godot/thirdparty/embree/kernels/common/rtcore.cpp
2021-01-14 18:02:07 +01:00

1761 lines
64 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#define RTC_EXPORT_API
#include "default.h"
#include "device.h"
#include "scene.h"
#include "context.h"
#include "../../include/embree3/rtcore_ray.h"
using namespace embree;
RTC_NAMESPACE_BEGIN;
/* mutex to make API thread safe */
static MutexSys g_mutex;
RTC_API RTCDevice rtcNewDevice(const char* config)
{
RTC_CATCH_BEGIN;
RTC_TRACE(rtcNewDevice);
Lock<MutexSys> lock(g_mutex);
Device* device = new Device(config);
return (RTCDevice) device->refInc();
RTC_CATCH_END(nullptr);
return (RTCDevice) nullptr;
}
RTC_API void rtcRetainDevice(RTCDevice hdevice)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcRetainDevice);
RTC_VERIFY_HANDLE(hdevice);
Lock<MutexSys> lock(g_mutex);
device->refInc();
RTC_CATCH_END(nullptr);
}
RTC_API void rtcReleaseDevice(RTCDevice hdevice)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcReleaseDevice);
RTC_VERIFY_HANDLE(hdevice);
Lock<MutexSys> lock(g_mutex);
device->refDec();
RTC_CATCH_END(nullptr);
}
RTC_API ssize_t rtcGetDeviceProperty(RTCDevice hdevice, RTCDeviceProperty prop)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetDeviceProperty);
RTC_VERIFY_HANDLE(hdevice);
Lock<MutexSys> lock(g_mutex);
return device->getProperty(prop);
RTC_CATCH_END(device);
return 0;
}
RTC_API void rtcSetDeviceProperty(RTCDevice hdevice, const RTCDeviceProperty prop, ssize_t val)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetDeviceProperty);
const bool internal_prop = (size_t)prop >= 1000000 && (size_t)prop < 1000004;
if (!internal_prop) RTC_VERIFY_HANDLE(hdevice); // allow NULL device for special internal settings
Lock<MutexSys> lock(g_mutex);
device->setProperty(prop,val);
RTC_CATCH_END(device);
}
RTC_API RTCError rtcGetDeviceError(RTCDevice hdevice)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetDeviceError);
if (device == nullptr) return Device::getThreadErrorCode();
else return device->getDeviceErrorCode();
RTC_CATCH_END(device);
return RTC_ERROR_UNKNOWN;
}
RTC_API void rtcSetDeviceErrorFunction(RTCDevice hdevice, RTCErrorFunction error, void* userPtr)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetDeviceErrorFunction);
RTC_VERIFY_HANDLE(hdevice);
device->setErrorFunction(error, userPtr);
RTC_CATCH_END(device);
}
RTC_API void rtcSetDeviceMemoryMonitorFunction(RTCDevice hdevice, RTCMemoryMonitorFunction memoryMonitor, void* userPtr)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetDeviceMemoryMonitorFunction);
device->setMemoryMonitorFunction(memoryMonitor, userPtr);
RTC_CATCH_END(device);
}
RTC_API RTCBuffer rtcNewBuffer(RTCDevice hdevice, size_t byteSize)
{
RTC_CATCH_BEGIN;
RTC_TRACE(rtcNewBuffer);
RTC_VERIFY_HANDLE(hdevice);
Buffer* buffer = new Buffer((Device*)hdevice, byteSize);
return (RTCBuffer)buffer->refInc();
RTC_CATCH_END((Device*)hdevice);
return nullptr;
}
RTC_API RTCBuffer rtcNewSharedBuffer(RTCDevice hdevice, void* ptr, size_t byteSize)
{
RTC_CATCH_BEGIN;
RTC_TRACE(rtcNewSharedBuffer);
RTC_VERIFY_HANDLE(hdevice);
Buffer* buffer = new Buffer((Device*)hdevice, byteSize, ptr);
return (RTCBuffer)buffer->refInc();
RTC_CATCH_END((Device*)hdevice);
return nullptr;
}
RTC_API void* rtcGetBufferData(RTCBuffer hbuffer)
{
Buffer* buffer = (Buffer*)hbuffer;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetBufferData);
RTC_VERIFY_HANDLE(hbuffer);
return buffer->data();
RTC_CATCH_END2(buffer);
return nullptr;
}
RTC_API void rtcRetainBuffer(RTCBuffer hbuffer)
{
Buffer* buffer = (Buffer*)hbuffer;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcRetainBuffer);
RTC_VERIFY_HANDLE(hbuffer);
buffer->refInc();
RTC_CATCH_END2(buffer);
}
RTC_API void rtcReleaseBuffer(RTCBuffer hbuffer)
{
Buffer* buffer = (Buffer*)hbuffer;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcReleaseBuffer);
RTC_VERIFY_HANDLE(hbuffer);
buffer->refDec();
RTC_CATCH_END2(buffer);
}
RTC_API RTCScene rtcNewScene (RTCDevice hdevice)
{
RTC_CATCH_BEGIN;
RTC_TRACE(rtcNewScene);
RTC_VERIFY_HANDLE(hdevice);
Scene* scene = new Scene((Device*)hdevice);
return (RTCScene) scene->refInc();
RTC_CATCH_END((Device*)hdevice);
return nullptr;
}
RTC_API RTCDevice rtcGetSceneDevice(RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetSceneDevice);
RTC_VERIFY_HANDLE(hscene);
return (RTCDevice)scene->device->refInc(); // user will own one additional device reference
RTC_CATCH_END2(scene);
return (RTCDevice)nullptr;
}
RTC_API void rtcSetSceneProgressMonitorFunction(RTCScene hscene, RTCProgressMonitorFunction progress, void* ptr)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetSceneProgressMonitorFunction);
RTC_VERIFY_HANDLE(hscene);
Lock<MutexSys> lock(g_mutex);
scene->setProgressMonitorFunction(progress,ptr);
RTC_CATCH_END2(scene);
}
RTC_API void rtcSetSceneBuildQuality (RTCScene hscene, RTCBuildQuality quality)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetSceneBuildQuality);
RTC_VERIFY_HANDLE(hscene);
if (quality != RTC_BUILD_QUALITY_LOW &&
quality != RTC_BUILD_QUALITY_MEDIUM &&
quality != RTC_BUILD_QUALITY_HIGH)
throw std::runtime_error("invalid build quality");
scene->setBuildQuality(quality);
RTC_CATCH_END2(scene);
}
RTC_API void rtcSetSceneFlags (RTCScene hscene, RTCSceneFlags flags)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetSceneFlags);
RTC_VERIFY_HANDLE(hscene);
scene->setSceneFlags(flags);
RTC_CATCH_END2(scene);
}
RTC_API RTCSceneFlags rtcGetSceneFlags(RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetSceneFlags);
RTC_VERIFY_HANDLE(hscene);
return scene->getSceneFlags();
RTC_CATCH_END2(scene);
return RTC_SCENE_FLAG_NONE;
}
RTC_API void rtcCommitScene (RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcCommitScene);
