const Geometry3D::MeshData::Face &face : md.faces) {
|
|
for (uint32_t k = 2; k < face.indices.size(); ++k) {
|
|
faces.push_back(md.vertices[face.indices[0]]);
|
|
faces.push_back(md.vertices[face.indices[k - 1]]);
|
|
faces.push_back(md.vertices[face.indices[k]]);
|
|
}
|
|
}
|
|
|
|
_add_faces(faces, shapes[i], p_vertices, p_indices);
|
|
}
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_CONCAVE_POLYGON: {
|
|
Dictionary dict = data;
|
|
PackedVector3Array faces = Variant(dict["faces"]);
|
|
_add_faces(faces, shapes[i], p_vertices, p_indices);
|
|
} break;
|
|
case PhysicsServer3D::SHAPE_HEIGHTMAP: {
|
|
Dictionary dict = data;
|
|
///< dict( int:"width", int:"depth",float:"cell_size", float_array:"heights"
|
|
int heightmap_depth = dict["depth"];
|
|
int heightmap_width = dict["width"];
|
|
|
|
if (heightmap_depth >= 2 && heightmap_width >= 2) {
|
|
const Vector<real_t> &map_data = dict["heights"];
|
|
|
|
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
|
|
Vector2 start = heightmap_gridsize * -0.5;
|
|
|
|
Vector<Vector3> vertex_array;
|
|
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
|
|
int map_data_current_index = 0;
|
|
|
|
for (int d = 0; d < heightmap_depth - 1; d++) {
|
|
for (int w = 0; w < heightmap_width - 1; w++) {
|
|
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
|
|
float top_left_height = map_data[map_data_current_index];
|
|
float top_right_height = map_data[map_data_current_index + 1];
|
|
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
|
|
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
|
|
|
|
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
|
|
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
|
|
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
|
|
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
|
|
|
|
vertex_array.push_back(top_right);
|
|
vertex_array.push_back(bottom_left);
|
|
vertex_array.push_back(top_left);
|
|
vertex_array.push_back(top_right);
|
|
vertex_array.push_back(bottom_right);
|
|
vertex_array.push_back(bottom_left);
|
|
}
|
|
map_data_current_index += 1;
|
|
}
|
|
}
|
|
if (vertex_array.size() > 0) {
|
|
_add_faces(vertex_array, shapes[i], p_vertices, p_indices);
|
|
}
|
|
}
|
|
} break;
|
|
default: {
|
|
WARN_PRINT("Unsupported collision shape type.");
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (p_recurse_children) {
|
|
for (int i = 0; i < p_node->get_child_count(); i++) {
|
|
_parse_geometry(p_navmesh_transform, p_node->get_child(i), p_vertices, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_navigation_mesh) {
|
|
Vector<Vector3> nav_vertices;
|
|
|
|
for (int i = 0; i < p_detail_mesh->nverts; i++) {
|
|
const float *v = &p_detail_mesh->verts[i * 3];
|
|
nav_vertices.push_back(Vector3(v[0], v[1], v[2]));
|
|
}
|
|
p_navigation_mesh->set_vertices(nav_vertices);
|
|
|
|
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
|
|
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
|
|
const unsigned int bverts = m[0];
|
|
const unsigned int btris = m[2];
|
|
const unsigned int ntris = m[3];
|
|
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
|
|
for (unsigned int j = 0; j < ntris; j++) {
|
|
Vector<int> nav_indices;
|
|
nav_indices.resize(3);
|
|
// Polygon order in recast is opposite than godot's
|
|
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
|
|
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2]));
|
|
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1]));
|
|
p_navigation_mesh->add_polygon(nav_indices);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_build_recast_navigation_mesh(
|
|
Ref<NavigationMesh> p_navigation_mesh,
|
|
#ifdef TOOLS_ENABLED
|
|
EditorProgress *ep,
|
|
#endif
|
|
rcHeightfield *hf,
|
|
rcCompactHeightfield *chf,
|
|
rcContourSet *cset,
|
|
rcPolyMesh *poly_mesh,
|
|
rcPolyMeshDetail *detail_mesh,
|
|
Vector<float> &vertices,
|
|
Vector<int> &indices) {
|
|
rcContext ctx;
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Setting up Configuration..."), 1);
|
|
}
|
|
#endif
|
|
|
|
const float *verts = vertices.ptr();
|
|
const int nverts = vertices.size() / 3;
