godot/core/dvector.h
Rémi Verschelde 0eab0d9343 Update copyright statements to 2019
Happy new year to the wonderful Godot community!
2019-01-03 11:41:35 +01:00

644 lines
14 KiB
C++

/*************************************************************************/
/* dvector.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef DVECTOR_H
#define DVECTOR_H
#include "os/copymem.h"
#include "os/memory.h"
#include "os/rw_lock.h"
#include "pool_allocator.h"
#include "safe_refcount.h"
#include "ustring.h"
struct MemoryPool {
//avoid accessing these directly, must be public for template access
static PoolAllocator *memory_pool;
static uint8_t *pool_memory;
static size_t *pool_size;
struct Alloc {
SafeRefCount refcount;
uint32_t lock;
void *mem;
PoolAllocator::ID pool_id;
size_t size;
Alloc *free_list;
Alloc() {
mem = NULL;
lock = 0;
pool_id = POOL_ALLOCATOR_INVALID_ID;
size = 0;
free_list = NULL;
}
};
static Alloc *allocs;
static Alloc *free_list;
static uint32_t alloc_count;
static uint32_t allocs_used;
static Mutex *alloc_mutex;
static size_t total_memory;
static size_t max_memory;
static void setup(uint32_t p_max_allocs = (1 << 16));
static void cleanup();
};
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
template <class T>
class PoolVector {
MemoryPool::Alloc *alloc;
void _copy_on_write() {
if (!alloc)
return;
// ERR_FAIL_COND(alloc->lock>0); should not be illegal to lock this for copy on write, as it's a copy on write after all
// Refcount should not be zero, otherwise it's a misuse of COW
if (alloc->refcount.get() == 1)
return; //nothing to do
//must allocate something
MemoryPool::alloc_mutex->lock();
if (MemoryPool::allocs_used == MemoryPool::alloc_count) {
MemoryPool::alloc_mutex->unlock();
ERR_EXPLAINC("All memory pool allocations are in use, can't COW.");
ERR_FAIL();
}
MemoryPool::Alloc *old_alloc = alloc;
//take one from the free list
alloc = MemoryPool::free_list;
MemoryPool::free_list = alloc->free_list;
//increment the used counter
MemoryPool::allocs_used++;
//copy the alloc data
alloc->size = old_alloc->size;
alloc->refcount.init();
alloc->pool_id = POOL_ALLOCATOR_INVALID_ID;
alloc->lock = 0;
#ifdef DEBUG_ENABLED
MemoryPool::total_memory += alloc->size;
if (MemoryPool::total_memory > MemoryPool::max_memory) {
MemoryPool::max_memory = MemoryPool::total_memory;
}
#endif
MemoryPool::alloc_mutex->unlock();
if (MemoryPool::memory_pool) {
} else {
alloc->mem = memalloc(alloc->size);
}
{
Write w;
w._ref(alloc);
Read r;
r._ref(old_alloc);
int cur_elements = alloc->size / sizeof(T);
T *dst = (T *)w.ptr();
const T *src = (const T *)r.ptr();
for (int i = 0; i < cur_elements; i++) {
memnew_placement(&dst[i], T(src[i]));
}
}
if (old_alloc->refcount.unref() == true) {
//this should never happen but..
#ifdef DEBUG_ENABLED
MemoryPool::alloc_mutex->lock();
MemoryPool::total_memory -= old_alloc->size;
MemoryPool::alloc_mutex->unlock();
#endif
{
Write w;
w._ref(old_alloc);
int cur_elements = old_alloc->size / sizeof(T);
T *elems = (T *)w.ptr();
for (int i = 0; i < cur_elements; i++) {
elems[i].~T();
}
}
if (MemoryPool::memory_pool) {
//resize memory pool
//if none, create
//if some resize
} else {
memfree(old_alloc->mem);
old_alloc->mem = NULL;
old_alloc->size = 0;
MemoryPool::alloc_mutex->lock();
old_alloc->free_list = MemoryPool::free_list;
MemoryPool::free_list = old_alloc;
MemoryPool::allocs_used--;
MemoryPool::alloc_mutex->unlock();
}
}
}
void _reference(const PoolVector &p_dvector) {
if (alloc == p_dvector.alloc)
return;
_unreference();
if (!p_dvector.alloc) {
return;
}
if (p_dvector.alloc->refcount.ref()) {
alloc = p_dvector.alloc;
}
}
void _unreference() {
if (!alloc)
return;
if (alloc->refcount.unref() == false) {
alloc = NULL;
return;
}
//must be disposed!
