2124 lines
50 KiB
C++
2124 lines
50 KiB
C++
/*
|
|
r128.h: 128-bit (64.64) signed fixed-point arithmetic. Version 1.4.3
|
|
|
|
COMPILATION
|
|
-----------
|
|
Drop this header file somewhere in your project and include it wherever it is
|
|
needed. There is no separate .c file for this library. To get the code, in ONE
|
|
file in your project, put:
|
|
|
|
#define R128_IMPLEMENTATION
|
|
|
|
before you include this file. You may also provide a definition for R128_ASSERT
|
|
to force the library to use a custom assert macro.
|
|
|
|
COMPILER/LIBRARY SUPPORT
|
|
------------------------
|
|
This library requires a C89 compiler with support for 64-bit integers. If your
|
|
compiler does not support the long long data type, the R128_U64, etc. macros
|
|
must be set appropriately. On x86 and x64 targets, Intel intrinsics are used
|
|
for speed. If your compiler does not support these intrinsics, you can add
|
|
#define R128_STDC_ONLY
|
|
in your implementation file before including r128.h.
|
|
|
|
The only C runtime library functionality used by this library is <assert.h>.
|
|
This can be avoided by defining an R128_ASSERT macro in your implementation
|
|
file. Since this library uses 64-bit arithmetic, this may implicitly add a
|
|
runtime library dependency on 32-bit platforms.
|
|
|
|
C++ SUPPORT
|
|
-----------
|
|
Operator overloads are supplied for C++ files that include this file. Since all
|
|
C++ functions are declared inline (or static inline), the R128_IMPLEMENTATION
|
|
file can be either C++ or C.
|
|
|
|
LICENSE
|
|
-------
|
|
This is free and unencumbered software released into the public domain.
|
|
|
|
Anyone is free to copy, modify, publish, use, compile, sell, or
|
|
distribute this software, either in source code form or as a compiled
|
|
binary, for any purpose, commercial or non-commercial, and by any
|
|
means.
|
|
|
|
In jurisdictions that recognize copyright laws, the author or authors
|
|
of this software dedicate any and all copyright interest in the
|
|
software to the public domain. We make this dedication for the benefit
|
|
of the public at large and to the detriment of our heirs and
|
|
successors. We intend this dedication to be an overt act of
|
|
relinquishment in perpetuity of all present and future rights to this
|
|
software under copyright law.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#ifndef H_R128_H
|
|
#define H_R128_H
|
|
|
|
#include <stddef.h>
|
|
|
|
// 64-bit integer support
|
|
// If your compiler does not have stdint.h, add appropriate defines for these macros.
|
|
#if defined(_MSC_VER) && (_MSC_VER < 1600)
|
|
# define R128_S32 __int32
|
|
# define R128_U32 unsigned __int32
|
|
# define R128_S64 __int64
|
|
# define R128_U64 unsigned __int64
|
|
# define R128_LIT_S64(x) x##i64
|
|
# define R128_LIT_U64(x) x##ui64
|
|
#else
|
|
# include <stdint.h>
|
|
# define R128_S32 int32_t
|
|
# define R128_U32 uint32_t
|
|
# define R128_S64 int64_t
|
|
# define R128_U64 uint64_t
|
|
# define R128_LIT_S64(x) x##ll
|
|
# define R128_LIT_U64(x) x##ull
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
typedef struct R128 {
|
|
R128_U64 lo;
|
|
R128_U64 hi;
|
|
|
|
#ifdef __cplusplus
|
|
R128();
|
|
R128(double);
|
|
R128(int);
|
|
R128(R128_S64);
|
|
R128(R128_U64 low, R128_U64 high);
|
|
|
|
operator double() const;
|
|
operator R128_S64() const;
|
|
operator int() const;
|
|
operator bool() const;
|
|
|
|
bool operator!() const;
|
|
R128 operator~() const;
|
|
R128 operator-() const;
|
|
R128 &operator|=(const R128 &rhs);
|
|
R128 &operator&=(const R128 &rhs);
|
|
R128 &operator^=(const R128 &rhs);
|
|
R128 &operator+=(const R128 &rhs);
|
|
R128 &operator-=(const R128 &rhs);
|
|
R128 &operator*=(const R128 &rhs);
|
|
R128 &operator/=(const R128 &rhs);
|
|
R128 &operator%=(const R128 &rhs);
|
|
R128 &operator<<=(int amount);
|
|
R128 &operator>>=(int amount);
|
|
#endif //__cplusplus
|
|
} R128;
|
|
|
|
// Type conversion
|
|
extern void r128FromInt(R128 *dst, R128_S64 v);
|
|
extern void r128FromFloat(R128 *dst, double v);
|
|
extern R128_S64 r128ToInt(const R128 *v);
|
|
extern double r128ToFloat(const R128 *v);
|
|
|
|
// Copy
|
|
extern void r128Copy(R128 *dst, const R128 *src);
|
|
|
|
// Negate
|
|
extern void r128Neg(R128 *dst, const R128 *src);
|
|
|
|
// Bitwise operations
|
|
extern void r128Not(R128 *dst, const R128 *src); // ~a
|
|
extern void r128Or(R128 *dst, const R128 *a, const R128 *b); // a | b
|
|
extern void r128And(R128 *dst, const R128 *a, const R128 *b); // a & b
|
|
extern void r128Xor(R128 *dst, const R128 *a, const R128 *b); // a ^ b
|
|
extern void r128Shl(R128 *dst, const R128 *src, int amount); // shift left by amount mod 128
|
|
extern void r128Shr(R128 *dst, const R128 *src, int amount); // shift right logical by amount mod 128
|
|
extern void r128Sar(R128 *dst, const R128 *src, int amount); // shift right arithmetic by amount mod 128
|
|
|
|
// Arithmetic
|
|
extern void r128Add(R128 *dst, const R128 *a, const R128 *b); // a + b
|
|
extern void r128Sub(R128 *dst, const R128 *a, const R128 *b); // a - b
|
|
extern void r128Mul(R128 *dst, const R128 *a, const R128 *b); // a * b
|
|
extern void r128Div(R128 *dst, const R128 *a, const R128 *b); // a / b
|
|
extern void r128Mod(R128 *dst, const R128 *a, const R128 *b); // a - toInt(a / b) * b
|
|
|
|
extern void r128Sqrt(R128 *dst, const R128 *v); // sqrt(v)
|
|
extern void r128Rsqrt(R128 *dst, const R128 *v); // 1 / sqrt(v)
|
|
|
|
// Comparison
|
|
extern int r128Cmp(const R128 *a, const R128 *b); // sign of a-b
|
|
extern void r128Min(R128 *dst, const R128 *a, const R128 *b);
|
|
extern void r128Max(R128 *dst, const R128 *a, const R128 *b);
|
|
extern void r128Floor(R128 *dst, const R128 *v);
|
|
extern void r128Ceil(R128 *dst, const R128 *v);
|
|
extern int r128IsNeg(const R128 *v); // quick check for < 0
|
|
|
|
// String conversion
|
|
//
|
|
typedef enum R128ToStringSign {
|
|
R128ToStringSign_Default, // no sign character for positive values
|
|
R128ToStringSign_Space, // leading space for positive values
|
|
R128ToStringSign_Plus, // leading '+' for positive values
|
|
} R128ToStringSign;
|
|
|
|
// Formatting options for use with r128ToStringOpt. The "defaults" correspond
|
|
// to a format string of "%f".
|
|
//
|
|
typedef struct R128ToStringFormat {
|
|
// sign character for positive values. Default is R128ToStringSign_Default.
|
|
R128ToStringSign sign;
|
|
|
|
// minimum number of characters to write. Default is 0.
|
|
int width;
|
|
|
|
// place to the right of the decimal at which rounding is performed. If negative,
|
|
// a maximum of 20 decimal places will be written, with no trailing zeroes.
|
|
// (20 places is sufficient to ensure that r128FromString will convert back to the
|
|
// original value.) Default is -1. NOTE: This is not the same default that the C
|
|
// standard library uses for %f.
|
|
int precision;
|
|
|
|
// If non-zero, pads the output string with leading zeroes if the final result is
|
|
// fewer than width characters. Otherwise, leading spaces are used. Default is 0.
|
|
int zeroPad;
|
|
|
|
// Always print a decimal point, even if the value is an integer. Default is 0.
|
|
int decimal;
|
|
|
|
// Left-align output if width specifier requires padding.
|
|
// Default is 0 (right align).
|
|
int leftAlign;
|
|
} R128ToStringFormat;
|
|
|
|
// r128ToStringOpt: convert R128 to a decimal string, with formatting.
|
|
//
|
|
// dst and dstSize: specify the buffer to write into. At most dstSize bytes will be written
|
|
// (including null terminator). No additional rounding is performed if dstSize is not large
|
|
// enough to hold the entire string.
|
|
//
|
|
// opt: an R128ToStringFormat struct (q.v.) with formatting options.
|
|
//
|
|
// Uses the R128_decimal global as the decimal point character.
|
|
// Always writes a null terminator, even if the destination buffer is not large enough.
|
|
//
|
|
// Number of bytes that will be written (i.e. how big does dst need to be?):
|
|
// If width is specified: width + 1 bytes.