|
|
const int *tris = indices.ptr();
|
|
const int ntris = indices.size() / 3;
|
|
|
|
float bmin[3], bmax[3];
|
|
rcCalcBounds(verts, nverts, bmin, bmax);
|
|
|
|
rcConfig cfg;
|
|
memset(&cfg, 0, sizeof(cfg));
|
|
|
|
cfg.cs = p_navigation_mesh->get_cell_size();
|
|
cfg.ch = p_navigation_mesh->get_cell_height();
|
|
cfg.walkableSlopeAngle = p_navigation_mesh->get_agent_max_slope();
|
|
cfg.walkableHeight = (int)Math::ceil(p_navigation_mesh->get_agent_height() / cfg.ch);
|
|
cfg.walkableClimb = (int)Math::floor(p_navigation_mesh->get_agent_max_climb() / cfg.ch);
|
|
cfg.walkableRadius = (int)Math::ceil(p_navigation_mesh->get_agent_radius() / cfg.cs);
|
|
cfg.maxEdgeLen = (int)(p_navigation_mesh->get_edge_max_length() / p_navigation_mesh->get_cell_size());
|
|
cfg.maxSimplificationError = p_navigation_mesh->get_edge_max_error();
|
|
cfg.minRegionArea = (int)(p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size());
|
|
cfg.mergeRegionArea = (int)(p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size());
|
|
cfg.maxVertsPerPoly = (int)p_navigation_mesh->get_vertices_per_polygon();
|
|
cfg.detailSampleDist = MAX(p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance(), 0.1f);
|
|
cfg.detailSampleMaxError = p_navigation_mesh->get_cell_height() * p_navigation_mesh->get_detail_sample_max_error();
|
|
|
|
if (!Math::is_equal_approx((float)cfg.walkableHeight * cfg.ch, p_navigation_mesh->get_agent_height())) {
|
|
WARN_PRINT("Property agent_height is ceiled to cell_height voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.walkableClimb * cfg.ch, p_navigation_mesh->get_agent_max_climb())) {
|
|
WARN_PRINT("Property agent_max_climb is floored to cell_height voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.walkableRadius * cfg.cs, p_navigation_mesh->get_agent_radius())) {
|
|
WARN_PRINT("Property agent_radius is ceiled to cell_size voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.maxEdgeLen * cfg.cs, p_navigation_mesh->get_edge_max_length())) {
|
|
WARN_PRINT("Property edge_max_length is rounded to cell_size voxel units and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.minRegionArea, p_navigation_mesh->get_region_min_size() * p_navigation_mesh->get_region_min_size())) {
|
|
WARN_PRINT("Property region_min_size is converted to int and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.mergeRegionArea, p_navigation_mesh->get_region_merge_size() * p_navigation_mesh->get_region_merge_size())) {
|
|
WARN_PRINT("Property region_merge_size is converted to int and loses precision.");
|
|
}
|
|
if (!Math::is_equal_approx((float)cfg.maxVertsPerPoly, p_navigation_mesh->get_vertices_per_polygon())) {
|
|
WARN_PRINT("Property vertices_per_polygon is converted to int and loses precision.");
|
|
}
|
|
if (p_navigation_mesh->get_cell_size() * p_navigation_mesh->get_detail_sample_distance() < 0.1f) {
|
|
WARN_PRINT("Property detail_sample_distance is clamped to 0.1 world units as the resulting value from multiplying with cell_size is too low.");
|
|
}
|
|
|
|
cfg.bmin[0] = bmin[0];
|
|
cfg.bmin[1] = bmin[1];
|
|
cfg.bmin[2] = bmin[2];
|
|
cfg.bmax[0] = bmax[0];
|
|
cfg.bmax[1] = bmax[1];
|
|
cfg.bmax[2] = bmax[2];
|
|
|
|
AABB baking_aabb = p_navigation_mesh->get_filter_baking_aabb();
|
|
if (baking_aabb.has_volume()) {
|
|
Vector3 baking_aabb_offset = p_navigation_mesh->get_filter_baking_aabb_offset();
|
|
cfg.bmin[0] = baking_aabb.position[0] + baking_aabb_offset.x;
|
|
cfg.bmin[1] = baking_aabb.position[1] + baking_aabb_offset.y;
|
|
cfg.bmin[2] = baking_aabb.position[2] + baking_aabb_offset.z;
|
|
cfg.bmax[0] = cfg.bmin[0] + baking_aabb.size[0];
|
|
cfg.bmax[1] = cfg.bmin[1] + baking_aabb.size[1];
|
|
cfg.bmax[2] = cfg.bmin[2] + baking_aabb.size[2];
|
|
}
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Calculating grid size..."), 2);
|
|
}
|
|
#endif
|
|
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
|
|
|
|
// ~30000000 seems to be around sweetspot where Editor baking breaks
|
|
if ((cfg.width * cfg.height) > 30000000) {
|
|
WARN_PRINT("NavigationMesh baking process will likely fail."