{
int cur_elements = alloc->size / sizeof(T);
// Don't use write() here because it could otherwise provoke COW,
// which is not desirable here because we are destroying the last reference anyways
Write w;
// Reference to still prevent other threads from touching the alloc
w._ref(alloc);
for (int i = 0; i < cur_elements; i++) {
w[i].~T();
}
}
#ifdef DEBUG_ENABLED
MemoryPool::alloc_mutex->lock();
MemoryPool::total_memory -= alloc->size;
MemoryPool::alloc_mutex->unlock();
#endif
if (MemoryPool::memory_pool) {
//resize memory pool
//if none, create
//if some resize
} else {
memfree(alloc->mem);
alloc->mem = NULL;
alloc->size = 0;
MemoryPool::alloc_mutex->lock();
alloc->free_list = MemoryPool::free_list;
MemoryPool::free_list = alloc;
MemoryPool::allocs_used--;
MemoryPool::alloc_mutex->unlock();
}
alloc = NULL;
}
public:
class Access {
friend class PoolVector;
protected:
MemoryPool::Alloc *alloc;
T *mem;
_FORCE_INLINE_ void _ref(MemoryPool::Alloc *p_alloc) {
alloc = p_alloc;
if (alloc) {
if (atomic_increment(&alloc->lock) == 1) {
if (MemoryPool::memory_pool) {
//lock it and get mem
}
}
mem = (T *)alloc->mem;
}
}
_FORCE_INLINE_ void _unref() {
if (alloc) {
if (atomic_decrement(&alloc->lock) == 0) {
if (MemoryPool::memory_pool) {
//put mem back
}
}
mem = NULL;
alloc = NULL;
}
}
Access() {
alloc = NULL;
mem = NULL;
}
public:
virtual ~Access() {
_unref();
}
};
class Read : public Access {
public:
_FORCE_INLINE_ const T &operator[](int p_index) const { return this->mem[p_index]; }
_FORCE_INLINE_ const T *ptr() const { return this->mem; }
void operator=(const Read &p_read) {
if (this->alloc == p_read.alloc)
return;
this->_unref();
this->_ref(p_read.alloc);
}
Read(const Read &p_read) {
this->_ref(p_read.alloc);
}
Read() {}
};
class Write : public Access {
public:
_FORCE_INLINE_ T &operator[](int p_index) const { return this->mem[p_index]; }
_FORCE_INLINE_ T *ptr() const { return this->mem; }
void operator=(const Write &p_read) {
if (this->alloc == p_read.alloc)
return;
this->_unref();
this->_ref(p_read.alloc);
}
Write(const Write &p_read) {
this->_ref(p_read.alloc);
}
Write() {}
};
Read read() const {
Read r;
if (alloc) {
r._ref(alloc);
}
return r;
}
Write write() {
Write w;
if (alloc) {
_copy_on_write(); //make sure there is only one being acessed
w._ref(alloc);
}
return w;
}
template <class MC>
void fill_with(const MC &p_mc) {
int c = p_mc.size();
resize(c);
Write w = write();
int idx = 0;
for (const typename MC::Element *E = p_mc.front(); E; E = E->next()) {
w[idx++] = E->get();
}
}
void remove(int p_index) {
int s = size();
ERR_FAIL_INDEX(p_index, s);
Write w = write();
for (int i = p_index; i < s - 1; i++) {
w[i] = w[i + 1];
};
w = Write();
resize(s - 1);
}
inline int size() const;
T get(int p_index) const;
void set(int p_index, const T &p_val);
void push_back(const T &p_val);
void append(const T &p_val) { push_back(p_val); }
void append_array(const PoolVector<T> &p_arr) {
int ds = p_arr.size();
if (ds == 0)
return;
int bs = size();
resize(bs + ds);
Write w = write();
Read r = p_arr.read();
for (int i = 0; i < ds; i++)
w[bs + i] = r[i];
}
PoolVector<T> subarray(int p_from, int p_to) {
if (p_from < 0) {
p_from = size() + p_from;
}
if (p_to < 0) {
p_to = size() + p_to;
}
CRASH_BAD_INDEX(p_from, size());
CRASH_BAD_INDEX(p_to, size());
PoolVector<T> slice;
int span = 1 + p_to - p_from;
slice.resize(span);
Read r = read();
Write w = slice.write();
for (int i = 0; i < span; ++i) {
w[i] = r[p_from + i];
}
return slice;
}
Error insert(int p_pos, const T &p_val) {
int s = size();
ERR_FAIL_INDEX_V(p_pos, s + 1, ERR_INVALID_PARAMETER);
resize(s + 1);
{
Write w = write();
for (int i = s; i > p_pos; i--)