|
|
// If precision is specified: at most precision + 22 bytes.
|
|
// If neither is specified: at most 42 bytes.
|
|
//
|
|
// Returns the number of bytes that would have been written if dst was sufficiently large,
|
|
// not including the final null terminator.
|
|
//
|
|
extern int r128ToStringOpt(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *opt);
|
|
|
|
// r128ToStringf: convert R128 to a decimal string, with formatting.
|
|
//
|
|
// dst and dstSize: specify the buffer to write into. At most dstSize bytes will be written
|
|
// (including null terminator).
|
|
//
|
|
// format: a printf-style format specifier, as one would use with floating point types.
|
|
// e.g. "%+5.2f". (The leading % and trailing f are optional.)
|
|
// NOTE: This is NOT a full replacement for sprintf. Any characters in the format string
|
|
// that do not correspond to a format placeholder are ignored.
|
|
//
|
|
// Uses the R128_decimal global as the decimal point character.
|
|
// Always writes a null terminator, even if the destination buffer is not large enough.
|
|
//
|
|
// Number of bytes that will be written (i.e. how big does dst need to be?):
|
|
// If the precision field is specified: at most max(width, precision + 21) + 1 bytes
|
|
// Otherwise: at most max(width, 41) + 1 bytes.
|
|
//
|
|
// Returns the number of bytes that would have been written if dst was sufficiently large,
|
|
// not including the final null terminator.
|
|
//
|
|
extern int r128ToStringf(char *dst, size_t dstSize, const char *format, const R128 *v);
|
|
|
|
// r128ToString: convert R128 to a decimal string, with default formatting.
|
|
// Equivalent to r128ToStringf(dst, dstSize, "%f", v).
|
|
//
|
|
// Uses the R128_decimal global as the decimal point character.
|
|
// Always writes a null terminator, even if the destination buffer is not large enough.
|
|
//
|
|
// Will write at most 42 bytes (including NUL) to dst.
|
|
//
|
|
// Returns the number of bytes that would have been written if dst was sufficiently large,
|
|
// not including the final null terminator.
|
|
//
|
|
extern int r128ToString(char *dst, size_t dstSize, const R128 *v);
|
|
|
|
// r128FromString: Convert string to R128.
|
|
//
|
|
// The string can be formatted either as a decimal number with optional sign
|
|
// or as hexadecimal with a prefix of 0x or 0X.
|
|
//
|
|
// endptr, if not NULL, is set to the character following the last character
|
|
// used in the conversion.
|
|
//
|
|
extern void r128FromString(R128 *dst, const char *s, char **endptr);
|
|
|
|
// Constants
|
|
extern const R128 R128_min; // minimum (most negative) value
|
|
extern const R128 R128_max; // maximum (most positive) value
|
|
extern const R128 R128_smallest; // smallest positive value
|
|
extern const R128 R128_zero; // zero
|
|
extern const R128 R128_one; // 1.0
|
|
|
|
extern char R128_decimal; // decimal point character used by r128From/ToString. defaults to '.'
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
|
|
#include <limits>
|
|
namespace std {
|
|
template<>
|
|
struct numeric_limits<R128>
|
|
{
|
|
static const bool is_specialized = true;
|
|
|
|
static R128 min() throw() { return R128_min; }
|
|
static R128 max() throw() { return R128_max; }
|
|
|
|
static const int digits = 127;
|
|
static const int digits10 = 38;
|
|
static const bool is_signed = true;
|
|
static const bool is_integer = false;
|
|
static const bool is_exact = false;
|
|
static const int radix = 2;
|
|
static R128 epsilon() throw() { return R128_smallest; }
|
|
static R128 round_error() throw() { return R128_one; }
|
|
|
|
static const int min_exponent = 0;
|
|
static const int min_exponent10 = 0;
|
|
static const int max_exponent = 0;
|
|
static const int max_exponent10 = 0;
|
|
|
|
static const bool has_infinity = false;
|
|
static const bool has_quiet_NaN = false;
|
|
static const bool has_signaling_NaN = false;
|
|
static const float_denorm_style has_denorm = denorm_absent;
|
|
static const bool has_denorm_loss = false;
|
|
|
|
static R128 infinity() throw() { return R128_zero; }
|
|
static R128 quiet_NaN() throw() { return R128_zero; }
|
|
static R128 signaling_NaN() throw() { return R128_zero; }
|
|
static R128 denorm_min() throw() { return R128_zero; }
|
|
|
|
static const bool is_iec559 = false;
|
|
static const bool is_bounded = true;
|
|
static const bool is_modulo = true;
|
|
|
|
static const bool traps = numeric_limits<R128_U64>::traps;
|
|
static const bool tinyness_before = false;
|
|
static const float_round_style round_style = round_toward_zero;
|
|
};
|
|
} //namespace std
|
|
|
|
inline R128::R128() {}
|
|
|
|
inline R128::R128(double v)
|
|
{
|
|
r128FromFloat(this, v);
|
|
}
|
|
|
|
inline R128::R128(int v)
|
|
{
|
|
r128FromInt(this, v);
|
|
}
|
|
|
|
inline R128::R128(R128_S64 v)
|
|
{
|
|
r128FromInt(this, v);
|
|
}
|
|
|
|
inline R128::R128(R128_U64 low, R128_U64 high)
|
|
{
|
|
lo = low;
|
|
hi = high;
|
|
}
|
|
|
|
inline R128::operator double() const
|
|
{
|
|
return r128ToFloat(this);
|
|
}
|
|
|
|
inline R128::operator R128_S64() const
|
|
{
|
|
return r128ToInt(this);
|
|
}
|
|
|
|
inline R128::operator int() const
|
|
{
|
|
return (int) r128ToInt(this);
|
|
}
|
|
|
|
inline R128::operator bool() const
|
|
{
|
|
return lo || hi;
|
|
}
|
|
|
|
inline bool R128::operator!() const
|
|
{
|
|
return !lo && !hi;
|
|
}
|
|
|
|
inline R128 R128::operator~() const
|
|
{
|
|
R128 r;
|
|
r128Not(&r, this);
|
|
return r;
|
|
}
|
|
|
|
inline R128 R128::operator-() const
|
|
{
|
|
R128 r;
|
|
r128Neg(&r, this);
|
|
return r;
|
|
}
|
|
|
|
inline R128 &R128::operator|=(const R128 &rhs)
|
|
{
|
|
r128Or(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator&=(const R128 &rhs)
|
|
{
|
|
r128And(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator^=(const R128 &rhs)
|
|
{
|
|
r128Xor(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator+=(const R128 &rhs)
|
|
{
|
|
r128Add(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator-=(const R128 &rhs)
|
|
{
|
|
r128Sub(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator*=(const R128 &rhs)
|
|
{
|
|
r128Mul(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator/=(const R128 &rhs)
|
|
{
|
|
r128Div(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator%=(const R128 &rhs)
|
|
{
|
|
r128Mod(this, this, &rhs);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator<<=(int amount)
|
|
{
|
|
r128Shl(this, this, amount);
|
|
return *this;
|
|
}
|
|
|
|
inline R128 &R128::operator>>=(int amount)
|
|
{
|
|
r128Sar(this, this, amount);
|
|
return *this;
|
|
}
|
|
|
|
static inline R128 operator|(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r |= rhs;
|
|
}
|
|
|
|
static inline R128 operator&(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r &= rhs;
|
|
}
|
|
|
|
static inline R128 operator^(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r ^= rhs;
|
|
}
|
|
|
|
