godot/core/math/delaunay.h
Hein-Pieter van Braam 0e29f7974b Reduce unnecessary COW on Vector by make writing explicit
This commit makes operator[] on Vector const and adds a write proxy to it.  From
now on writes to Vectors need to happen through the .write proxy. So for
instance:

Vector<int> vec;
vec.push_back(10);
std::cout << vec[0] << std::endl;
vec.write[0] = 20;

Failing to use the .write proxy will cause a compilation error.

In addition COWable datatypes can now embed a CowData pointer to their data.
This means that String, CharString, and VMap no longer use or derive from
Vector.

_ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug
builds. This is a lot faster for Vector in the editor and while running tests.
The reason why this difference used to exist is because force-inlined methods
used to give a bad debugging experience. After extensive testing with modern
compilers this is no longer the case.
2018-07-26 00:54:16 +02:00

146 lines
3.9 KiB
C++

#ifndef DELAUNAY_H
#define DELAUNAY_H
#include "math_2d.h"
class Delaunay2D {
public:
struct Triangle {
int points[3];
bool bad;
Triangle() { bad = false; }
Triangle(int p_a, int p_b, int p_c) {
points[0] = p_a;
points[1] = p_b;
points[2] = p_c;
bad = false;
}
};
struct Edge {
int edge[2];
bool bad;
Edge() { bad = false; }
Edge(int p_a, int p_b) {
bad = false;
edge[0] = p_a;
edge[1] = p_b;
}
};
static bool circum_circle_contains(const Vector<Vector2> &p_vertices, const Triangle &p_triangle, int p_vertex) {
Vector2 p1 = p_vertices[p_triangle.points[0]];
Vector2 p2 = p_vertices[p_triangle.points[1]];
Vector2 p3 = p_vertices[p_triangle.points[2]];
real_t ab = p1.x * p1.x + p1.y * p1.y;
real_t cd = p2.x * p2.x + p2.y * p2.y;
real_t ef = p3.x * p3.x + p3.y * p3.y;
Vector2 circum(
(ab * (p3.y - p2.y) + cd * (p1.y - p3.y) + ef * (p2.y - p1.y)) / (p1.x * (p3.y - p2.y) + p2.x * (p1.y - p3.y) + p3.x * (p2.y - p1.y)),
(ab * (p3.x - p2.x) + cd * (p1.x - p3.x) + ef * (p2.x - p1.x)) / (p1.y * (p3.x - p2.x) + p2.y * (p1.x - p3.x) + p3.y * (p2.x - p1.x)));
circum *= 0.5;
float r = p1.distance_squared_to(circum);
float d = p_vertices[p_vertex].distance_squared_to(circum);
return d <= r;
}
static bool edge_compare(const Vector<Vector2> &p_vertices, const Edge &p_a, const Edge &p_b) {
if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON) {
return true;
}
if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON) {
return true;
}
return false;
}
static Vector<Triangle> triangulate(const Vector<Vector2> &p_points) {
Vector<Vector2> points = p_points;
Vector<Triangle> triangles;
Rect2 rect;
for (int i = 0; i < p_points.size(); i++) {
if (i == 0) {
rect.position = p_points[i];
} else {
rect.expand_to(p_points[i]);
}
}
float delta_max = MAX(rect.size.width, rect.size.height);
Vector2 center = rect.position + rect.size * 0.5;
points.push_back(Vector2(center.x - 20 * delta_max, center.y - delta_max));
points.push_back(Vector2(center.x, center.y + 20 * delta_max));
points.push_back(Vector2(center.x + 20 * delta_max, center.y - delta_max));
triangles.push_back(Triangle(p_points.size() + 0, p_points.size() + 1, p_points.size() + 2));
for (int i = 0; i < p_points.size(); i++) {
//std::cout << "Traitement du point " << *p << std::endl;
//std::cout << "_triangles contains " << _triangles.size() << " elements" << std::endl;
Vector<Edge> polygon;
for (int j = 0; j < triangles.size(); j++) {
if (circum_circle_contains(points, triangles[j], i)) {
triangles.write[j].bad = true;
polygon.push_back(Edge(triangles[j].points[0], triangles[j].points[1]));
polygon.push_back(Edge(triangles[j].points[1], triangles[j].points[2]));
polygon.push_back(Edge(triangles[j].points[2], triangles[j].points[0]));
}
}
for (int j = 0; j < triangles.size(); j++) {
if (triangles[j].bad) {
triangles.remove(j);
j--;
}
}
for (int j = 0; j < polygon.size(); j++) {
for (int k = j + 1; k < polygon.size(); k++) {
if (edge_compare(points, polygon[j], polygon[k])) {
polygon.write[j].bad = true;
polygon.write[k].bad = true;
}
}
}
for (int j = 0; j < polygon.size(); j++) {
if (polygon[j].bad) {
continue;
}
triangles.push_back(Triangle(polygon[j].edge[0], polygon[j].edge[1], i));
}
}
for (int i = 0; i < triangles.size(); i++) {
bool invalid = false;
for (int j = 0; j < 3; j++) {
if (triangles[i].points[j] >= p_points.size()) {
invalid = true;
break;
}
}
if (invalid) {
triangles.remove(i);
i--;
}
}
return triangles;
}
};
#endif // DELAUNAY_H