w[i] = w[i - 1];
w[p_pos] = p_val;
}
return OK;
}
String join(String delimiter) {
String rs = "";
int s = size();
Read r = read();
for (int i = 0; i < s; i++) {
rs += r[i] + delimiter;
}
rs.erase(rs.length() - delimiter.length(), delimiter.length());
return rs;
}
bool is_locked() const { return alloc && alloc->lock > 0; }
inline const T operator[](int p_index) const;
Error resize(int p_size);
void invert();
void operator=(const PoolVector &p_dvector) { _reference(p_dvector); }
PoolVector() { alloc = NULL; }
PoolVector(const PoolVector &p_dvector) {
alloc = NULL;
_reference(p_dvector);
}
~PoolVector() { _unreference(); }
};
template <class T>
int PoolVector<T>::size() const {
return alloc ? alloc->size / sizeof(T) : 0;
}
template <class T>
T PoolVector<T>::get(int p_index) const {
return operator[](p_index);
}
template <class T>
void PoolVector<T>::set(int p_index, const T &p_val) {
if (p_index < 0 || p_index >= size()) {
ERR_FAIL_COND(p_index < 0 || p_index >= size());
}
Write w = write();
w[p_index] = p_val;
}
template <class T>
void PoolVector<T>::push_back(const T &p_val) {
resize(size() + 1);
set(size() - 1, p_val);
}
template <class T>
const T PoolVector<T>::operator[](int p_index) const {
CRASH_BAD_INDEX(p_index, size());
Read r = read();
return r[p_index];
}
template <class T>
Error PoolVector<T>::resize(int p_size) {
if (alloc == NULL) {
if (p_size == 0)
return OK; //nothing to do here
//must allocate something
MemoryPool::alloc_mutex->lock();
if (MemoryPool::allocs_used == MemoryPool::alloc_count) {
MemoryPool::alloc_mutex->unlock();
ERR_EXPLAINC("All memory pool allocations are in use.");
ERR_FAIL_V(ERR_OUT_OF_MEMORY);
}
//take one from the free list
alloc = MemoryPool::free_list;
MemoryPool::free_list = alloc->free_list;
//increment the used counter
MemoryPool::allocs_used++;
//cleanup the alloc
alloc->size = 0;
alloc->refcount.init();
alloc->pool_id = POOL_ALLOCATOR_INVALID_ID;
MemoryPool::alloc_mutex->unlock();
} else {
ERR_FAIL_COND_V(alloc->lock > 0, ERR_LOCKED); //can't resize if locked!
}
size_t new_size = sizeof(T) * p_size;
if (alloc->size == new_size)
return OK; //nothing to do
if (p_size == 0) {
_unreference();
return OK;
}
_copy_on_write(); // make it unique
#ifdef DEBUG_ENABLED
MemoryPool::alloc_mutex->lock();
MemoryPool::total_memory -= alloc->size;
MemoryPool::total_memory += new_size;
if (MemoryPool::total_memory > MemoryPool::max_memory) {
MemoryPool::max_memory = MemoryPool::total_memory;
}
MemoryPool::alloc_mutex->unlock();
#endif
int cur_elements = alloc->size / sizeof(T);
if (p_size > cur_elements) {
if (MemoryPool::memory_pool) {
//resize memory pool
//if none, create
//if some resize
} else {
if (alloc->size == 0) {
alloc->mem = memalloc(new_size);
} else {
alloc->mem = memrealloc(alloc->mem, new_size);
}
}
alloc->size = new_size;
Write w = write();
for (int i = cur_elements; i < p_size; i++) {
memnew_placement(&w[i], T);
}
} else {
{
Write w = write();
for (int i = p_size; i < cur_elements; i++) {
w[i].~T();
}
}
if (MemoryPool::memory_pool) {
//resize memory pool
//if none, create
//if some resize
} else {
if (new_size == 0) {
memfree(alloc->mem);
alloc->mem = NULL;
alloc->size = 0;
MemoryPool::alloc_mutex->lock();
alloc->free_list = MemoryPool::free_list;
MemoryPool::free_list = alloc;
MemoryPool::allocs_used--;
MemoryPool::alloc_mutex->unlock();
} else {
alloc->mem = memrealloc(alloc->mem, new_size);
alloc->size = new_size;
}
}
}
return OK;
}
template <class T>
void PoolVector<T>::invert() {
T temp;
Write w = write();
int s = size();
int half_s = s / 2;
for (int i = 0; i < half_s; i++) {
temp = w[i];
w[i] = w[s - i - 1];
w[s - i - 1] = temp;
}
}
#endif