static inline R128 operator+(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r += rhs;
|
|
}
|
|
|
|
static inline R128 operator-(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r -= rhs;
|
|
}
|
|
|
|
static inline R128 operator*(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r *= rhs;
|
|
}
|
|
|
|
static inline R128 operator/(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r /= rhs;
|
|
}
|
|
|
|
static inline R128 operator%(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
R128 r(lhs);
|
|
return r %= rhs;
|
|
}
|
|
|
|
static inline R128 operator<<(const R128 &lhs, int amount)
|
|
{
|
|
R128 r(lhs);
|
|
return r <<= amount;
|
|
}
|
|
|
|
static inline R128 operator>>(const R128 &lhs, int amount)
|
|
{
|
|
R128 r(lhs);
|
|
return r >>= amount;
|
|
}
|
|
|
|
static inline bool operator<(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return r128Cmp(&lhs, &rhs) < 0;
|
|
}
|
|
|
|
static inline bool operator>(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return r128Cmp(&lhs, &rhs) > 0;
|
|
}
|
|
|
|
static inline bool operator<=(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return r128Cmp(&lhs, &rhs) <= 0;
|
|
}
|
|
|
|
static inline bool operator>=(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return r128Cmp(&lhs, &rhs) >= 0;
|
|
}
|
|
|
|
static inline bool operator==(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return lhs.lo == rhs.lo && lhs.hi == rhs.hi;
|
|
}
|
|
|
|
static inline bool operator!=(const R128 &lhs, const R128 &rhs)
|
|
{
|
|
return lhs.lo != rhs.lo || lhs.hi != rhs.hi;
|
|
}
|
|
|
|
#endif //__cplusplus
|
|
#endif //H_R128_H
|
|
|
|
#ifdef R128_IMPLEMENTATION
|
|
|
|
#ifdef R128_DEBUG_VIS
|
|
# define R128_DEBUG_SET(x) r128ToString(R128_last, sizeof(R128_last), x)
|
|
#else
|
|
# define R128_DEBUG_SET(x)
|
|
#endif
|
|
|
|
#define R128_SET2(x, l, h) do { (x)->lo = (R128_U64)(l); (x)->hi = (R128_U64)(h); } while(0)
|
|
#define R128_R0(x) ((R128_U32)(x)->lo)
|
|
#define R128_R2(x) ((R128_U32)(x)->hi)
|
|
#if defined(_M_IX86)
|
|
// workaround: MSVC x86's handling of 64-bit values is not great
|
|
# define R128_SET4(x, r0, r1, r2, r3) do { \
|
|
((R128_U32*)&(x)->lo)[0] = (R128_U32)(r0); \
|
|
((R128_U32*)&(x)->lo)[1] = (R128_U32)(r1); \
|
|
((R128_U32*)&(x)->hi)[0] = (R128_U32)(r2); \
|
|
((R128_U32*)&(x)->hi)[1] = (R128_U32)(r3); \
|
|
} while(0)
|
|
# define R128_R1(x) (((R128_U32*)&(x)->lo)[1])
|
|
# define R128_R3(x) (((R128_U32*)&(x)->hi)[1])
|
|
#else
|
|
# define R128_SET4(x, r0, r1, r2, r3) do { (x)->lo = (R128_U64)(r0) | ((R128_U64)(r1) << 32); \
|
|
(x)->hi = (R128_U64)(r2) | ((R128_U64)(r3) << 32); } while(0)
|
|
# define R128_R1(x) ((R128_U32)((x)->lo >> 32))
|
|
# define R128_R3(x) ((R128_U32)((x)->hi >> 32))
|
|
#endif
|
|
|
|
#if defined(_M_X64)
|
|
# define R128_INTEL 1
|
|
# define R128_64BIT 1
|
|
# ifndef R128_STDC_ONLY
|
|
# include <intrin.h>
|
|
# endif
|
|
#elif defined(__x86_64__)
|
|
# define R128_INTEL 1
|
|
# define R128_64BIT 1
|
|
# ifndef R128_STDC_ONLY
|
|
# include <x86intrin.h>
|
|
# endif
|
|
#elif defined(_M_IX86)
|
|
# define R128_INTEL 1
|
|
# ifndef R128_STDC_ONLY
|
|
# include <intrin.h>
|
|
# endif
|
|
#elif defined(__i386__)
|
|
# define R128_INTEL 1
|
|
# ifndef R128_STDC_ONLY
|
|
# include <x86intrin.h>
|
|
# endif
|
|
#elif defined(_M_ARM)
|
|
# ifndef R128_STDC_ONLY
|
|
# include <intrin.h>
|
|
# endif
|
|
#elif defined(_M_ARM64)
|
|
# define R128_64BIT 1
|
|
# ifndef R128_STDC_ONLY
|
|
# include <intrin.h>
|
|
# endif
|
|
#elif defined(__aarch64__)
|
|
# define R128_64BIT 1
|
|
#endif
|
|
|
|
#ifndef R128_INTEL
|
|
# define R128_INTEL 0
|
|
#endif
|
|
|
|
#ifndef R128_64BIT
|
|
# define R128_64BIT 0
|
|
#endif
|
|
|
|
#ifndef R128_ASSERT
|
|
# include <assert.h>
|
|
# define R128_ASSERT(x) assert(x)
|
|
#endif
|
|
|
|
#include <stdlib.h> // for NULL
|
|
|
|
static const R128ToStringFormat R128__defaultFormat = {
|
|
R128ToStringSign_Default,
|
|
0,
|
|
-1,
|
|
0,
|
|
0,
|
|
0
|
|
};
|
|
|
|
const R128 R128_min = { 0, R128_LIT_U64(0x8000000000000000) };
|
|
const R128 R128_max = { R128_LIT_U64(0xffffffffffffffff), R128_LIT_U64(0x7fffffffffffffff) };
|
|
const R128 R128_smallest = { 1, 0 };
|
|
const R128 R128_zero = { 0, 0 };
|
|
const R128 R128_one = { 0, 1 };
|
|
char R128_decimal = '.';
|
|
#ifdef R128_DEBUG_VIS
|
|
char R128_last[42];
|
|
#endif
|
|
|
|
static int r128__clz64(R128_U64 x)
|
|
{
|
|
#if defined(R128_STDC_ONLY)
|
|
R128_U64 n = 64, y;
|
|
y = x >> 32; if (y) { n -= 32; x = y; }
|
|
y = x >> 16; if (y) { n -= 16; x = y; }
|
|
y = x >> 8; if (y) { n -= 8; x = y; }
|
|
y = x >> 4; if (y) { n -= 4; x = y; }
|
|
y = x >> 2; if (y) { n -= 2; x = y; }
|
|
y = x >> 1; if (y) { n -= 1; x = y; }
|
|
return (int)(n - x);
|
|
#elif defined(_M_X64) || defined(_M_ARM64)
|
|
unsigned long idx;
|
|
if (_BitScanReverse64(&idx, x)) {
|
|
return 63 - (int)idx;
|
|
} else {
|
|
return 64;
|
|
}
|
|
#elif defined(_MSC_VER)
|
|
unsigned long idx;
|
|
if (_BitScanReverse(&idx, (R128_U32)(x >> 32))) {
|
|
return 31 - (int)idx;
|
|
} else if (_BitScanReverse(&idx, (R128_U32)x)) {
|
|
return 63 - (int)idx;
|
|
} else {
|
|
return 64;
|
|
}
|
|
#else
|
|
return x ? __builtin_clzll(x) : 64;
|
|
#endif
|
|
}
|
|
|
|
#if !R128_64BIT
|
|
// 32*32->64
|
|
static R128_U64 r128__umul64(R128_U32 a, R128_U32 b)
|
|
{
|
|
# if defined(_M_IX86) && !defined(R128_STDC_ONLY)
|
|
return __emulu(a, b);
|
|
# elif defined(_M_ARM) && !defined(R128_STDC_ONLY)
|
|
return _arm_umull(a, b);
|
|
# else
|
|
return a * (R128_U64)b;
|
|
# endif
|
|
}
|
|
|
|
// 64/32->32
|
|
static R128_U32 r128__udiv64(R128_U32 nlo, R128_U32 nhi, R128_U32 d, R128_U32 *rem)
|
|
{
|
|
# if defined(_M_IX86) && (_MSC_VER >= 1920) && !defined(R128_STDC_ONLY)
|
|
unsigned __int64 n = ((unsigned __int64)nhi << 32) | nlo;
|
|
return _udiv64(n, d, rem);
|
|
# elif defined(_M_IX86) && !defined(R128_STDC_ONLY)
|
|
__asm {
|
|
mov eax, nlo
|
|
mov edx, nhi
|
|
div d
|
|
mov ecx, rem
|
|
mov dword ptr [ecx], edx
|
|
}
|
|
# elif defined(__i386__) && !defined(R128_STDC_ONLY)
|
|
R128_U32 q, r;
|
|
__asm("divl %4"
|
|
: "=a"(q), "=d"(r)
|
|
: "a"(nlo), "d"(nhi), "X"(d));
|
|
*rem = r;
|
|
return q;
|
|
# else
|
|
R128_U64 n64 = ((R128_U64)nhi << 32) | nlo;
|
|
*rem = (R128_U32)(n64 % d);
|
|
return (R128_U32)(n64 / d);
|
|
# endif
|
|
}
|
|
#elif !defined(_M_X64) || defined(R128_STDC_ONLY)
|
|
#define r128__umul64(a, b) ((a) * (R128_U64)(b))
|
|
static R128_U32 r128__udiv64(R128_U32 nlo, R128_U32 nhi, R128_U32 d, R128_U32 *rem)
|
|
{
|
|
R128_U64 n64 = ((R128_U64)nhi << 32) | nlo;
|
|
*rem = (R128_U32)(n64 % d);
|
|
return (R128_U32)(n64 / d);
|
|
}
|
|
#endif //!R128_64BIT
|
|
|
|
static void r128__neg(R128 *dst, const R128 *src)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
|
|
#if R128_INTEL && !defined(R128_STDC_ONLY)
|
|
{
|
|
unsigned char carry = 0;
|
|
# if R128_64BIT
|
|
carry = _addcarry_u64(carry, ~src->lo, 1, &dst->lo);
|
|
carry = _addcarry_u64(carry, ~src->hi, 0, &dst->hi);