RTC_VERIFY_HANDLE(hscene);
scene->commit(false);
RTC_CATCH_END2(scene);
}
RTC_API void rtcJoinCommitScene (RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcJoinCommitScene);
RTC_VERIFY_HANDLE(hscene);
scene->commit(true);
RTC_CATCH_END2(scene);
}
RTC_API void rtcGetSceneBounds(RTCScene hscene, RTCBounds* bounds_o)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetSceneBounds);
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
BBox3fa bounds = scene->bounds.bounds();
bounds_o->lower_x = bounds.lower.x;
bounds_o->lower_y = bounds.lower.y;
bounds_o->lower_z = bounds.lower.z;
bounds_o->align0 = 0;
bounds_o->upper_x = bounds.upper.x;
bounds_o->upper_y = bounds.upper.y;
bounds_o->upper_z = bounds.upper.z;
bounds_o->align1 = 0;
RTC_CATCH_END2(scene);
}
RTC_API void rtcGetSceneLinearBounds(RTCScene hscene, RTCLinearBounds* bounds_o)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetSceneBounds);
RTC_VERIFY_HANDLE(hscene);
if (bounds_o == nullptr)
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"invalid destination pointer");
if (scene->isModified())
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
bounds_o->bounds0.lower_x = scene->bounds.bounds0.lower.x;
bounds_o->bounds0.lower_y = scene->bounds.bounds0.lower.y;
bounds_o->bounds0.lower_z = scene->bounds.bounds0.lower.z;
bounds_o->bounds0.align0 = 0;
bounds_o->bounds0.upper_x = scene->bounds.bounds0.upper.x;
bounds_o->bounds0.upper_y = scene->bounds.bounds0.upper.y;
bounds_o->bounds0.upper_z = scene->bounds.bounds0.upper.z;
bounds_o->bounds0.align1 = 0;
bounds_o->bounds1.lower_x = scene->bounds.bounds1.lower.x;
bounds_o->bounds1.lower_y = scene->bounds.bounds1.lower.y;
bounds_o->bounds1.lower_z = scene->bounds.bounds1.lower.z;
bounds_o->bounds1.align0 = 0;
bounds_o->bounds1.upper_x = scene->bounds.bounds1.upper.x;
bounds_o->bounds1.upper_y = scene->bounds.bounds1.upper.y;
bounds_o->bounds1.upper_z = scene->bounds.bounds1.upper.z;
bounds_o->bounds1.align1 = 0;
RTC_CATCH_END2(scene);
}
RTC_API void rtcCollide (RTCScene hscene0, RTCScene hscene1, RTCCollideFunc callback, void* userPtr)
{
Scene* scene0 = (Scene*) hscene0;
Scene* scene1 = (Scene*) hscene1;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcCollide);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene0);
RTC_VERIFY_HANDLE(hscene1);
if (scene0->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (scene1->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (scene0->device != scene1->device) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scenes are from different devices");
auto nUserPrims0 = scene0->getNumPrimitives (Geometry::MTY_USER_GEOMETRY, false);
auto nUserPrims1 = scene1->getNumPrimitives (Geometry::MTY_USER_GEOMETRY, false);
if (scene0->numPrimitives() != nUserPrims0 && scene1->numPrimitives() != nUserPrims1) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scenes must only contain user geometries with a single timestep");
#endif
scene0->intersectors.collide(scene0,scene1,callback,userPtr);
RTC_CATCH_END(scene0->device);
}
inline bool pointQuery(Scene* scene, RTCPointQuery* query, RTCPointQueryContext* userContext, RTCPointQueryFunction queryFunc, void* userPtr)
{
bool changed = false;
if (userContext->instStackSize > 0)
{
const AffineSpace3fa transform = AffineSpace3fa_load_unaligned((AffineSpace3fa*)userContext->world2inst[userContext->instStackSize-1]);
float similarityScale = 0.f;
const bool similtude = similarityTransform(transform, &similarityScale);
assert((similtude && similarityScale > 0) || (!similtude && similarityScale == 0.f));
PointQuery query_inst;
query_inst.p = xfmPoint(transform, Vec3fa(query->x, query->y, query->z));
query_inst.radius = query->radius * similarityScale;
query_inst.time = query->time;
PointQueryContext context_inst(scene, (PointQuery*)query,
similtude ? POINT_QUERY_TYPE_SPHERE : POINT_QUERY_TYPE_AABB,
queryFunc, userContext, similarityScale, userPtr);
changed = scene->intersectors.pointQuery((PointQuery*)&query_inst, &context_inst);
}
else
{
PointQueryContext context(scene, (PointQuery*)query,
POINT_QUERY_TYPE_SPHERE, queryFunc, userContext, 1.f, userPtr);
changed = scene->intersectors.pointQuery((PointQuery*)query, &context);
}
return changed;
}
RTC_API bool rtcPointQuery(RTCScene hscene, RTCPointQuery* query, RTCPointQueryContext* userContext, RTCPointQueryFunction queryFunc, void* userPtr)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcPointQuery);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
RTC_VERIFY_HANDLE(userContext);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (((size_t)query) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "query not aligned to 16 bytes");
if (((size_t)userContext) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "context not aligned to 16 bytes");
#endif
return pointQuery(scene, query, userContext, queryFunc, userPtr);
RTC_CATCH_END2_FALSE(scene);
}
RTC_API bool rtcPointQuery4 (const int* valid, RTCScene hscene, RTCPointQuery4* query, struct RTCPointQueryContext* userContext, RTCPointQueryFunction queryFunc, void** userPtrN)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcPointQuery4);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (((size_t)valid) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 16 bytes");
if (((size_t)query) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "query not aligned to 16 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<4; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(point_query.travs,cnt,cnt,cnt);
bool changed = false;
PointQuery4* query4 = (PointQuery4*)query;
PointQuery query1;
for (size_t i=0; i<4; i++) {
if (!valid[i]) continue;
query4->get(i,query1);
