godot/servers/physics_2d/collision_solver_2d_sat.cpp
2014-02-09 22:10:30 -03:00

1035 lines
32 KiB
C++

/*************************************************************************/
/* collision_solver_2d_sat.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_2d_sat.h"
#include "geometry.h"
struct _CollectorCallback2D {
CollisionSolver2DSW::CallbackResult callback;
void *userdata;
bool swap;
bool collided;
Vector2 normal;
Vector2 *sep_axis;
_FORCE_INLINE_ void call(const Vector2& p_point_A, const Vector2& p_point_B) {
//if (normal.dot(p_point_A) >= normal.dot(p_point_B))
// return;
if (swap)
callback(p_point_B,p_point_A,userdata);
else
callback(p_point_A,p_point_B,userdata);
}
};
typedef void (*GenerateContactsFunc)(const Vector2 *,int, const Vector2 *,int ,_CollectorCallback2D *);
_FORCE_INLINE_ static void _generate_contacts_point_point(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 1 );
#endif
p_collector->call(*p_points_A,*p_points_B);
}
_FORCE_INLINE_ static void _generate_contacts_point_edge(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 2 );
#endif
Vector2 closest_B = Geometry::get_closest_point_to_segment_uncapped_2d(*p_points_A, p_points_B );
p_collector->call(*p_points_A,closest_B);
}
struct _generate_contacts_Pair {
int idx;
float d;
_FORCE_INLINE_ bool operator <(const _generate_contacts_Pair& l) const { return d< l.d; }
};
_FORCE_INLINE_ static void _generate_contacts_edge_edge(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 2 );
ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix
#endif
Vector2 rel_A=p_points_A[1]-p_points_A[0];
Vector2 rel_B=p_points_B[1]-p_points_B[0];
Vector2 t = p_collector->normal.tangent();
real_t dA[2]={t.dot(p_points_A[0]),t.dot(p_points_A[1])};
Vector2 pA[2]={p_points_A[0],p_points_A[1]};
if (dA[0]>dA[1]) {
SWAP(dA[0],dA[1]);
SWAP(pA[0],pA[1]);
}
float dB[2]={t.dot(p_points_B[0]),t.dot(p_points_B[1])};
Vector2 pB[2]={p_points_B[0],p_points_B[1]};
if (dB[0]>dB[1]) {
SWAP(dB[0],dB[1]);
SWAP(pB[0],pB[1]);
}
if (dA[0]<dB[0]) {
Vector2 n = (p_points_A[1]-p_points_A[0]).normalized().tangent();
real_t d = n.dot(p_points_A[1]);
if (dA[1]>dB[1]) {
//A contains B
for(int i=0;i<2;i++) {
Vector2 b = p_points_B[i];
Vector2 a = n.plane_project(d,b);
if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON)
continue;
p_collector->call(a,b);
}
} else {
// B0,A1 containment
Vector2 n_B = (p_points_B[1]-p_points_B[0]).normalized().tangent();
real_t d_B = n_B.dot(p_points_B[1]);
// first, B on A
{
Vector2 b = p_points_B[0];
Vector2 a = n.plane_project(d,b);
if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON)
p_collector->call(a,b);
}
// second, A on B
{
Vector2 a = p_points_A[1];
Vector2 b = n_B.plane_project(d_B,a);
if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON)
p_collector->call(a,b);
}
}
} else {
Vector2 n = (p_points_B[1]-p_points_B[0]).normalized().tangent();
real_t d = n.dot(p_points_B[1]);
if (dB[1]>dA[1]) {
//B contains A
for(int i=0;i<2;i++) {
Vector2 a = p_points_A[i];
Vector2 b = n.plane_project(d,a);
if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON)
continue;
p_collector->call(a,b);
}
} else {
// A0,B1 containment
Vector2 n_A = (p_points_A[1]-p_points_A[0]).normalized().tangent();
real_t d_A = n_A.dot(p_points_A[1]);
// first A on B
{
Vector2 a = p_points_A[0];
Vector2 b = n.plane_project(d,a);
if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON)
p_collector->call(a,b);
}
//second, B on A
{
Vector2 b = p_points_B[1];
Vector2 a = n_A.plane_project(d_A,b);
if (p_collector->normal.dot(a) < p_collector->normal.dot(b)-CMP_EPSILON)
p_collector->call(a,b);
}
}
}
#if 0
Vector2 axis = rel_A.normalized();
Vector2 axis_B = rel_B.normalized();
if (axis.dot(axis_B)<0)
axis_B=-axis_B;
axis=(axis+axis_B)*0.5;
Vector2 normal_A = axis.tangent();
real_t dA = normal_A.dot(p_points_A[0]);
Vector2 normal_B = rel_B.tangent().normalized();
real_t dB = normal_A.dot(p_points_B[0]);
Vector2 A[4]={ normal_A.plane_project(dA,p_points_B[0]), normal_A.plane_project(dA,p_points_B[1]), p_points_A[0], p_points_A[1] };