|
|
# else
|
|
R128_U32 r0, r1, r2, r3;
|
|
carry = _addcarry_u32(carry, ~R128_R0(src), 1, &r0);
|
|
carry = _addcarry_u32(carry, ~R128_R1(src), 0, &r1);
|
|
carry = _addcarry_u32(carry, ~R128_R2(src), 0, &r2);
|
|
carry = _addcarry_u32(carry, ~R128_R3(src), 0, &r3);
|
|
R128_SET4(dst, r0, r1, r2, r3);
|
|
# endif //R128_64BIT
|
|
}
|
|
#else
|
|
if (src->lo) {
|
|
dst->lo = ~src->lo + 1;
|
|
dst->hi = ~src->hi;
|
|
} else {
|
|
dst->lo = 0;
|
|
dst->hi = ~src->hi + 1;
|
|
}
|
|
#endif //R128_INTEL
|
|
}
|
|
|
|
// 64*64->128
|
|
static void r128__umul128(R128 *dst, R128_U64 a, R128_U64 b)
|
|
{
|
|
#if defined(_M_X64) && !defined(R128_STDC_ONLY)
|
|
dst->lo = _umul128(a, b, &dst->hi);
|
|
#elif R128_64BIT && !defined(_MSC_VER) && !defined(R128_STDC_ONLY)
|
|
unsigned __int128 p0 = a * (unsigned __int128)b;
|
|
dst->hi = (R128_U64)(p0 >> 64);
|
|
dst->lo = (R128_U64)p0;
|
|
#else
|
|
R128_U32 alo = (R128_U32)a;
|
|
R128_U32 ahi = (R128_U32)(a >> 32);
|
|
R128_U32 blo = (R128_U32)b;
|
|
R128_U32 bhi = (R128_U32)(b >> 32);
|
|
R128_U64 p0, p1, p2, p3;
|
|
|
|
p0 = r128__umul64(alo, blo);
|
|
p1 = r128__umul64(alo, bhi);
|
|
p2 = r128__umul64(ahi, blo);
|
|
p3 = r128__umul64(ahi, bhi);
|
|
|
|
{
|
|
#if R128_INTEL && !defined(R128_STDC_ONLY)
|
|
R128_U32 r0, r1, r2, r3;
|
|
unsigned char carry;
|
|
|
|
r0 = (R128_U32)(p0);
|
|
r1 = (R128_U32)(p0 >> 32);
|
|
r2 = (R128_U32)(p1 >> 32);
|
|
r3 = (R128_U32)(p3 >> 32);
|
|
|
|
carry = _addcarry_u32(0, r1, (R128_U32)p1, &r1);
|
|
carry = _addcarry_u32(carry, r2, (R128_U32)(p2 >> 32), &r2);
|
|
_addcarry_u32(carry, r3, 0, &r3);
|
|
carry = _addcarry_u32(0, r1, (R128_U32)p2, &r1);
|
|
carry = _addcarry_u32(carry, r2, (R128_U32)p3, &r2);
|
|
_addcarry_u32(carry, r3, 0, &r3);
|
|
|
|
R128_SET4(dst, r0, r1, r2, r3);
|
|
#else
|
|
R128_U64 carry, lo, hi;
|
|
carry = ((R128_U64)(R128_U32)p1 + (R128_U64)(R128_U32)p2 + (p0 >> 32)) >> 32;
|
|
|
|
lo = p0 + ((p1 + p2) << 32);
|
|
hi = p3 + ((R128_U32)(p1 >> 32) + (R128_U32)(p2 >> 32)) + carry;
|
|
|
|
R128_SET2(dst, lo, hi);
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// 128/64->64
|
|
#if defined(_M_X64) && (_MSC_VER < 1920) && !defined(R128_STDC_ONLY)
|
|
// MSVC x64 provides neither inline assembly nor (pre-2019) a div intrinsic, so we do fake
|
|
// "inline assembly" to avoid long division or outline assembly.
|
|
#pragma code_seg(".text")
|
|
__declspec(allocate(".text")) static const unsigned char r128__udiv128Code[] = {
|
|
0x48, 0x8B, 0xC1, //mov rax, rcx
|
|
0x49, 0xF7, 0xF0, //div rax, r8
|
|
0x49, 0x89, 0x11, //mov qword ptr [r9], rdx
|
|
0xC3 //ret
|
|
};
|
|
typedef R128_U64 (*r128__udiv128Proc)(R128_U64 nlo, R128_U64 nhi, R128_U64 d, R128_U64 *rem);
|
|
static const r128__udiv128Proc r128__udiv128 = (r128__udiv128Proc)(void*)r128__udiv128Code;
|
|
#else
|
|
static R128_U64 r128__udiv128(R128_U64 nlo, R128_U64 nhi, R128_U64 d, R128_U64 *rem)
|
|
{
|
|
#if defined(_M_X64) && !defined(R128_STDC_ONLY)
|
|
return _udiv128(nhi, nlo, d, rem);
|
|
#elif defined(__x86_64__) && !defined(R128_STDC_ONLY)
|
|
R128_U64 q, r;
|
|
__asm("divq %4"
|
|
: "=a"(q), "=d"(r)
|
|
: "a"(nlo), "d"(nhi), "X"(d));
|
|
*rem = r;
|
|
return q;
|
|
#else
|
|
R128_U64 tmp;
|
|
R128_U32 d0, d1;
|
|
R128_U32 n3, n2, n1, n0;
|
|
R128_U32 q0, q1;
|
|
R128_U32 r;
|
|
int shift;
|
|
|
|
R128_ASSERT(d != 0); //division by zero
|
|
R128_ASSERT(nhi < d); //overflow
|
|
|
|
// normalize
|
|
shift = r128__clz64(d);
|
|
|
|
if (shift) {
|
|
R128 tmp128;
|
|
R128_SET2(&tmp128, nlo, nhi);
|
|
r128Shl(&tmp128, &tmp128, shift);
|
|
n3 = R128_R3(&tmp128);
|
|
n2 = R128_R2(&tmp128);
|
|
n1 = R128_R1(&tmp128);
|
|
n0 = R128_R0(&tmp128);
|
|
d <<= shift;
|
|
} else {
|
|
n3 = (R128_U32)(nhi >> 32);
|
|
n2 = (R128_U32)nhi;
|
|
n1 = (R128_U32)(nlo >> 32);
|
|
n0 = (R128_U32)nlo;
|
|
}
|
|
|
|
d1 = (R128_U32)(d >> 32);
|
|
d0 = (R128_U32)d;
|
|
|
|
// first digit
|
|
R128_ASSERT(n3 <= d1);
|
|
if (n3 < d1) {
|
|
q1 = r128__udiv64(n2, n3, d1, &r);
|
|
} else {
|
|
q1 = 0xffffffffu;
|
|
r = n2 + d1;
|
|
}
|
|
refine1:
|
|
if (r128__umul64(q1, d0) > ((R128_U64)r << 32) + n1) {
|
|
--q1;
|
|
if (r < ~d1 + 1) {
|
|
r += d1;
|
|
goto refine1;
|
|
}
|
|
}
|
|
|
|
tmp = ((R128_U64)n2 << 32) + n1 - (r128__umul64(q1, d0) + (r128__umul64(q1, d1) << 32));
|
|
n2 = (R128_U32)(tmp >> 32);
|
|
n1 = (R128_U32)tmp;
|
|
|
|
// second digit
|
|
R128_ASSERT(n2 <= d1);
|
|
if (n2 < d1) {
|
|
q0 = r128__udiv64(n1, n2, d1, &r);
|
|
} else {
|
|
q0 = 0xffffffffu;
|
|
r = n1 + d1;
|
|
}
|
|
refine0:
|
|
if (r128__umul64(q0, d0) > ((R128_U64)r << 32) + n0) {
|
|
--q0;
|
|
if (r < ~d1 + 1) {
|
|
r += d1;
|
|
goto refine0;
|
|
}
|
|
}
|
|
|
|
tmp = ((R128_U64)n1 << 32) + n0 - (r128__umul64(q0, d0) + (r128__umul64(q0, d1) << 32));
|
|
n1 = (R128_U32)(tmp >> 32);
|
|
n0 = (R128_U32)tmp;
|
|
|
|
*rem = (((R128_U64)n1 << 32) + n0) >> shift;
|
|
return ((R128_U64)q1 << 32) + q0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static int r128__ucmp(const R128 *a, const R128 *b)
|
|
{
|
|
if (a->hi != b->hi) {
|
|
if (a->hi > b->hi) {
|
|
return 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (a->lo == b->lo) {
|
|
return 0;
|
|
} else if (a->lo > b->lo) {
|
|
return 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void r128__umul(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
#if defined(_M_X64) && !defined(R128_STDC_ONLY)
|
|
R128_U64 t0, t1;
|
|
R128_U64 lo, hi = 0;
|
|
unsigned char carry;
|
|
|
|
t0 = _umul128(a->lo, b->lo, &t1);
|
|
carry = _addcarry_u64(0, t1, t0 >> 63, &lo);
|
|
_addcarry_u64(carry, hi, hi, &hi);
|
|
|
|
t0 = _umul128(a->lo, b->hi, &t1);
|
|
carry = _addcarry_u64(0, lo, t0, &lo);
|
|
_addcarry_u64(carry, hi, t1, &hi);
|
|
|
|
t0 = _umul128(a->hi, b->lo, &t1);
|
|
carry = _addcarry_u64(0, lo, t0, &lo);
|
|
_addcarry_u64(carry, hi, t1, &hi);
|
|
|
|
t0 = _umul128(a->hi, b->hi, &t1);
|
|
hi += t0;
|
|
|
|
R128_SET2(dst, lo, hi);
|
|
#elif defined(__x86_64__) && !defined(R128_STDC_ONLY)
|
|
unsigned __int128 p0, p1, p2, p3;
|
|
p0 = a->lo * (unsigned __int128)b->lo;
|
|
p1 = a->lo * (unsigned __int128)b->hi;
|
|
p2 = a->hi * (unsigned __int128)b->lo;
|
|
p3 = a->hi * (unsigned __int128)b->hi;
|
|
|
|
p0 = (p3 << 64) + p2 + p1 + (p0 >> 64) + ((R128_U64)p0 >> 63);
|
|
dst->lo = (R128_U64)p0;
|
|
dst->hi = (R128_U64)(p0 >> 64);
|
|
#else
|
|
R128 p0, p1, p2, p3, round;
|
|
|
|
r128__umul128(&p0, a->lo, b->lo);
|
|
round.hi = 0; round.lo = p0.lo >> 63;
|
|
p0.lo = p0.hi; p0.hi = 0; //r128Shr(&p0, &p0, 64);
|
|
r128Add(&p0, &p0, &round);
|
|
|
|
r128__umul128(&p1, a->hi, b->lo);
|
|
r128Add(&p0, &p0, &p1);
|
|
|
|
r128__umul128(&p2, a->lo, b->hi);
|
|
r128Add(&p0, &p0, &p2);
|
|
|
|
r128__umul128(&p3, a->hi, b->hi);
|
|
p3.hi = p3.lo; p3.lo = 0; //r128Shl(&p3, &p3, 64);
|
|
r128Add(&p0, &p0, &p3);
|
|
|
|
R128_SET2(dst, p0.lo, p0.hi);
|
|
#endif
|
|
}
|
|
|
|
// Shift d left until the high bit is set, and shift n left by the same amount.