|
|
"\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings."
|
|
"\nIf baking does not fail, the resulting NavigationMesh will create serious pathfinding performance issues."
|
|
"\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry.");
|
|
}
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Creating heightfield..."), 3);
|
|
}
|
|
#endif
|
|
hf = rcAllocHeightfield();
|
|
|
|
ERR_FAIL_COND(!hf);
|
|
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Marking walkable triangles..."), 4);
|
|
}
|
|
#endif
|
|
{
|
|
Vector<unsigned char> tri_areas;
|
|
tri_areas.resize(ntris);
|
|
|
|
ERR_FAIL_COND(tri_areas.size() == 0);
|
|
|
|
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
|
|
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
|
|
|
|
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
|
|
}
|
|
|
|
if (p_navigation_mesh->get_filter_low_hanging_obstacles()) {
|
|
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
|
|
}
|
|
if (p_navigation_mesh->get_filter_ledge_spans()) {
|
|
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
|
|
}
|
|
if (p_navigation_mesh->get_filter_walkable_low_height_spans()) {
|
|
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
|
|
}
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Constructing compact heightfield..."), 5);
|
|
}
|
|
#endif
|
|
|
|
chf = rcAllocCompactHeightfield();
|
|
|
|
ERR_FAIL_COND(!chf);
|
|
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
|
|
|
|
rcFreeHeightField(hf);
|
|
hf = nullptr;
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Eroding walkable area..."), 6);
|
|
}
|
|
#endif
|
|
|
|
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Partitioning..."), 7);
|
|
}
|
|
#endif
|
|
|
|
if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
|
|
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
|
|
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
|
|
} else if (p_navigation_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
|
|
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
|
|
} else {
|
|
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
|
|
}
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Creating contours..."), 8);
|
|
}
|
|
#endif
|
|
|
|
cset = rcAllocContourSet();
|
|
|
|
ERR_FAIL_COND(!cset);
|
|
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Creating polymesh..."), 9);
|
|
}
|
|
#endif
|
|
|
|
poly_mesh = rcAllocPolyMesh();
|
|
ERR_FAIL_COND(!poly_mesh);
|
|
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
|
|
|
|
detail_mesh = rcAllocPolyMeshDetail();
|
|
ERR_FAIL_COND(!detail_mesh);
|
|
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
|
|
|
|
rcFreeCompactHeightfield(chf);
|
|
chf = nullptr;
|
|
rcFreeContourSet(cset);
|
|
cset = nullptr;
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Converting to native navigation mesh..."), 10);
|
|
}
|
|
#endif
|
|
|
|
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_navigation_mesh);
|
|
|
|
rcFreePolyMesh(poly_mesh);
|
|
poly_mesh = nullptr;
|
|
rcFreePolyMeshDetail(detail_mesh);
|
|
detail_mesh = nullptr;
|
|
}
|
|
|
|
NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() {
|
|
return singleton;
|
|
}
|
|
|
|
NavigationMeshGenerator::NavigationMeshGenerator() {
|
|
singleton = this;
|
|
}
|
|
|
|
NavigationMeshGenerator::~NavigationMeshGenerator() {
|
|
}
|
|
|
|
void NavigationMeshGenerator::bake(Ref<NavigationMesh> p_navigation_mesh, Node *p_root_node) {
|
|
ERR_FAIL_COND_MSG(!p_navigation_mesh.is_valid(), "Invalid navigation mesh.");
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
EditorProgress *ep(nullptr);
|
|
// FIXME
|
|
#endif
|
|
#if 0
|
|
// After discussion on devchat disabled EditorProgress for now as it is not thread-safe and uses hacks and Main::iteration() for steps.