Vector2 B[4]={ p_points_B[0], p_points_B[1], normal_B.plane_project(dB,p_points_A[0]), normal_B.plane_project(dB,p_points_A[1]) };
_generate_contacts_Pair dvec[4];
for(int i=0;i<4;i++) {
dvec[i].d=axis.dot(p_points_A[0]-A[i]);
dvec[i].idx=i;
}
SortArray<_generate_contacts_Pair> sa;
sa.sort(dvec,4);
for(int i=1;i<=2;i++) {
Vector2 a = A[i];
Vector2 b = B[i];
if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-CMP_EPSILON)
continue;
p_collector->call(a,b);
}
#elif 0
Vector2 axis = rel_A.normalized(); //make an axis
Vector2 axis_B = rel_B.normalized();
if (axis.dot(axis_B)<0)
axis_B=-axis_B;
axis=(axis+axis_B)*0.5;
Vector2 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
Vector2 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
//sort all 4 points in axis
float dvec[4]={ axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
//todo , find max/min and then use 2 central points
SortArray<float> sa;
sa.sort(dvec,4);
//use the middle ones as contacts
for (int i=1;i<=2;i++) {
Vector2 a = base_A+axis*dvec[i];
Vector2 b = base_B+axis*dvec[i];
if (p_collector->normal.dot(a) > p_collector->normal.dot(b)-0.01) {
print_line("fail a: "+a);
print_line("fail b: "+b);
continue;
}
print_line("res a: "+a);
print_line("res b: "+b);
p_collector->call(a,b);
}
#endif
}
static void _generate_contacts_from_supports(const Vector2 * p_points_A,int p_point_count_A, const Vector2 * p_points_B,int p_point_count_B,_CollectorCallback2D *p_collector) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A <1 );
ERR_FAIL_COND( p_point_count_B <1 );
#endif
static const GenerateContactsFunc generate_contacts_func_table[2][2]={
{
_generate_contacts_point_point,
_generate_contacts_point_edge,
},{
0,
_generate_contacts_edge_edge,
}
};
int pointcount_B;
int pointcount_A;
const Vector2 *points_A;
const Vector2 *points_B;
if (p_point_count_A > p_point_count_B) {
//swap
p_collector->swap = !p_collector->swap;
p_collector->normal = -p_collector->normal;
pointcount_B = p_point_count_A;
pointcount_A = p_point_count_B;
points_A=p_points_B;
points_B=p_points_A;
} else {
pointcount_B = p_point_count_B;
pointcount_A = p_point_count_A;
points_A=p_points_A;
points_B=p_points_B;
}
int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1;
int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1;
GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
ERR_FAIL_COND(!contacts_func);
contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_collector);
}
template<class ShapeA, class ShapeB>
class SeparatorAxisTest2D {
const ShapeA *shape_A;
const ShapeB *shape_B;
const Matrix32 *transform_A;
const Matrix32 *transform_B;
const Matrix32 *transform_inv_A;
const Matrix32 *transform_inv_B;
real_t best_depth;
Vector2 best_axis;
int best_axis_count;
int best_axis_index;
_CollectorCallback2D *callback;
public:
_FORCE_INLINE_ bool test_previous_axis() {
if (callback && callback->sep_axis && *callback->sep_axis!=Vector2()) {
return test_axis(*callback->sep_axis);
} else {
#ifdef DEBUG_ENABLED
best_axis_count++;
#endif
}
return true;
}
_FORCE_INLINE_ bool test_axis(const Vector2& p_axis) {
Vector2 axis=p_axis;
if ( Math::abs(axis.x)<CMP_EPSILON &&
Math::abs(axis.y)<CMP_EPSILON) {
// strange case, try an upwards separator
axis=Vector2(0.0,1.0);
}
real_t min_A,max_A,min_B,max_B;
shape_A->project_range(axis,*transform_A,min_A,max_A);
shape_B->project_range(axis,*transform_B,min_B,max_B);
min_B -= ( max_A - min_A ) * 0.5;
max_B += ( max_A - min_A ) * 0.5;
real_t dmin = min_B - ( min_A + max_A ) * 0.5;
real_t dmax = max_B - ( min_A + max_A ) * 0.5;
if (dmin > 0.0 || dmax < 0.0) {
if (callback && callback->sep_axis)
*callback->sep_axis=axis;
#ifdef DEBUG_ENABLED
best_axis_count++;
#endif
return false; // doesn't contain 0
}
//use the smallest depth
dmin = Math::abs(dmin);
if ( dmax < dmin ) {
if ( dmax < best_depth ) {
best_depth=dmax;
best_axis=axis;
#ifdef DEBUG_ENABLED
best_axis_index=best_axis_count;
#endif
}
} else {
if ( dmin < best_depth ) {
best_depth=dmin;
best_axis=-axis; // keep it as A axis
#ifdef DEBUG_ENABLED
best_axis_index=best_axis_count;
#endif
}
}
// print_line("test axis: "+p_axis+" depth: "+rtos(best_depth));