|
|
// returns non-zero on overflow.
|
|
static int r128__norm(R128 *n, R128 *d, R128_U64 *n2)
|
|
{
|
|
R128_U64 d0, d1;
|
|
R128_U64 n0, n1;
|
|
int shift;
|
|
|
|
d1 = d->hi;
|
|
d0 = d->lo;
|
|
n1 = n->hi;
|
|
n0 = n->lo;
|
|
|
|
if (d1) {
|
|
shift = r128__clz64(d1);
|
|
if (shift) {
|
|
d1 = (d1 << shift) | (d0 >> (64 - shift));
|
|
d0 = d0 << shift;
|
|
*n2 = n1 >> (64 - shift);
|
|
n1 = (n1 << shift) | (n0 >> (64 - shift));
|
|
n0 = n0 << shift;
|
|
} else {
|
|
*n2 = 0;
|
|
}
|
|
} else {
|
|
shift = r128__clz64(d0);
|
|
if (r128__clz64(n1) <= shift) {
|
|
return 1; // overflow
|
|
}
|
|
|
|
if (shift) {
|
|
d1 = d0 << shift;
|
|
d0 = 0;
|
|
*n2 = (n1 << shift) | (n0 >> (64 - shift));
|
|
n1 = n0 << shift;
|
|
n0 = 0;
|
|
} else {
|
|
d1 = d0;
|
|
d0 = 0;
|
|
*n2 = n1;
|
|
n1 = n0;
|
|
n0 = 0;
|
|
}
|
|
}
|
|
|
|
R128_SET2(n, n0, n1);
|
|
R128_SET2(d, d0, d1);
|
|
return 0;
|
|
}
|
|
|
|
static void r128__udiv(R128 *quotient, const R128 *dividend, const R128 *divisor)
|
|
{
|
|
R128 tmp;
|
|
R128_U64 d0, d1;
|
|
R128_U64 n1, n2, n3;
|
|
R128 q;
|
|
|
|
R128_ASSERT(dividend != NULL);
|
|
R128_ASSERT(divisor != NULL);
|
|
R128_ASSERT(quotient != NULL);
|
|
R128_ASSERT(divisor->hi != 0 || divisor->lo != 0); // divide by zero
|
|
|
|
// scale dividend and normalize
|
|
{
|
|
R128 n, d;
|
|
R128_SET2(&n, dividend->lo, dividend->hi);
|
|
R128_SET2(&d, divisor->lo, divisor->hi);
|
|
if (r128__norm(&n, &d, &n3)) {
|
|
R128_SET2(quotient, R128_max.lo, R128_max.hi);
|
|
return;
|
|
}
|
|
|
|
d1 = d.hi;
|
|
d0 = d.lo;
|
|
n2 = n.hi;
|
|
n1 = n.lo;
|
|
}
|
|
|
|
// first digit
|
|
R128_ASSERT(n3 <= d1);
|
|
{
|
|
R128 t0, t1;
|
|
t0.lo = n1;
|
|
if (n3 < d1) {
|
|
q.hi = r128__udiv128(n2, n3, d1, &t0.hi);
|
|
} else {
|
|
q.hi = R128_LIT_U64(0xffffffffffffffff);
|
|
t0.hi = n2 + d1;
|
|
}
|
|
|
|
refine1:
|
|
r128__umul128(&t1, q.hi, d0);
|
|
if (r128__ucmp(&t1, &t0) > 0) {
|
|
--q.hi;
|
|
if (t0.hi < ~d1 + 1) {
|
|
t0.hi += d1;
|
|
goto refine1;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
R128 t0, t1, t2;
|
|
t0.hi = n2;
|
|
t0.lo = n1;
|
|
|
|
r128__umul128(&t1, q.hi, d0);
|
|
r128__umul128(&t2, q.hi, d1);
|
|
|
|
t2.hi = t2.lo; t2.lo = 0; //r128Shl(&t2, &t2, 64);
|
|
r128Add(&tmp, &t1, &t2);
|
|
r128Sub(&tmp, &t0, &tmp);
|
|
}
|
|
n2 = tmp.hi;
|
|
n1 = tmp.lo;
|
|
|
|
// second digit
|
|
R128_ASSERT(n2 <= d1);
|
|
{
|
|
R128 t0, t1;
|
|
t0.lo = 0;
|
|
if (n2 < d1) {
|
|
q.lo = r128__udiv128(n1, n2, d1, &t0.hi);
|
|
} else {
|
|
q.lo = R128_LIT_U64(0xffffffffffffffff);
|
|
t0.hi = n1 + d1;
|
|
}
|
|
|
|
refine0:
|
|
r128__umul128(&t1, q.lo, d0);
|
|
if (r128__ucmp(&t1, &t0) > 0) {
|
|
--q.lo;
|
|
if (t0.hi < ~d1 + 1) {
|
|
t0.hi += d1;
|
|
goto refine0;
|
|
}
|
|
}
|
|
}
|
|
|
|
R128_SET2(quotient, q.lo, q.hi);
|
|
}
|
|
|
|
static R128_U64 r128__umod(R128 *n, R128 *d)
|
|
{
|
|
R128_U64 d0, d1;
|
|
R128_U64 n3, n2, n1;
|
|
R128_U64 q;
|
|
|
|
R128_ASSERT(d != NULL);
|
|
R128_ASSERT(n != NULL);
|
|
R128_ASSERT(d->hi != 0 || d->lo != 0); // divide by zero
|
|
|
|
if (r128__norm(n, d, &n3)) {
|
|
return R128_LIT_U64(0xffffffffffffffff);
|
|
}
|
|
|
|
d1 = d->hi;
|
|
d0 = d->lo;
|
|
n2 = n->hi;
|
|
n1 = n->lo;
|
|
|
|
R128_ASSERT(n3 < d1);
|
|
{
|
|
R128 t0, t1;
|
|
t0.lo = n1;
|
|
q = r128__udiv128(n2, n3, d1, &t0.hi);
|
|
|
|
refine1:
|
|
r128__umul128(&t1, q, d0);
|
|
if (r128__ucmp(&t1, &t0) > 0) {
|
|
--q;
|
|
if (t0.hi < ~d1 + 1) {
|
|
t0.hi += d1;
|
|
goto refine1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
static int r128__format(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *format)
|
|
{
|
|
char buf[128];
|
|
R128 tmp;
|
|
R128_U64 whole;
|
|
char *cursor, *decimal, *dstp = dst;
|
|
int sign = 0;
|
|
int fullPrecision = 1;
|
|
int width, precision;
|
|
int padCnt, trail = 0;
|
|
|
|
R128_ASSERT(dst != NULL && dstSize > 0);
|
|
R128_ASSERT(v != NULL);
|
|
R128_ASSERT(format != NULL);
|
|
|
|
--dstSize;
|
|
|
|
R128_SET2(&tmp, v->lo, v->hi);
|
|
if (r128IsNeg(&tmp)) {
|
|
r128__neg(&tmp, &tmp);
|
|
sign = 1;
|
|
}
|
|
|
|
width = format->width;
|
|
if (width < 0) {
|
|
width = 0;
|
|
}
|
|
|
|
precision = format->precision;
|
|
if (precision < 0) {
|
|
// print a maximum of 20 digits
|
|
fullPrecision = 0;
|
|
precision = 20;
|
|
} else if (precision > sizeof(buf) - 21) {
|
|
trail = precision - (sizeof(buf) - 21);
|
|
precision -= trail;
|
|
}
|
|
|
|
whole = tmp.hi;
|
|
decimal = cursor = buf;
|
|
|
|
// fractional part first in case a carry into the whole part is required
|
|
if (tmp.lo || format->decimal) {
|
|
while (tmp.lo || (fullPrecision && precision)) {
|
|
if ((int)(cursor - buf) == precision) {
|
|
if ((R128_S64)tmp.lo < 0) {
|
|
// round up, propagate carry backwards
|
|
char *c;
|
|
for (c = cursor - 1; c >= buf; --c) {
|
|
char d = ++*c;
|
|
if (d <= '9') {
|
|
goto endfrac;
|
|
} else {
|
|
*c = '0';
|
|
}
|
|
}
|
|
|
|
// carry out into the whole part
|
|
whole++;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
r128__umul128(&tmp, tmp.lo, 10);
|
|
*cursor++ = (char)tmp.hi + '0';
|
|
}
|
|
|
|
endfrac:
|
|
if (format->decimal || precision) {
|
|
decimal = cursor;
|
|
*cursor++ = R128_decimal;
|
|
}
|
|
}
|
|
|
|
// whole part
|
|
do {
|
|
char digit = (char)(whole % 10);
|
|
whole /= 10;
|
|
*cursor++ = digit + '0';
|
|
} while (whole);
|
|
|
|
#define R128__WRITE(c) do { if (dstp < dst + dstSize) *dstp = c; ++dstp; } while(0)
|
|
|
|
padCnt = width - (int)(cursor - buf) - 1;
|
|
|
|
// left padding
|
|
if (!format->leftAlign) {
|
|
char padChar = format->zeroPad ? '0' : ' ';
|
|
if (format->zeroPad) {
|
|
if (sign) {
|
|
R128__WRITE('-');
|
|
} else if (format->sign == R128ToStringSign_Plus) {
|
|
R128__WRITE('+');
|
|
} else if (format->sign == R128ToStringSign_Space) {
|
|
R128__WRITE(' ');
|
|
} else {
|
|
++padCnt;
|
|
}
|
|
}
|
|
|
|
for (; padCnt > 0; --padCnt) {
|
|
R128__WRITE(padChar);
|
|
}
|
|
}
|
|
|
|
if (format->leftAlign || !format->zeroPad) {
|
|
if (sign) {
|
|
R128__WRITE('-');