changed |= pointQuery(scene, (RTCPointQuery*)&query1, userContext, queryFunc, userPtrN?userPtrN[i]:NULL);
query4->set(i,query1);
}
return changed;
RTC_CATCH_END2_FALSE(scene);
}
RTC_API bool rtcPointQuery8 (const int* valid, RTCScene hscene, RTCPointQuery8* query, struct RTCPointQueryContext* userContext, RTCPointQueryFunction queryFunc, void** userPtrN)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcPointQuery8);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (((size_t)valid) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 16 bytes");
if (((size_t)query) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "query not aligned to 16 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<4; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(point_query.travs,cnt,cnt,cnt);
bool changed = false;
PointQuery8* query8 = (PointQuery8*)query;
PointQuery query1;
for (size_t i=0; i<8; i++) {
if (!valid[i]) continue;
query8->get(i,query1);
changed |= pointQuery(scene, (RTCPointQuery*)&query1, userContext, queryFunc, userPtrN?userPtrN[i]:NULL);
query8->set(i,query1);
}
return changed;
RTC_CATCH_END2_FALSE(scene);
}
RTC_API bool rtcPointQuery16 (const int* valid, RTCScene hscene, RTCPointQuery16* query, struct RTCPointQueryContext* userContext, RTCPointQueryFunction queryFunc, void** userPtrN)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcPointQuery16);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene got not committed");
if (((size_t)valid) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 16 bytes");
if (((size_t)query) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "query not aligned to 16 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<4; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(point_query.travs,cnt,cnt,cnt);
bool changed = false;
PointQuery16* query16 = (PointQuery16*)query;
PointQuery query1;
for (size_t i=0; i<16; i++) {
if (!valid[i]) continue;
PointQuery query1; query16->get(i,query1);
changed |= pointQuery(scene, (RTCPointQuery*)&query1, userContext, queryFunc, userPtrN?userPtrN[i]:NULL);
query16->set(i,query1);
}
return changed;
RTC_CATCH_END2_FALSE(scene);
}
RTC_API void rtcIntersect1 (RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit* rayhit)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect1);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)rayhit) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 16 bytes");
#endif
STAT3(normal.travs,1,1,1);
IntersectContext context(scene,user_context);
scene->intersectors.intersect(*rayhit,&context);
#if defined(DEBUG)
((RayHit*)rayhit)->verifyHit();
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersect4 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit4* rayhit)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect4);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 16 bytes");
if (((size_t)rayhit) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit not aligned to 16 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<4; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(normal.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
Ray4* ray4 = (Ray4*) rayhit;
for (size_t i=0; i<4; i++) {
if (!valid[i]) continue;
RayHit ray1; ray4->get(i,ray1);
scene->intersectors.intersect((RTCRayHit&)ray1,&context);
ray4->set(i,ray1);
}
#else
scene->intersectors.intersect4(valid,*rayhit,&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersect8 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit8* rayhit)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect8);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x1F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 32 bytes");
if (((size_t)rayhit) & 0x1F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit not aligned to 32 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<8; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(normal.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
Ray8* ray8 = (Ray8*) rayhit;
for (size_t i=0; i<8; i++) {
if (!valid[i]) continue;
RayHit ray1; ray8->get(i,ray1);
scene->intersectors.intersect((RTCRayHit&)ray1,&context);
ray8->set(i,ray1);
}
#else
if (likely(scene->intersectors.intersector8))
scene->intersectors.intersect8(valid,*rayhit,&context);
else
scene->device->rayStreamFilters.intersectSOA(scene,(char*)rayhit,8,1,sizeof(RTCRayHit8),&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersect16 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit16* rayhit)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect16);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x3F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 64 bytes");
if (((size_t)rayhit) & 0x3F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit not aligned to 64 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<16; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(normal.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
Ray16* ray16 = (Ray16*) rayhit;
for (size_t i=0; i<16; i++) {
if (!valid[i]) continue;
RayHit ray1; ray16->get(i,ray1);
scene->intersectors.intersect((RTCRayHit&)ray1,&context);
ray16->set(i,ray1);
}
#else
if (likely(scene->intersectors.intersector16))
scene->intersectors.intersect16(valid,*rayhit,&context);
else
scene->device->rayStreamFilters.intersectSOA(scene,(char*)rayhit,16,1,sizeof(RTCRayHit16),&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersect1M (RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit* rayhit, unsigned int M, size_t byteStride)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect1M);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)rayhit ) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(normal.travs,M,M,M);