#ifdef DEBUG_ENABLED
best_axis_count++;
#endif
return true;
}
_FORCE_INLINE_ void generate_contacts() {
// nothing to do, don't generate
if (best_axis==Vector2(0.0,0.0))
return;
callback->collided=true;
if (!callback->callback)
return; //only collide, no callback
static const int max_supports=2;
Vector2 supports_A[max_supports];
int support_count_A;
shape_A->get_supports(transform_A->basis_xform_inv(-best_axis).normalized(),supports_A,support_count_A);
for(int i=0;i<support_count_A;i++) {
supports_A[i] = transform_A->xform(supports_A[i]);
}
Vector2 supports_B[max_supports];
int support_count_B;
shape_B->get_supports(transform_B->basis_xform_inv(best_axis).normalized(),supports_B,support_count_B);
for(int i=0;i<support_count_B;i++) {
supports_B[i] = transform_B->xform(supports_B[i]);
}
/*
print_line("**************************");
printf("CBK: %p\n",callback->userdata);
print_line("type A: "+itos(shape_A->get_type()));
print_line("type B: "+itos(shape_B->get_type()));
print_line("xform A: "+*transform_A);
print_line("xform B: "+*transform_B);
print_line("normal: "+best_axis);
print_line("depth: "+rtos(best_depth));
print_line("index: "+itos(best_axis_index));
for(int i=0;i<support_count_A;i++) {
print_line("A-"+itos(i)+": "+supports_A[i]);
}
for(int i=0;i<support_count_B;i++) {
print_line("B-"+itos(i)+": "+supports_B[i]);
}
//*/
callback->normal=best_axis;
_generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback);
if (callback && callback->sep_axis && *callback->sep_axis!=Vector2())
*callback->sep_axis=Vector2(); //invalidate previous axis (no test)
//CollisionSolver2DSW::CallbackResult cbk=NULL;
//cbk(Vector2(),Vector2(),NULL);
}
_FORCE_INLINE_ SeparatorAxisTest2D(const ShapeA *p_shape_A,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a, const ShapeB *p_shape_B,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
best_depth=1e15;
shape_A=p_shape_A;
shape_B=p_shape_B;
transform_A=&p_transform_a;
transform_B=&p_transform_b;
transform_inv_A=&p_transform_inv_a;
transform_inv_B=&p_transform_inv_b;
callback=p_collector;
#ifdef DEBUG_ENABLED
best_axis_count=0;
best_axis_index=-1;
#endif
}
};
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
typedef void (*CollisionFunc)(const Shape2DSW*,const Matrix32&,const Matrix32&,const Shape2DSW*,const Matrix32&,const Matrix32&,_CollectorCallback2D *p_collector);
static void _collision_segment_segment(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const SegmentShape2DSW *segment_A = static_cast<const SegmentShape2DSW*>(p_a);
const SegmentShape2DSW *segment_B = static_cast<const SegmentShape2DSW*>(p_b);
SeparatorAxisTest2D<SegmentShape2DSW,SegmentShape2DSW> separator(segment_A,p_transform_a,p_transform_inv_a,segment_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized()))
return;
if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_B->get_normal()).normalized()))
return;
separator.generate_contacts();
}
static void _collision_segment_circle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const SegmentShape2DSW *segment_A = static_cast<const SegmentShape2DSW*>(p_a);
const CircleShape2DSW *circle_B = static_cast<const CircleShape2DSW*>(p_b);
SeparatorAxisTest2D<SegmentShape2DSW,CircleShape2DSW> separator(segment_A,p_transform_a,p_transform_inv_a,circle_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis(
(p_transform_a.xform(segment_A->get_b())-p_transform_a.xform(segment_A->get_a())).normalized().tangent()
))
return;
// if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized()))
// return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-p_transform_b.get_origin()).normalized()))
return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-p_transform_b.get_origin()).normalized()))
return;
separator.generate_contacts();
}
static void _collision_segment_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const SegmentShape2DSW *segment_A = static_cast<const SegmentShape2DSW*>(p_a);
const RectangleShape2DSW *rectangle_B = static_cast<const RectangleShape2DSW*>(p_b);