|
|
} else if (format->sign == R128ToStringSign_Plus) {
|
|
R128__WRITE('+');
|
|
} else if (format->sign == R128ToStringSign_Space) {
|
|
R128__WRITE(' ');
|
|
} else {
|
|
++padCnt;
|
|
}
|
|
}
|
|
|
|
{
|
|
char *i;
|
|
|
|
// reverse the whole part
|
|
for (i = cursor - 1; i >= decimal; --i) {
|
|
R128__WRITE(*i);
|
|
}
|
|
|
|
// copy the fractional part
|
|
for (i = buf; i < decimal; ++i) {
|
|
R128__WRITE(*i);
|
|
}
|
|
}
|
|
|
|
// right padding
|
|
if (format->leftAlign) {
|
|
char padChar = format->zeroPad ? '0' : ' ';
|
|
for (; padCnt > 0; --padCnt) {
|
|
R128__WRITE(padChar);
|
|
}
|
|
}
|
|
|
|
// trailing zeroes for very large precision
|
|
while (trail--) {
|
|
R128__WRITE('0');
|
|
}
|
|
|
|
#undef R128__WRITE
|
|
|
|
if (dstp <= dst + dstSize) {
|
|
*dstp = '\0';
|
|
} else {
|
|
dst[dstSize] = '\0';
|
|
}
|
|
return (int)(dstp - dst);
|
|
}
|
|
|
|
void r128FromInt(R128 *dst, R128_S64 v)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
dst->lo = 0;
|
|
dst->hi = (R128_U64)v;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128FromFloat(R128 *dst, double v)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
|
|
if (v < -9223372036854775808.0) {
|
|
r128Copy(dst, &R128_min);
|
|
} else if (v >= 9223372036854775808.0) {
|
|
r128Copy(dst, &R128_max);
|
|
} else {
|
|
R128 r;
|
|
int sign = 0;
|
|
|
|
if (v < 0) {
|
|
v = -v;
|
|
sign = 1;
|
|
}
|
|
|
|
r.hi = (R128_U64)(R128_S64)v;
|
|
v -= (R128_S64)v;
|
|
r.lo = (R128_U64)(v * 18446744073709551616.0);
|
|
|
|
if (sign) {
|
|
r128__neg(&r, &r);
|
|
}
|
|
|
|
r128Copy(dst, &r);
|
|
}
|
|
}
|
|
|
|
void r128FromString(R128 *dst, const char *s, char **endptr)
|
|
{
|
|
R128_U64 lo = 0, hi = 0;
|
|
R128_U64 base = 10;
|
|
|
|
int sign = 0;
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(s != NULL);
|
|
|
|
R128_SET2(dst, 0, 0);
|
|
|
|
// consume whitespace
|
|
for (;;) {
|
|
if (*s == ' ' || *s == '\t' || *s == '\r' || *s == '\n' || *s == '\v') {
|
|
++s;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// sign
|
|
if (*s == '-') {
|
|
sign = 1;
|
|
++s;
|
|
} else if (*s == '+') {
|
|
++s;
|
|
}
|
|
|
|
// parse base prefix
|
|
if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
|
|
base = 16;
|
|
s += 2;
|
|
}
|
|
|
|
// whole part
|
|
for (;; ++s) {
|
|
R128_U64 digit;
|
|
|
|
if ('0' <= *s && *s <= '9') {
|
|
digit = *s - '0';
|
|
} else if (base == 16 && 'a' <= *s && *s <= 'f') {
|
|
digit = *s - 'a' + 10;
|
|
} else if (base == 16 && 'A' <= *s && *s <= 'F') {
|
|
digit = *s - 'A' + 10;
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
hi = hi * base + digit;
|
|
}
|
|
|
|
// fractional part
|
|
if (*s == R128_decimal) {
|
|
const char *exp = ++s;
|
|
|
|
// find the last digit and work backwards
|
|
for (;; ++s) {
|
|
if ('0' <= *s && *s <= '9') {
|
|
} else if (base == 16 && ('a' <= *s && *s <= 'f')) {
|
|
} else if (base == 16 && ('A' <= *s && *s <= 'F')) {
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (--s; s >= exp; --s) {
|
|
R128_U64 digit, unused;
|
|
|
|
if ('0' <= *s && *s <= '9') {
|
|
digit = *s - '0';
|
|
} else if ('a' <= *s && *s <= 'f') {
|
|
digit = *s - 'a' + 10;
|
|
} else {
|
|
digit = *s - 'A' + 10;
|
|
}
|
|
|
|
lo = r128__udiv128(lo, digit, base, &unused);
|
|
}
|
|
}
|
|
|
|
R128_SET2(dst, lo, hi);
|
|
if (sign) {
|
|
r128__neg(dst, dst);
|
|
}
|
|
|
|
if (endptr) {
|
|
*endptr = (char *) s;
|
|
}
|
|
}
|
|
|
|
R128_S64 r128ToInt(const R128 *v)
|
|
{
|
|
R128_ASSERT(v != NULL);
|
|
return (R128_S64)v->hi;
|
|
}
|
|
|
|
double r128ToFloat(const R128 *v)
|
|
{
|
|
R128 tmp;
|
|
int sign = 0;
|
|
double d;
|
|
|
|
R128_ASSERT(v != NULL);
|
|
|
|
R128_SET2(&tmp, v->lo, v->hi);
|
|
if (r128IsNeg(&tmp)) {
|
|
r128__neg(&tmp, &tmp);
|
|
sign = 1;
|
|
}
|
|
|
|
d = tmp.hi + tmp.lo * (1 / 18446744073709551616.0);
|
|
if (sign) {
|
|
d = -d;
|
|
}
|
|
|
|
return d;
|
|
}
|
|
|
|
int r128ToStringOpt(char *dst, size_t dstSize, const R128 *v, const R128ToStringFormat *opt)
|
|
{
|
|
return r128__format(dst, dstSize, v, opt);
|
|
}
|
|
|
|
int r128ToStringf(char *dst, size_t dstSize, const char *format, const R128 *v)
|
|
{
|
|
R128ToStringFormat opts;
|
|
|
|
R128_ASSERT(dst != NULL && dstSize);
|
|
R128_ASSERT(format != NULL);
|
|
R128_ASSERT(v != NULL);
|
|
|
|
opts.sign = R128__defaultFormat.sign;
|
|
opts.precision = R128__defaultFormat.precision;
|
|
opts.zeroPad = R128__defaultFormat.zeroPad;
|
|
opts.decimal = R128__defaultFormat.decimal;
|
|
opts.leftAlign = R128__defaultFormat.leftAlign;
|
|
|
|
if (*format == '%') {
|
|
++format;
|
|
}
|
|
|
|
// flags field
|
|
for (;; ++format) {
|
|
if (*format == ' ' && opts.sign != R128ToStringSign_Plus) {
|
|
opts.sign = R128ToStringSign_Space;
|
|
} else if (*format == '+') {
|
|
opts.sign = R128ToStringSign_Plus;
|
|
} else if (*format == '0') {
|
|
opts.zeroPad = 1;
|
|
} else if (*format == '-') {
|
|
opts.leftAlign = 1;
|
|
} else if (*format == '#') {
|
|
opts.decimal = 1;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// width field
|
|
opts.width = 0;
|
|
for (;;) {
|
|
if ('0' <= *format && *format <= '9') {
|
|
opts.width = opts.width * 10 + *format++ - '0';
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// precision field
|
|
if (*format == '.') {
|
|
opts.precision = 0;
|
|
++format;
|
|
for (;;) {
|
|
if ('0' <= *format && *format <= '9') {
|
|
opts.precision = opts.precision * 10 + *format++ - '0';
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return r128__format(dst, dstSize, v, &opts);
|
|
}
|
|
|
|
int r128ToString(char *dst, size_t dstSize, const R128 *v)
|
|
{
|
|
return r128__format(dst, dstSize, v, &R128__defaultFormat);
|
|
}
|
|
|
|
void r128Copy(R128 *dst, const R128 *src)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
dst->lo = src->lo;
|
|
dst->hi = src->hi;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Neg(R128 *dst, const R128 *src)
|
|
{
|
|
r128__neg(dst, src);