IntersectContext context(scene,user_context);
/* fast codepath for single rays */
if (likely(M == 1)) {
if (likely(rayhit->ray.tnear <= rayhit->ray.tfar))
scene->intersectors.intersect(*rayhit,&context);
}
/* codepath for streams */
else {
scene->device->rayStreamFilters.intersectAOS(scene,rayhit,M,byteStride,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcIntersect1M not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersect1Mp (RTCScene hscene, RTCIntersectContext* user_context, RTCRayHit** rn, unsigned int M)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersect1Mp);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)rn) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(normal.travs,M,M,M);
IntersectContext context(scene,user_context);
/* fast codepath for single rays */
if (likely(M == 1)) {
if (likely(rn[0]->ray.tnear <= rn[0]->ray.tfar))
scene->intersectors.intersect(*rn[0],&context);
}
/* codepath for streams */
else {
scene->device->rayStreamFilters.intersectAOP(scene,rn,M,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcIntersect1Mp not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersectNM (RTCScene hscene, RTCIntersectContext* user_context, struct RTCRayHitN* rayhit, unsigned int N, unsigned int M, size_t byteStride)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersectNM);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)rayhit) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(normal.travs,N*M,N*M,N*M);
IntersectContext context(scene,user_context);
/* code path for single ray streams */
if (likely(N == 1))
{
/* fast code path for streams of size 1 */
if (likely(M == 1)) {
if (likely(((RTCRayHit*)rayhit)->ray.tnear <= ((RTCRayHit*)rayhit)->ray.tfar))
scene->intersectors.intersect(*(RTCRayHit*)rayhit,&context);
}
/* normal codepath for single ray streams */
else {
scene->device->rayStreamFilters.intersectAOS(scene,(RTCRayHit*)rayhit,M,byteStride,&context);
}
}
/* code path for ray packet streams */
else {
scene->device->rayStreamFilters.intersectSOA(scene,(char*)rayhit,N,M,byteStride,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcIntersectNM not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcIntersectNp (RTCScene hscene, RTCIntersectContext* user_context, const RTCRayHitNp* rayhit, unsigned int N)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcIntersectNp);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)rayhit->ray.org_x ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.org_x not aligned to 4 bytes");
if (((size_t)rayhit->ray.org_y ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.org_y not aligned to 4 bytes");
if (((size_t)rayhit->ray.org_z ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.org_z not aligned to 4 bytes");
if (((size_t)rayhit->ray.dir_x ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.dir_x not aligned to 4 bytes");
if (((size_t)rayhit->ray.dir_y ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.dir_y not aligned to 4 bytes");
if (((size_t)rayhit->ray.dir_z ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.dir_z not aligned to 4 bytes");
if (((size_t)rayhit->ray.tnear ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.dir_x not aligned to 4 bytes");
if (((size_t)rayhit->ray.tfar ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.tnear not aligned to 4 bytes");
if (((size_t)rayhit->ray.time ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.time not aligned to 4 bytes");
if (((size_t)rayhit->ray.mask ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->ray.mask not aligned to 4 bytes");
if (((size_t)rayhit->hit.Ng_x ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.Ng_x not aligned to 4 bytes");
if (((size_t)rayhit->hit.Ng_y ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.Ng_y not aligned to 4 bytes");
if (((size_t)rayhit->hit.Ng_z ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.Ng_z not aligned to 4 bytes");
if (((size_t)rayhit->hit.u ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.u not aligned to 4 bytes");
if (((size_t)rayhit->hit.v ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.v not aligned to 4 bytes");
if (((size_t)rayhit->hit.geomID) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.geomID not aligned to 4 bytes");
if (((size_t)rayhit->hit.primID) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.primID not aligned to 4 bytes");
if (((size_t)rayhit->hit.instID) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "rayhit->hit.instID not aligned to 4 bytes");
#endif
STAT3(normal.travs,N,N,N);
IntersectContext context(scene,user_context);
scene->device->rayStreamFilters.intersectSOP(scene,rayhit,N,&context);
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcIntersectNp not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded1 (RTCScene hscene, RTCIntersectContext* user_context, RTCRay* ray)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded1);
STAT3(shadow.travs,1,1,1);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)ray) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 16 bytes");
#endif
IntersectContext context(scene,user_context);
scene->intersectors.occluded(*ray,&context);
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded4 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRay4* ray)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded4);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 16 bytes");
if (((size_t)ray) & 0x0F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 16 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<4; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(shadow.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