SeparatorAxisTest2D<SegmentShape2DSW,RectangleShape2DSW> separator(segment_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized()))
return;
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_b.elements[1].normalized()))
return;
separator.generate_contacts();
}
static void _collision_segment_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const SegmentShape2DSW *segment_A = static_cast<const SegmentShape2DSW*>(p_a);
const CapsuleShape2DSW *capsule_B = static_cast<const CapsuleShape2DSW*>(p_b);
SeparatorAxisTest2D<SegmentShape2DSW,CapsuleShape2DSW> separator(segment_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized()))
return;
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized()))
return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_a())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized()))
return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized()))
return;
if (!separator.test_axis((p_transform_a.xform(segment_A->get_b())-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized()))
return;
separator.generate_contacts();
}
static void _collision_segment_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const SegmentShape2DSW *segment_A = static_cast<const SegmentShape2DSW*>(p_a);
const ConvexPolygonShape2DSW *convex_B = static_cast<const ConvexPolygonShape2DSW*>(p_b);
SeparatorAxisTest2D<SegmentShape2DSW,ConvexPolygonShape2DSW> separator(segment_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis(p_transform_inv_a.basis_xform_inv(segment_A->get_normal()).normalized()))
return;
for(int i=0;i<convex_B->get_point_count();i++) {
if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() ))
return;
}
separator.generate_contacts();
}
/////////
static void _collision_circle_circle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CircleShape2DSW *circle_A = static_cast<const CircleShape2DSW*>(p_a);
const CircleShape2DSW *circle_B = static_cast<const CircleShape2DSW*>(p_b);
SeparatorAxisTest2D<CircleShape2DSW,CircleShape2DSW> separator(circle_A,p_transform_a,p_transform_inv_a,circle_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
if (!separator.test_axis((p_transform_a.get_origin()-p_transform_b.get_origin()).normalized()))
return;
separator.generate_contacts();
}
static void _collision_circle_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CircleShape2DSW *circle_A = static_cast<const CircleShape2DSW*>(p_a);
const RectangleShape2DSW *rectangle_B = static_cast<const RectangleShape2DSW*>(p_b);
SeparatorAxisTest2D<CircleShape2DSW,RectangleShape2DSW> separator(circle_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
const Vector2 &sphere=p_transform_a.elements[2];
const Vector2 *axis=&p_transform_b.elements[0];
const Vector2& half_extents = rectangle_B->get_half_extents();
if (!separator.test_axis(axis[0].normalized()))
return;
if (!separator.test_axis(axis[1].normalized()))
return;
Vector2 local_v = p_transform_inv_b.xform(p_transform_a.get_origin());
Vector2 he(
(local_v.x<0) ? -half_extents.x : half_extents.x,
(local_v.y<0) ? -half_extents.y : half_extents.y
);
if (!separator.test_axis((p_transform_b.xform(he)-sphere).normalized()))
return;
separator.generate_contacts();
}
static void _collision_circle_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CircleShape2DSW *circle_A = static_cast<const CircleShape2DSW*>(p_a);
const CapsuleShape2DSW *capsule_B = static_cast<const CapsuleShape2DSW*>(p_b);
SeparatorAxisTest2D<CircleShape2DSW,CapsuleShape2DSW> separator(circle_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//capsule axis
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
//capsule endpoints
if (!separator.test_axis((p_transform_a.get_origin()-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*0.5)).normalized()))
return;
if (!separator.test_axis((p_transform_a.get_origin()-(p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*-0.5)).normalized()))
return;
separator.generate_contacts();
}
static void _collision_circle_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CircleShape2DSW *circle_A = static_cast<const CircleShape2DSW*>(p_a);
const ConvexPolygonShape2DSW *convex_B = static_cast<const ConvexPolygonShape2DSW*>(p_b);