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Not(R128 *dst, const R128 *src)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
|
|
dst->lo = ~src->lo;
|
|
dst->hi = ~src->hi;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Or(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
dst->lo = a->lo | b->lo;
|
|
dst->hi = a->hi | b->hi;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128And(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
dst->lo = a->lo & b->lo;
|
|
dst->hi = a->hi & b->hi;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Xor(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
dst->lo = a->lo ^ b->lo;
|
|
dst->hi = a->hi ^ b->hi;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Shl(R128 *dst, const R128 *src, int amount)
|
|
{
|
|
R128_U64 r[4];
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
|
|
#if defined(_M_IX86) && !defined(R128_STDC_ONLY)
|
|
__asm {
|
|
// load src
|
|
mov edx, dword ptr[src]
|
|
mov ecx, amount
|
|
|
|
mov edi, dword ptr[edx]
|
|
mov esi, dword ptr[edx + 4]
|
|
mov ebx, dword ptr[edx + 8]
|
|
mov eax, dword ptr[edx + 12]
|
|
|
|
// shift mod 32
|
|
shld eax, ebx, cl
|
|
shld ebx, esi, cl
|
|
shld esi, edi, cl
|
|
shl edi, cl
|
|
|
|
// clear out low 12 bytes of stack
|
|
xor edx, edx
|
|
mov dword ptr[r], edx
|
|
mov dword ptr[r + 4], edx
|
|
mov dword ptr[r + 8], edx
|
|
|
|
// store shifted amount offset by count/32 bits
|
|
shr ecx, 5
|
|
and ecx, 3
|
|
mov dword ptr[r + ecx * 4 + 0], edi
|
|
mov dword ptr[r + ecx * 4 + 4], esi
|
|
mov dword ptr[r + ecx * 4 + 8], ebx
|
|
mov dword ptr[r + ecx * 4 + 12], eax
|
|
}
|
|
#else
|
|
|
|
r[0] = src->lo;
|
|
r[1] = src->hi;
|
|
|
|
amount &= 127;
|
|
if (amount >= 64) {
|
|
r[1] = r[0] << (amount - 64);
|
|
r[0] = 0;
|
|
} else if (amount) {
|
|
# ifdef _M_X64
|
|
r[1] = __shiftleft128(r[0], r[1], (char) amount);
|
|
# else
|
|
r[1] = (r[1] << amount) | (r[0] >> (64 - amount));
|
|
# endif
|
|
r[0] = r[0] << amount;
|
|
}
|
|
#endif //_M_IX86
|
|
|
|
dst->lo = r[0];
|
|
dst->hi = r[1];
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Shr(R128 *dst, const R128 *src, int amount)
|
|
{
|
|
R128_U64 r[4];
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
|
|
#if defined(_M_IX86) && !defined(R128_STDC_ONLY)
|
|
__asm {
|
|
// load src
|
|
mov edx, dword ptr[src]
|
|
mov ecx, amount
|
|
|
|
mov edi, dword ptr[edx]
|
|
mov esi, dword ptr[edx + 4]
|
|
mov ebx, dword ptr[edx + 8]
|
|
mov eax, dword ptr[edx + 12]
|
|
|
|
// shift mod 32
|
|
shrd edi, esi, cl
|
|
shrd esi, ebx, cl
|
|
shrd ebx, eax, cl
|
|
shr eax, cl
|
|
|
|
// clear out high 12 bytes of stack
|
|
xor edx, edx
|
|
mov dword ptr[r + 20], edx
|
|
mov dword ptr[r + 24], edx
|
|
mov dword ptr[r + 28], edx
|
|
|
|
// store shifted amount offset by -count/32 bits
|
|
shr ecx, 5
|
|
and ecx, 3
|
|
neg ecx
|
|
mov dword ptr[r + ecx * 4 + 16], edi
|
|
mov dword ptr[r + ecx * 4 + 20], esi
|
|
mov dword ptr[r + ecx * 4 + 24], ebx
|
|
mov dword ptr[r + ecx * 4 + 28], eax
|
|
}
|
|
#else
|
|
r[2] = src->lo;
|
|
r[3] = src->hi;
|
|
|
|
amount &= 127;
|
|
if (amount >= 64) {
|
|
r[2] = r[3] >> (amount - 64);
|
|
r[3] = 0;
|
|
} else if (amount) {
|
|
#ifdef _M_X64
|
|
r[2] = __shiftright128(r[2], r[3], (char) amount);
|
|
#else
|
|
r[2] = (r[2] >> amount) | (r[3] << (64 - amount));
|
|
#endif
|
|
r[3] = r[3] >> amount;
|
|
}
|
|
#endif
|
|
|
|
dst->lo = r[2];
|
|
dst->hi = r[3];
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Sar(R128 *dst, const R128 *src, int amount)
|
|
{
|
|
R128_U64 r[4];
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(src != NULL);
|
|
|
|
#if defined(_M_IX86) && !defined(R128_STDC_ONLY)
|
|
__asm {
|
|
// load src
|
|
mov edx, dword ptr[src]
|
|
mov ecx, amount
|
|
|
|
mov edi, dword ptr[edx]
|
|
mov esi, dword ptr[edx + 4]
|
|
mov ebx, dword ptr[edx + 8]
|
|
mov eax, dword ptr[edx + 12]
|
|
|
|
// shift mod 32
|
|
shrd edi, esi, cl
|
|
shrd esi, ebx, cl
|
|
shrd ebx, eax, cl
|
|
sar eax, cl
|
|
|
|
// copy sign to high 12 bytes of stack
|
|
cdq
|
|
mov dword ptr[r + 20], edx
|
|
mov dword ptr[r + 24], edx
|
|
mov dword ptr[r + 28], edx
|
|
|
|
// store shifted amount offset by -count/32 bits
|
|
shr ecx, 5
|
|
and ecx, 3
|
|
neg ecx
|
|
mov dword ptr[r + ecx * 4 + 16], edi
|
|
mov dword ptr[r + ecx * 4 + 20], esi
|
|
mov dword ptr[r + ecx * 4 + 24], ebx
|
|
mov dword ptr[r + ecx * 4 + 28], eax
|
|
}
|
|
#else
|
|
r[2] = src->lo;
|
|
r[3] = src->hi;
|
|
|
|
amount &= 127;
|
|
if (amount >= 64) {
|
|
r[2] = (R128_U64)((R128_S64)r[3] >> (amount - 64));
|
|
r[3] = (R128_U64)((R128_S64)r[3] >> 63);
|
|
} else if (amount) {
|
|
r[2] = (r[2] >> amount) | (R128_U64)((R128_S64)r[3] << (64 - amount));
|
|
r[3] = (R128_U64)((R128_S64)r[3] >> amount);
|
|
}
|
|
#endif
|
|
|
|
dst->lo = r[2];
|
|
dst->hi = r[3];
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Add(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
unsigned char carry = 0;
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
#if R128_INTEL && !defined(R128_STDC_ONLY)
|
|
# if R128_64BIT
|
|
carry = _addcarry_u64(carry, a->lo, b->lo, &dst->lo);
|
|
carry = _addcarry_u64(carry, a->hi, b->hi, &dst->hi);
|
|
# else
|
|
R128_U32 r0, r1, r2, r3;
|
|
carry = _addcarry_u32(carry, R128_R0(a), R128_R0(b), &r0);
|
|
carry = _addcarry_u32(carry, R128_R1(a), R128_R1(b), &r1);
|
|
carry = _addcarry_u32(carry, R128_R2(a), R128_R2(b), &r2);
|
|
carry = _addcarry_u32(carry, R128_R3(a), R128_R3(b), &r3);
|
|
R128_SET4(dst, r0, r1, r2, r3);
|
|
# endif //R128_64BIT
|
|
#else
|
|
{
|
|
R128_U64 r = a->lo + b->lo;
|
|
carry = r < a->lo;
|
|
dst->lo = r;
|
|
dst->hi = a->hi + b->hi + carry;
|
|
}
|
|
#endif //R128_INTEL
|
|
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Sub(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
unsigned char borrow = 0;
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
#if R128_INTEL && !defined(R128_STDC_ONLY)
|
|
# if R128_64BIT
|
|
borrow = _subborrow_u64(borrow, a->lo, b->lo, &dst->lo);
|
|