RayHit4* ray4 = (RayHit4*) ray;
for (size_t i=0; i<4; i++) {
if (!valid[i]) continue;
RayHit ray1; ray4->get(i,ray1);
scene->intersectors.occluded((RTCRay&)ray1,&context);
ray4->geomID[i] = ray1.geomID;
}
#else
scene->intersectors.occluded4(valid,*ray,&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded8 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRay8* ray)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded8);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x1F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 32 bytes");
if (((size_t)ray) & 0x1F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 32 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<8; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(shadow.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
RayHit8* ray8 = (RayHit8*) ray;
for (size_t i=0; i<8; i++) {
if (!valid[i]) continue;
RayHit ray1; ray8->get(i,ray1);
scene->intersectors.occluded((RTCRay&)ray1,&context);
ray8->set(i,ray1);
}
#else
if (likely(scene->intersectors.intersector8))
scene->intersectors.occluded8(valid,*ray,&context);
else
scene->device->rayStreamFilters.occludedSOA(scene,(char*)ray,8,1,sizeof(RTCRay8),&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded16 (const int* valid, RTCScene hscene, RTCIntersectContext* user_context, RTCRay16* ray)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded16);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)valid) & 0x3F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 64 bytes");
if (((size_t)ray) & 0x3F) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 64 bytes");
#endif
STAT(size_t cnt=0; for (size_t i=0; i<16; i++) cnt += ((int*)valid)[i] == -1;);
STAT3(shadow.travs,cnt,cnt,cnt);
IntersectContext context(scene,user_context);
#if !defined(EMBREE_RAY_PACKETS)
RayHit16* ray16 = (RayHit16*) ray;
for (size_t i=0; i<16; i++) {
if (!valid[i]) continue;
RayHit ray1; ray16->get(i,ray1);
scene->intersectors.occluded((RTCRay&)ray1,&context);
ray16->set(i,ray1);
}
#else
if (likely(scene->intersectors.intersector16))
scene->intersectors.occluded16(valid,*ray,&context);
else
scene->device->rayStreamFilters.occludedSOA(scene,(char*)ray,16,1,sizeof(RTCRay16),&context);
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded1M(RTCScene hscene, RTCIntersectContext* user_context, RTCRay* ray, unsigned int M, size_t byteStride)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded1M);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)ray) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(shadow.travs,M,M,M);
IntersectContext context(scene,user_context);
/* fast codepath for streams of size 1 */
if (likely(M == 1)) {
if (likely(ray->tnear <= ray->tfar))
scene->intersectors.occluded (*ray,&context);
}
/* codepath for normal streams */
else {
scene->device->rayStreamFilters.occludedAOS(scene,ray,M,byteStride,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcOccluded1M not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccluded1Mp(RTCScene hscene, RTCIntersectContext* user_context, RTCRay** ray, unsigned int M)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccluded1Mp);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)ray) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(shadow.travs,M,M,M);
IntersectContext context(scene,user_context);
/* fast codepath for streams of size 1 */
if (likely(M == 1)) {
if (likely(ray[0]->tnear <= ray[0]->tfar))
scene->intersectors.occluded (*ray[0],&context);
}
/* codepath for normal streams */
else {
scene->device->rayStreamFilters.occludedAOP(scene,ray,M,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcOccluded1Mp not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccludedNM(RTCScene hscene, RTCIntersectContext* user_context, RTCRayN* ray, unsigned int N, unsigned int M, size_t byteStride)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccludedNM);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (byteStride < sizeof(RTCRayHit)) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"byteStride too small");
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)ray) & 0x03) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "ray not aligned to 4 bytes");
#endif
STAT3(shadow.travs,N*M,N*N,N*N);
IntersectContext context(scene,user_context);
/* codepath for single rays */
if (likely(N == 1))
{
/* fast path for streams of size 1 */
if (likely(M == 1)) {
if (likely(((RTCRay*)ray)->tnear <= ((RTCRay*)ray)->tfar))
scene->intersectors.occluded (*(RTCRay*)ray,&context);
}
/* codepath for normal ray streams */
else {
scene->device->rayStreamFilters.occludedAOS(scene,(RTCRay*)ray,M,byteStride,&context);
}
}
/* code path for ray packet streams */
else {
scene->device->rayStreamFilters.occludedSOA(scene,(char*)ray,N,M,byteStride,&context);
}
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcOccludedNM not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcOccludedNp(RTCScene hscene, RTCIntersectContext* user_context, const RTCRayNp* ray, unsigned int N)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcOccludedNp);
#if defined (EMBREE_RAY_PACKETS)
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
if (scene->isModified()) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"scene not committed");
if (((size_t)ray->org_x ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "org_x not aligned to 4 bytes");
if (((size_t)ray->org_y ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "org_y not aligned to 4 bytes");
if (((size_t)ray->org_z ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "org_z not aligned to 4 bytes");
if (((size_t)ray->dir_x ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "dir_x not aligned to 4 bytes");