SeparatorAxisTest2D<CircleShape2DSW,ConvexPolygonShape2DSW> separator(circle_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//poly faces and poly points vs circle
for(int i=0;i<convex_B->get_point_count();i++) {
if (!separator.test_axis( (p_transform_b.xform(convex_B->get_point(i))-p_transform_a.get_origin()).normalized() ))
return;
if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() ))
return;
}
separator.generate_contacts();
}
/////////
static void _collision_rectangle_rectangle(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const RectangleShape2DSW *rectangle_A = static_cast<const RectangleShape2DSW*>(p_a);
const RectangleShape2DSW *rectangle_B = static_cast<const RectangleShape2DSW*>(p_b);
SeparatorAxisTest2D<RectangleShape2DSW,RectangleShape2DSW> separator(rectangle_A,p_transform_a,p_transform_inv_a,rectangle_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//box faces A
if (!separator.test_axis(p_transform_a.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_a.elements[1].normalized()))
return;
//box faces B
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_b.elements[1].normalized()))
return;
separator.generate_contacts();
}
static void _collision_rectangle_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const RectangleShape2DSW *rectangle_A = static_cast<const RectangleShape2DSW*>(p_a);
const CapsuleShape2DSW *capsule_B = static_cast<const CapsuleShape2DSW*>(p_b);
SeparatorAxisTest2D<RectangleShape2DSW,CapsuleShape2DSW> separator(rectangle_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//box faces
if (!separator.test_axis(p_transform_a.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_a.elements[1].normalized()))
return;
//capsule axis
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
//box endpoints to capsule circles
for(int i=0;i<2;i++) {
Vector2 capsule_endpoint = p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*(i==0?0.5:-0.5);
const Vector2& half_extents = rectangle_A->get_half_extents();
Vector2 local_v = p_transform_inv_a.xform(capsule_endpoint);
Vector2 he(
(local_v.x<0) ? -half_extents.x : half_extents.x,
(local_v.y<0) ? -half_extents.y : half_extents.y
);
if (!separator.test_axis(p_transform_a.xform(he).normalized()))
return;
}
separator.generate_contacts();
}
static void _collision_rectangle_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const RectangleShape2DSW *rectangle_A = static_cast<const RectangleShape2DSW*>(p_a);
const ConvexPolygonShape2DSW *convex_B = static_cast<const ConvexPolygonShape2DSW*>(p_b);
SeparatorAxisTest2D<RectangleShape2DSW,ConvexPolygonShape2DSW> separator(rectangle_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//box faces
if (!separator.test_axis(p_transform_a.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_a.elements[1].normalized()))
return;
//convex faces
for(int i=0;i<convex_B->get_point_count();i++) {
if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() ))
return;
}
separator.generate_contacts();
}
/////////
static void _collision_capsule_capsule(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CapsuleShape2DSW *capsule_A = static_cast<const CapsuleShape2DSW*>(p_a);
const CapsuleShape2DSW *capsule_B = static_cast<const CapsuleShape2DSW*>(p_b);
SeparatorAxisTest2D<CapsuleShape2DSW,CapsuleShape2DSW> separator(capsule_A,p_transform_a,p_transform_inv_a,capsule_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//capsule axis
if (!separator.test_axis(p_transform_b.elements[0].normalized()))
return;
if (!separator.test_axis(p_transform_a.elements[0].normalized()))
return;
//capsule endpoints
for(int i=0;i<2;i++) {
Vector2 capsule_endpoint_A = p_transform_a.get_origin()+p_transform_a.elements[1]*capsule_A->get_height()*(i==0?0.5:-0.5);
for(int j=0;j<2;j++) {
Vector2 capsule_endpoint_B = p_transform_b.get_origin()+p_transform_b.elements[1]*capsule_B->get_height()*(j==0?0.5:-0.5);
if (!separator.test_axis( (capsule_endpoint_A-capsule_endpoint_B).normalized() ))
return;
}
}
separator.generate_contacts();
}
