0e29f7974b
This commit makes operator[] on Vector const and adds a write proxy to it. From now on writes to Vectors need to happen through the .write proxy. So for instance: Vector<int> vec; vec.push_back(10); std::cout << vec[0] << std::endl; vec.write[0] = 20; Failing to use the .write proxy will cause a compilation error. In addition COWable datatypes can now embed a CowData pointer to their data. This means that String, CharString, and VMap no longer use or derive from Vector. _ALWAYS_INLINE_ and _FORCE_INLINE_ are now equivalent for debug and non-debug builds. This is a lot faster for Vector in the editor and while running tests. The reason why this difference used to exist is because force-inlined methods used to give a bad debugging experience. After extensive testing with modern compilers this is no longer the case.
146 lines
3.9 KiB
C++
146 lines
3.9 KiB
C++
#ifndef DELAUNAY_H
|
|
#define DELAUNAY_H
|
|
|
|
#include "math_2d.h"
|
|
|
|
class Delaunay2D {
|
|
public:
|
|
struct Triangle {
|
|
|
|
int points[3];
|
|
bool bad;
|
|
Triangle() { bad = false; }
|
|
Triangle(int p_a, int p_b, int p_c) {
|
|
points[0] = p_a;
|
|
points[1] = p_b;
|
|
points[2] = p_c;
|
|
bad = false;
|
|
}
|
|
};
|
|
|
|
struct Edge {
|
|
int edge[2];
|
|
bool bad;
|
|
Edge() { bad = false; }
|
|
Edge(int p_a, int p_b) {
|
|
bad = false;
|
|
edge[0] = p_a;
|
|
edge[1] = p_b;
|
|
}
|
|
};
|
|
|
|
static bool circum_circle_contains(const Vector<Vector2> &p_vertices, const Triangle &p_triangle, int p_vertex) {
|
|
|
|
Vector2 p1 = p_vertices[p_triangle.points[0]];
|
|
Vector2 p2 = p_vertices[p_triangle.points[1]];
|
|
Vector2 p3 = p_vertices[p_triangle.points[2]];
|
|
|
|
real_t ab = p1.x * p1.x + p1.y * p1.y;
|
|
real_t cd = p2.x * p2.x + p2.y * p2.y;
|
|
real_t ef = p3.x * p3.x + p3.y * p3.y;
|
|
|
|
Vector2 circum(
|
|
(ab * (p3.y - p2.y) + cd * (p1.y - p3.y) + ef * (p2.y - p1.y)) / (p1.x * (p3.y - p2.y) + p2.x * (p1.y - p3.y) + p3.x * (p2.y - p1.y)),
|
|
(ab * (p3.x - p2.x) + cd * (p1.x - p3.x) + ef * (p2.x - p1.x)) / (p1.y * (p3.x - p2.x) + p2.y * (p1.x - p3.x) + p3.y * (p2.x - p1.x)));
|
|
|
|
circum *= 0.5;
|
|
float r = p1.distance_squared_to(circum);
|
|
float d = p_vertices[p_vertex].distance_squared_to(circum);
|
|
return d <= r;
|
|
}
|
|
|
|
static bool edge_compare(const Vector<Vector2> &p_vertices, const Edge &p_a, const Edge &p_b) {
|
|
if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON) {
|
|
return true;
|
|
}
|
|
|
|
if (p_vertices[p_a.edge[0]].distance_to(p_vertices[p_b.edge[1]]) < CMP_EPSILON && p_vertices[p_a.edge[1]].distance_to(p_vertices[p_b.edge[0]]) < CMP_EPSILON) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static Vector<Triangle> triangulate(const Vector<Vector2> &p_points) {
|
|
|
|
Vector<Vector2> points = p_points;
|
|
Vector<Triangle> triangles;
|
|
|
|
Rect2 rect;
|
|
for (int i = 0; i < p_points.size(); i++) {
|
|
if (i == 0) {
|
|
rect.position = p_points[i];
|
|
} else {
|
|
rect.expand_to(p_points[i]);
|
|
}
|
|
}
|
|
|
|
float delta_max = MAX(rect.size.width, rect.size.height);
|
|
Vector2 center = rect.position + rect.size * 0.5;
|
|
|
|
points.push_back(Vector2(center.x - 20 * delta_max, center.y - delta_max));
|
|
points.push_back(Vector2(center.x, center.y + 20 * delta_max));
|
|
points.push_back(Vector2(center.x + 20 * delta_max, center.y - delta_max));
|
|
|
|
triangles.push_back(Triangle(p_points.size() + 0, p_points.size() + 1, p_points.size() + 2));
|
|
|
|
for (int i = 0; i < p_points.size(); i++) {
|
|
//std::cout << "Traitement du point " << *p << std::endl;
|
|
//std::cout << "_triangles contains " << _triangles.size() << " elements" << std::endl;
|
|
|
|
Vector<Edge> polygon;
|
|
|
|
for (int j = 0; j < triangles.size(); j++) {
|
|
if (circum_circle_contains(points, triangles[j], i)) {
|
|
triangles.write[j].bad = true;
|
|
polygon.push_back(Edge(triangles[j].points[0], triangles[j].points[1]));
|
|
polygon.push_back(Edge(triangles[j].points[1], triangles[j].points[2]));
|
|
polygon.push_back(Edge(triangles[j].points[2], triangles[j].points[0]));
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < triangles.size(); j++) {
|
|
if (triangles[j].bad) {
|
|
triangles.remove(j);
|
|
j--;
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < polygon.size(); j++) {
|
|
for (int k = j + 1; k < polygon.size(); k++) {
|
|
if (edge_compare(points, polygon[j], polygon[k])) {
|
|
polygon.write[j].bad = true;
|
|
polygon.write[k].bad = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < polygon.size(); j++) {
|
|
|
|
if (polygon[j].bad) {
|
|
continue;
|
|
}
|
|
triangles.push_back(Triangle(polygon[j].edge[0], polygon[j].edge[1], i));
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < triangles.size(); i++) {
|
|
bool invalid = false;
|
|
for (int j = 0; j < 3; j++) {
|
|
if (triangles[i].points[j] >= p_points.size()) {
|
|
invalid = true;
|
|
break;
|
|
}
|
|
}
|
|
if (invalid) {
|
|
triangles.remove(i);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
return triangles;
|
|
}
|
|
};
|
|
|
|
#endif // DELAUNAY_H
|