|
|
// EditorProgress randomly crashes the Engine when the bake function is used with a thread e.g. inside Editor with a tool script and procedural navigation
|
|
// This was not a problem in older versions as previously Godot was unable to (re)bake NavigationMesh at runtime.
|
|
// If EditorProgress is fixed and made thread-safe this should be enabled again.
|
|
if (Engine::get_singleton()->is_editor_hint()) {
|
|
ep = memnew(EditorProgress("bake", TTR("Navigation Mesh Generator Setup:"), 11));
|
|
}
|
|
|
|
if (ep) {
|
|
ep->step(TTR("Parsing Geometry..."), 0);
|
|
}
|
|
#endif
|
|
|
|
Vector<float> vertices;
|
|
Vector<int> indices;
|
|
|
|
List<Node *> parse_nodes;
|
|
|
|
if (p_navigation_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
|
|
parse_nodes.push_back(p_root_node);
|
|
} else {
|
|
p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_group_name(), &parse_nodes);
|
|
}
|
|
|
|
Transform3D navmesh_xform = Object::cast_to<Node3D>(p_root_node)->get_global_transform().affine_inverse();
|
|
for (Node *E : parse_nodes) {
|
|
NavigationMesh::ParsedGeometryType geometry_type = p_navigation_mesh->get_parsed_geometry_type();
|
|
uint32_t collision_mask = p_navigation_mesh->get_collision_mask();
|
|
bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
|
|
_parse_geometry(navmesh_xform, E, vertices, indices, geometry_type, collision_mask, recurse_children);
|
|
}
|
|
|
|
if (vertices.size() > 0 && indices.size() > 0) {
|
|
rcHeightfield *hf = nullptr;
|
|
rcCompactHeightfield *chf = nullptr;
|
|
rcContourSet *cset = nullptr;
|
|
rcPolyMesh *poly_mesh = nullptr;
|
|
rcPolyMeshDetail *detail_mesh = nullptr;
|
|
|
|
_build_recast_navigation_mesh(
|
|
p_navigation_mesh,
|
|
#ifdef TOOLS_ENABLED
|
|
ep,
|
|
#endif
|
|
hf,
|
|
chf,
|
|
cset,
|
|
poly_mesh,
|
|
detail_mesh,
|
|
vertices,
|
|
indices);
|
|
|
|
rcFreeHeightField(hf);
|
|
hf = nullptr;
|
|
|
|
rcFreeCompactHeightfield(chf);
|
|
chf = nullptr;
|
|
|
|
rcFreeContourSet(cset);
|
|
cset = nullptr;
|
|
|
|
rcFreePolyMesh(poly_mesh);
|
|
poly_mesh = nullptr;
|
|
|
|
rcFreePolyMeshDetail(detail_mesh);
|
|
detail_mesh = nullptr;
|
|
}
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (ep) {
|
|
ep->step(TTR("Done!"), 11);
|
|
}
|
|
|
|
if (ep) {
|
|
memdelete(ep);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_navigation_mesh) {
|
|
if (p_navigation_mesh.is_valid()) {
|
|
p_navigation_mesh->clear_polygons();
|
|
p_navigation_mesh->set_vertices(Vector<Vector3>());
|
|
}
|
|
}
|
|
|
|
void NavigationMeshGenerator::_bind_methods() {
|
|
ClassDB::bind_method(D_METHOD("bake", "navigation_mesh", "root_node"), &NavigationMeshGenerator::bake);
|
|
ClassDB::bind_method(D_METHOD("clear", "navigation_mesh"), &NavigationMeshGenerator::clear);
|
|
}
|
|
|
|
#endif
|