static void _collision_capsule_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const CapsuleShape2DSW *capsule_A = static_cast<const CapsuleShape2DSW*>(p_a);
const ConvexPolygonShape2DSW *convex_B = static_cast<const ConvexPolygonShape2DSW*>(p_b);
SeparatorAxisTest2D<CapsuleShape2DSW,ConvexPolygonShape2DSW> separator(capsule_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
//capsule axis
if (!separator.test_axis(p_transform_a.elements[0].normalized()))
return;
//poly vs capsule
for(int i=0;i<convex_B->get_point_count();i++) {
Vector2 cpoint = p_transform_b.xform(convex_B->get_point(i));
for(int j=0;j<2;j++) {
Vector2 capsule_endpoint_A = p_transform_a.get_origin()+p_transform_a.elements[1]*capsule_A->get_height()*(j==0?0.5:-0.5);
if (!separator.test_axis( (cpoint - capsule_endpoint_A).normalized() ))
return;
}
if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() ))
return;
}
separator.generate_contacts();
}
/////////
static void _collision_convex_polygon_convex_polygon(const Shape2DSW* p_a,const Matrix32& p_transform_a,const Matrix32& p_transform_inv_a,const Shape2DSW* p_b,const Matrix32& p_transform_b,const Matrix32& p_transform_inv_b,_CollectorCallback2D *p_collector) {
const ConvexPolygonShape2DSW *convex_A = static_cast<const ConvexPolygonShape2DSW*>(p_a);
const ConvexPolygonShape2DSW *convex_B = static_cast<const ConvexPolygonShape2DSW*>(p_b);
SeparatorAxisTest2D<ConvexPolygonShape2DSW,ConvexPolygonShape2DSW> separator(convex_A,p_transform_a,p_transform_inv_a,convex_B,p_transform_b,p_transform_inv_b,p_collector);
if (!separator.test_previous_axis())
return;
for(int i=0;i<convex_A->get_point_count();i++) {
if (!separator.test_axis( p_transform_inv_a.basis_xform_inv(convex_A->get_segment_normal(i)).normalized() ))
return;
}
for(int i=0;i<convex_B->get_point_count();i++) {
if (!separator.test_axis( p_transform_inv_b.basis_xform_inv(convex_B->get_segment_normal(i)).normalized() ))
return;
}
separator.generate_contacts();
}
////////
bool sat_2d_calculate_penetration(const Shape2DSW *p_shape_A, const Matrix32& p_transform_A, const Matrix32& p_transform_inv_A, const Shape2DSW *p_shape_B, const Matrix32& p_transform_B, const Matrix32& p_transform_inv_B, CollisionSolver2DSW::CallbackResult p_result_callback,void *p_userdata, bool p_swap,Vector2 *sep_axis) {
Physics2DServer::ShapeType type_A=p_shape_A->get_type();
ERR_FAIL_COND_V(type_A==Physics2DServer::SHAPE_LINE,false);
//ERR_FAIL_COND_V(type_A==Physics2DServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_A->is_concave(),false);
Physics2DServer::ShapeType type_B=p_shape_B->get_type();
ERR_FAIL_COND_V(type_B==Physics2DServer::SHAPE_LINE,false);
//ERR_FAIL_COND_V(type_B==Physics2DServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_B->is_concave(),false);
static const CollisionFunc collision_table[5][5]={
{_collision_segment_segment,
_collision_segment_circle,
_collision_segment_rectangle,
_collision_segment_capsule,
_collision_segment_convex_polygon},
{0,
_collision_circle_circle,
_collision_circle_rectangle,
_collision_circle_capsule,
_collision_circle_convex_polygon},
{0,
0,
_collision_rectangle_rectangle,
_collision_rectangle_capsule,
_collision_rectangle_convex_polygon},
{0,
0,
0,
_collision_capsule_capsule,
_collision_capsule_convex_polygon},
{0,
0,
0,
0,
_collision_convex_polygon_convex_polygon}
};
_CollectorCallback2D callback;
callback.callback=p_result_callback;
callback.swap=p_swap;
callback.userdata=p_userdata;
callback.collided=false;
callback.sep_axis=sep_axis;
const Shape2DSW *A=p_shape_A;
const Shape2DSW *B=p_shape_B;
const Matrix32 *transform_A=&p_transform_A;
const Matrix32 *transform_B=&p_transform_B;
const Matrix32 *transform_inv_A=&p_transform_inv_A;
const Matrix32 *transform_inv_B=&p_transform_inv_B;
if (type_A > type_B) {
SWAP(A,B);
SWAP(transform_A,transform_B);
SWAP(transform_inv_A,transform_inv_B);
SWAP(type_A,type_B);
callback.swap = !callback.swap;
}
CollisionFunc collision_func = collision_table[type_A-2][type_B-2];
ERR_FAIL_COND_V(!collision_func,false);
collision_func(A,*transform_A,*transform_inv_A,B,*transform_B,*transform_inv_B,&callback);
return callback.collided;
}