if (((size_t)ray->dir_y ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "dir_y not aligned to 4 bytes");
if (((size_t)ray->dir_z ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "dir_z not aligned to 4 bytes");
if (((size_t)ray->tnear ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "dir_x not aligned to 4 bytes");
if (((size_t)ray->tfar ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "tnear not aligned to 4 bytes");
if (((size_t)ray->time ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "time not aligned to 4 bytes");
if (((size_t)ray->mask ) & 0x03 ) throw_RTCError(RTC_ERROR_INVALID_ARGUMENT, "mask not aligned to 4 bytes");
#endif
STAT3(shadow.travs,N,N,N);
IntersectContext context(scene,user_context);
scene->device->rayStreamFilters.occludedSOP(scene,ray,N,&context);
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"rtcOccludedNp not supported");
#endif
RTC_CATCH_END2(scene);
}
RTC_API void rtcRetainScene (RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcRetainScene);
RTC_VERIFY_HANDLE(hscene);
scene->refInc();
RTC_CATCH_END2(scene);
}
RTC_API void rtcReleaseScene (RTCScene hscene)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcReleaseScene);
RTC_VERIFY_HANDLE(hscene);
scene->refDec();
RTC_CATCH_END2(scene);
}
RTC_API void rtcSetGeometryInstancedScene(RTCGeometry hgeometry, RTCScene hscene)
{
Geometry* geometry = (Geometry*) hgeometry;
Ref<Scene> scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryInstancedScene);
RTC_VERIFY_HANDLE(hgeometry);
RTC_VERIFY_HANDLE(hscene);
geometry->setInstancedScene(scene);
RTC_CATCH_END2(geometry);
}
AffineSpace3fa loadTransform(RTCFormat format, const float* xfm)
{
AffineSpace3fa space = one;
switch (format)
{
case RTC_FORMAT_FLOAT3X4_ROW_MAJOR:
space = AffineSpace3fa(Vec3fa(xfm[ 0], xfm[ 4], xfm[ 8]),
Vec3fa(xfm[ 1], xfm[ 5], xfm[ 9]),
Vec3fa(xfm[ 2], xfm[ 6], xfm[10]),
Vec3fa(xfm[ 3], xfm[ 7], xfm[11]));
break;
case RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR:
space = AffineSpace3fa(Vec3fa(xfm[ 0], xfm[ 1], xfm[ 2]),
Vec3fa(xfm[ 3], xfm[ 4], xfm[ 5]),
Vec3fa(xfm[ 6], xfm[ 7], xfm[ 8]),
Vec3fa(xfm[ 9], xfm[10], xfm[11]));
break;
case RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR:
space = AffineSpace3fa(Vec3fa(xfm[ 0], xfm[ 1], xfm[ 2]),
Vec3fa(xfm[ 4], xfm[ 5], xfm[ 6]),
Vec3fa(xfm[ 8], xfm[ 9], xfm[10]),
Vec3fa(xfm[12], xfm[13], xfm[14]));
break;
default:
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid matrix format");
break;
}
return space;
}
void storeTransform(const AffineSpace3fa& space, RTCFormat format, float* xfm)
{
switch (format)
{
case RTC_FORMAT_FLOAT3X4_ROW_MAJOR:
xfm[ 0] = space.l.vx.x; xfm[ 1] = space.l.vy.x; xfm[ 2] = space.l.vz.x; xfm[ 3] = space.p.x;
xfm[ 4] = space.l.vx.y; xfm[ 5] = space.l.vy.y; xfm[ 6] = space.l.vz.y; xfm[ 7] = space.p.y;
xfm[ 8] = space.l.vx.z; xfm[ 9] = space.l.vy.z; xfm[10] = space.l.vz.z; xfm[11] = space.p.z;
break;
case RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR:
xfm[ 0] = space.l.vx.x; xfm[ 1] = space.l.vx.y; xfm[ 2] = space.l.vx.z;
xfm[ 3] = space.l.vy.x; xfm[ 4] = space.l.vy.y; xfm[ 5] = space.l.vy.z;
xfm[ 6] = space.l.vz.x; xfm[ 7] = space.l.vz.y; xfm[ 8] = space.l.vz.z;
xfm[ 9] = space.p.x; xfm[10] = space.p.y; xfm[11] = space.p.z;
break;
case RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR:
xfm[ 0] = space.l.vx.x; xfm[ 1] = space.l.vx.y; xfm[ 2] = space.l.vx.z; xfm[ 3] = 0.f;
xfm[ 4] = space.l.vy.x; xfm[ 5] = space.l.vy.y; xfm[ 6] = space.l.vy.z; xfm[ 7] = 0.f;
xfm[ 8] = space.l.vz.x; xfm[ 9] = space.l.vz.y; xfm[10] = space.l.vz.z; xfm[11] = 0.f;
xfm[12] = space.p.x; xfm[13] = space.p.y; xfm[14] = space.p.z; xfm[15] = 1.f;
break;
default:
throw_RTCError(RTC_ERROR_INVALID_OPERATION, "invalid matrix format");
break;
}
}
RTC_API void rtcSetGeometryTransform(RTCGeometry hgeometry, unsigned int timeStep, RTCFormat format, const void* xfm)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTransform);
RTC_VERIFY_HANDLE(hgeometry);
RTC_VERIFY_HANDLE(xfm);
const AffineSpace3fa transform = loadTransform(format, (const float*)xfm);
geometry->setTransform(transform, timeStep);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryTransformQuaternion(RTCGeometry hgeometry, unsigned int timeStep, const RTCQuaternionDecomposition* qd)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTransformQuaternion);
RTC_VERIFY_HANDLE(hgeometry);
RTC_VERIFY_HANDLE(qd);
AffineSpace3fx transform;
transform.l.vx.x = qd->scale_x;
transform.l.vy.y = qd->scale_y;
transform.l.vz.z = qd->scale_z;
transform.l.vy.x = qd->skew_xy;
transform.l.vz.x = qd->skew_xz;
transform.l.vz.y = qd->skew_yz;
transform.l.vx.y = qd->translation_x;
transform.l.vx.z = qd->translation_y;
transform.l.vy.z = qd->translation_z;
transform.p.x = qd->shift_x;
transform.p.y = qd->shift_y;
transform.p.z = qd->shift_z;
// normalize quaternion
Quaternion3f q(qd->quaternion_r, qd->quaternion_i, qd->quaternion_j, qd->quaternion_k);
q = normalize(q);
transform.l.vx.w = q.i;
transform.l.vy.w = q.j;
transform.l.vz.w = q.k;
transform.p.w = q.r;
geometry->setQuaternionDecomposition(transform, timeStep);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcGetGeometryTransform(RTCGeometry hgeometry, float time, RTCFormat format, void* xfm)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryTransform);
const AffineSpace3fa transform = geometry->getTransform(time);
storeTransform(transform, format, (float*)xfm);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcFilterIntersection(const struct RTCIntersectFunctionNArguments* const args_i, const struct RTCFilterFunctionNArguments* filter_args)
{
IntersectFunctionNArguments* args = (IntersectFunctionNArguments*) args_i;