borrow = _subborrow_u64(borrow, a->hi, b->hi, &dst->hi);
|
|
# else
|
|
R128_U32 r0, r1, r2, r3;
|
|
borrow = _subborrow_u32(borrow, R128_R0(a), R128_R0(b), &r0);
|
|
borrow = _subborrow_u32(borrow, R128_R1(a), R128_R1(b), &r1);
|
|
borrow = _subborrow_u32(borrow, R128_R2(a), R128_R2(b), &r2);
|
|
borrow = _subborrow_u32(borrow, R128_R3(a), R128_R3(b), &r3);
|
|
R128_SET4(dst, r0, r1, r2, r3);
|
|
# endif //R128_64BIT
|
|
#else
|
|
{
|
|
R128_U64 r = a->lo - b->lo;
|
|
borrow = r > a->lo;
|
|
dst->lo = r;
|
|
dst->hi = a->hi - b->hi - borrow;
|
|
}
|
|
#endif //R128_INTEL
|
|
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Mul(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
int sign = 0;
|
|
R128 ta, tb, tc;
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
R128_SET2(&ta, a->lo, a->hi);
|
|
R128_SET2(&tb, b->lo, b->hi);
|
|
|
|
if (r128IsNeg(&ta)) {
|
|
r128__neg(&ta, &ta);
|
|
sign = !sign;
|
|
}
|
|
if (r128IsNeg(&tb)) {
|
|
r128__neg(&tb, &tb);
|
|
sign = !sign;
|
|
}
|
|
|
|
r128__umul(&tc, &ta, &tb);
|
|
if (sign) {
|
|
r128__neg(&tc, &tc);
|
|
}
|
|
|
|
r128Copy(dst, &tc);
|
|
}
|
|
|
|
void r128Div(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
int sign = 0;
|
|
R128 tn, td, tq;
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
R128_SET2(&tn, a->lo, a->hi);
|
|
R128_SET2(&td, b->lo, b->hi);
|
|
|
|
if (r128IsNeg(&tn)) {
|
|
r128__neg(&tn, &tn);
|
|
sign = !sign;
|
|
}
|
|
|
|
if (td.lo == 0 && td.hi == 0) {
|
|
// divide by zero
|
|
if (sign) {
|
|
r128Copy(dst, &R128_min);
|
|
} else {
|
|
r128Copy(dst, &R128_max);
|
|
}
|
|
return;
|
|
} else if (r128IsNeg(&td)) {
|
|
r128__neg(&td, &td);
|
|
sign = !sign;
|
|
}
|
|
|
|
r128__udiv(&tq, &tn, &td);
|
|
|
|
if (sign) {
|
|
r128__neg(&tq, &tq);
|
|
}
|
|
|
|
r128Copy(dst, &tq);
|
|
}
|
|
|
|
void r128Mod(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
int sign = 0;
|
|
R128 tn, td, tq;
|
|
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
R128_SET2(&tn, a->lo, a->hi);
|
|
R128_SET2(&td, b->lo, b->hi);
|
|
|
|
if (r128IsNeg(&tn)) {
|
|
r128__neg(&tn, &tn);
|
|
sign = !sign;
|
|
}
|
|
|
|
if (td.lo == 0 && td.hi == 0) {
|
|
// divide by zero
|
|
if (sign) {
|
|
r128Copy(dst, &R128_min);
|
|
} else {
|
|
r128Copy(dst, &R128_max);
|
|
}
|
|
return;
|
|
} else if (r128IsNeg(&td)) {
|
|
r128__neg(&td, &td);
|
|
sign = !sign;
|
|
}
|
|
|
|
tq.hi = r128__umod(&tn, &td);
|
|
tq.lo = 0;
|
|
|
|
if (sign) {
|
|
tq.hi = ~tq.hi + 1;
|
|
}
|
|
|
|
r128Mul(&tq, &tq, b);
|
|
r128Sub(dst, a, &tq);
|
|
}
|
|
|
|
void r128Rsqrt(R128 *dst, const R128 *v)
|
|
{
|
|
static const R128 threeHalves = { R128_LIT_U64(0x8000000000000000), 1 };
|
|
R128 x, est;
|
|
int i;
|
|
|
|
if ((R128_S64)v->hi < 0) {
|
|
r128Copy(dst, &R128_min);
|
|
return;
|
|
}
|
|
|
|
R128_SET2(&x, v->lo, v->hi);
|
|
|
|
// get initial estimate
|
|
if (x.hi) {
|
|
int shift = (64 + r128__clz64(x.hi)) >> 1;
|
|
est.lo = R128_LIT_U64(1) << shift;
|
|
est.hi = 0;
|
|
} else if (x.lo) {
|
|
int shift = r128__clz64(x.lo) >> 1;
|
|
est.hi = R128_LIT_U64(1) << shift;
|
|
est.lo = 0;
|
|
} else {
|
|
R128_SET2(dst, 0, 0);
|
|
return;
|
|
}
|
|
|
|
// x /= 2
|
|
r128Shr(&x, &x, 1);
|
|
|
|
// Newton-Raphson iterate
|
|
for (i = 0; i < 7; ++i) {
|
|
R128 newEst;
|
|
|
|
// newEst = est * (threeHalves - (x / 2) * est * est);
|
|
r128__umul(&newEst, &est, &est);
|
|
r128__umul(&newEst, &newEst, &x);
|
|
r128Sub(&newEst, &threeHalves, &newEst);
|
|
r128__umul(&newEst, &est, &newEst);
|
|
|
|
if (newEst.lo == est.lo && newEst.hi == est.hi) {
|
|
break;
|
|
}
|
|
R128_SET2(&est, newEst.lo, newEst.hi);
|
|
}
|
|
|
|
r128Copy(dst, &est);
|
|
}
|
|
|
|
void r128Sqrt(R128 *dst, const R128 *v)
|
|
{
|
|
R128 x, est;
|
|
int i;
|
|
|
|
if ((R128_S64)v->hi < 0) {
|
|
r128Copy(dst, &R128_min);
|
|
return;
|
|
}
|
|
|
|
R128_SET2(&x, v->lo, v->hi);
|
|
|
|
// get initial estimate
|
|
if (x.hi) {
|
|
int shift = (63 - r128__clz64(x.hi)) >> 1;
|
|
r128Shr(&est, &x, shift);
|
|
} else if (x.lo) {
|
|
int shift = (1 + r128__clz64(x.lo)) >> 1;
|
|
r128Shl(&est, &x, shift);
|
|
} else {
|
|
R128_SET2(dst, 0, 0);
|
|
return;
|
|
}
|
|
|
|
// Newton-Raphson iterate
|
|
for (i = 0; i < 7; ++i) {
|
|
R128 newEst;
|
|
|
|
// newEst = (est + x / est) / 2
|
|
r128__udiv(&newEst, &x, &est);
|
|
r128Add(&newEst, &newEst, &est);
|
|
r128Shr(&newEst, &newEst, 1);
|
|
|
|
if (newEst.lo == est.lo && newEst.hi == est.hi) {
|
|
break;
|
|
}
|
|
R128_SET2(&est, newEst.lo, newEst.hi);
|
|
}
|
|
|
|
r128Copy(dst, &est);
|
|
}
|
|
|
|
int r128Cmp(const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
if (a->hi == b->hi) {
|
|
if (a->lo == b->lo) {
|
|
return 0;
|
|
} else if (a->lo > b->lo) {
|
|
return 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else if ((R128_S64)a->hi > (R128_S64)b->hi) {
|
|
return 1;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
int r128IsNeg(const R128 *v)
|
|
{
|
|
R128_ASSERT(v != NULL);
|
|
|
|
return (R128_S64)v->hi < 0;
|
|
}
|
|
|
|
void r128Min(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
if (r128Cmp(a, b) < 0) {
|
|
r128Copy(dst, a);
|
|
} else {
|
|
r128Copy(dst, b);
|
|
}
|
|
}
|
|
|
|
void r128Max(R128 *dst, const R128 *a, const R128 *b)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(a != NULL);
|
|
R128_ASSERT(b != NULL);
|
|
|
|
if (r128Cmp(a, b) > 0) {
|
|
r128Copy(dst, a);
|
|
} else {
|
|
r128Copy(dst, b);
|
|
}
|
|
}
|
|
|
|
void r128Floor(R128 *dst, const R128 *v)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(v != NULL);
|
|
|
|
if ((R128_S64)v->hi < 0) {
|
|
dst->hi = v->hi - (v->lo != 0);
|
|
} else {
|
|
dst->hi = v->hi;
|
|
}
|
|
dst->lo = 0;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
void r128Ceil(R128 *dst, const R128 *v)
|
|
{
|
|
R128_ASSERT(dst != NULL);
|
|
R128_ASSERT(v != NULL);
|
|
|
|
if ((R128_S64)v->hi > 0) {
|
|
dst->hi = v->hi + (v->lo != 0);
|
|
} else {
|
|
dst->hi = v->hi;
|
|
}
|
|
dst->lo = 0;
|
|
R128_DEBUG_SET(dst);
|
|
}
|
|
|
|
#endif //R128_IMPLEMENTATION
|