args->report(args,filter_args);
}
RTC_API void rtcFilterOcclusion(const struct RTCOccludedFunctionNArguments* const args_i, const struct RTCFilterFunctionNArguments* filter_args)
{
OccludedFunctionNArguments* args = (OccludedFunctionNArguments*) args_i;
args->report(args,filter_args);
}
RTC_API RTCGeometry rtcNewGeometry (RTCDevice hdevice, RTCGeometryType type)
{
Device* device = (Device*) hdevice;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcNewGeometry);
RTC_VERIFY_HANDLE(hdevice);
switch (type)
{
case RTC_GEOMETRY_TYPE_TRIANGLE:
{
#if defined(EMBREE_GEOMETRY_TRIANGLE)
createTriangleMeshTy createTriangleMesh = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createTriangleMesh);
Geometry* geom = createTriangleMesh(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_TRIANGLE is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_QUAD:
{
#if defined(EMBREE_GEOMETRY_QUAD)
createQuadMeshTy createQuadMesh = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createQuadMesh);
Geometry* geom = createQuadMesh(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_QUAD is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_SPHERE_POINT:
case RTC_GEOMETRY_TYPE_DISC_POINT:
case RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT:
{
#if defined(EMBREE_GEOMETRY_POINT)
createPointsTy createPoints = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_builder_cpu_features, createPoints);
Geometry *geom;
switch(type) {
case RTC_GEOMETRY_TYPE_SPHERE_POINT:
geom = createPoints(device, Geometry::GTY_SPHERE_POINT);
break;
case RTC_GEOMETRY_TYPE_DISC_POINT:
geom = createPoints(device, Geometry::GTY_DISC_POINT);
break;
case RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT:
geom = createPoints(device, Geometry::GTY_ORIENTED_DISC_POINT);
break;
default:
geom = nullptr;
break;
}
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_POINT is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE:
case RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE:
case RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE:
case RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE:
case RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE:
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE:
case RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE:
case RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE:
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE:
case RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE:
case RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE:
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE:
case RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE:
case RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE:
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE:
{
#if defined(EMBREE_GEOMETRY_CURVE)
createLineSegmentsTy createLineSegments = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createLineSegments);
createCurvesTy createCurves = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createCurves);
Geometry* geom;
switch (type) {
case RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE : geom = createLineSegments (device,Geometry::GTY_CONE_LINEAR_CURVE); break;
case RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE : geom = createLineSegments (device,Geometry::GTY_ROUND_LINEAR_CURVE); break;
case RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE : geom = createLineSegments (device,Geometry::GTY_FLAT_LINEAR_CURVE); break;
//case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_LINEAR_CURVE : geom = createLineSegments (device,Geometry::GTY_ORIENTED_LINEAR_CURVE); break;
case RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE : geom = createCurves(device,Geometry::GTY_ROUND_BEZIER_CURVE); break;
case RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE : geom = createCurves(device,Geometry::GTY_FLAT_BEZIER_CURVE); break;
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE : geom = createCurves(device,Geometry::GTY_ORIENTED_BEZIER_CURVE); break;
case RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE : geom = createCurves(device,Geometry::GTY_ROUND_BSPLINE_CURVE); break;
case RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE : geom = createCurves(device,Geometry::GTY_FLAT_BSPLINE_CURVE); break;
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE : geom = createCurves(device,Geometry::GTY_ORIENTED_BSPLINE_CURVE); break;
case RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE : geom = createCurves(device,Geometry::GTY_ROUND_HERMITE_CURVE); break;
case RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE : geom = createCurves(device,Geometry::GTY_FLAT_HERMITE_CURVE); break;
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE : geom = createCurves(device,Geometry::GTY_ORIENTED_HERMITE_CURVE); break;
case RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE : geom = createCurves(device,Geometry::GTY_ROUND_CATMULL_ROM_CURVE); break;
case RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE : geom = createCurves(device,Geometry::GTY_FLAT_CATMULL_ROM_CURVE); break;
case RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE : geom = createCurves(device,Geometry::GTY_ORIENTED_CATMULL_ROM_CURVE); break;
default: geom = nullptr; break;
}
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_CURVE is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_SUBDIVISION:
{
#if defined(EMBREE_GEOMETRY_SUBDIVISION)
createSubdivMeshTy createSubdivMesh = nullptr;
SELECT_SYMBOL_DEFAULT_AVX(device->enabled_cpu_features,createSubdivMesh);
//SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createSubdivMesh); // FIXME: this does not work for some reason?
Geometry* geom = createSubdivMesh(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_SUBDIVISION is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_USER:
{
#if defined(EMBREE_GEOMETRY_USER)
createUserGeometryTy createUserGeometry = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createUserGeometry);
Geometry* geom = createUserGeometry(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_USER is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_INSTANCE:
{
#if defined(EMBREE_GEOMETRY_INSTANCE)
createInstanceTy createInstance = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createInstance);
Geometry* geom = createInstance(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_INSTANCE is not supported");
#endif
}
case RTC_GEOMETRY_TYPE_GRID:
{
#if defined(EMBREE_GEOMETRY_GRID)
createGridMeshTy createGridMesh = nullptr;
SELECT_SYMBOL_DEFAULT_AVX_AVX2_AVX512KNL_AVX512SKX(device->enabled_cpu_features,createGridMesh);
Geometry* geom = createGridMesh(device);
return (RTCGeometry) geom->refInc();
#else
throw_RTCError(RTC_ERROR_UNKNOWN,"RTC_GEOMETRY_TYPE_GRID is not supported");
#endif
}
default:
throw_RTCError(RTC_ERROR_UNKNOWN,"invalid geometry type");
}
RTC_CATCH_END(device);
return nullptr;
}
RTC_API void rtcSetGeometryUserPrimitiveCount(RTCGeometry hgeometry, unsigned int userPrimitiveCount)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryUserPrimitiveCount);
RTC_VERIFY_HANDLE(hgeometry);
if (unlikely(geometry->getType() != Geometry::GTY_USER_GEOMETRY))
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"operation only allowed for user geometries");
geometry->setNumPrimitives(userPrimitiveCount);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryTimeStepCount(RTCGeometry hgeometry, unsigned int timeStepCount)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTimeStepCount);
RTC_VERIFY_HANDLE(hgeometry);
if (timeStepCount > RTC_MAX_TIME_STEP_COUNT)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"number of time steps is out of range");
geometry->setNumTimeSteps(timeStepCount);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryTimeRange(RTCGeometry hgeometry, float startTime, float endTime)
{
Ref<Geometry> geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTimeRange);
RTC_VERIFY_HANDLE(hgeometry);
if (startTime > endTime)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"startTime has to be smaller or equal to the endTime");
geometry->setTimeRange(BBox1f(startTime,endTime));
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryVertexAttributeCount(RTCGeometry hgeometry, unsigned int N)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryVertexAttributeCount);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setVertexAttributeCount(N);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryTopologyCount(RTCGeometry hgeometry, unsigned int N)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTopologyCount);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setTopologyCount(N);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryBuildQuality (RTCGeometry hgeometry, RTCBuildQuality quality)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryBuildQuality);
RTC_VERIFY_HANDLE(hgeometry);
if (quality != RTC_BUILD_QUALITY_LOW &&
quality != RTC_BUILD_QUALITY_MEDIUM &&
quality != RTC_BUILD_QUALITY_HIGH &&
quality != RTC_BUILD_QUALITY_REFIT)
throw std::runtime_error("invalid build quality");
geometry->setBuildQuality(quality);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryMaxRadiusScale(RTCGeometry hgeometry, float maxRadiusScale)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryMaxRadiusScale);
RTC_VERIFY_HANDLE(hgeometry);
#if RTC_MIN_WIDTH
if (maxRadiusScale < 1.0f) throw_RTCError(RTC_ERROR_INVALID_OPERATION,"maximal radius scale has to be larger or equal to 1");
geometry->setMaxRadiusScale(maxRadiusScale);
#else
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"min-width feature is not enabled");
#endif
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryMask (RTCGeometry hgeometry, unsigned int mask)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryMask);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setMask(mask);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometrySubdivisionMode (RTCGeometry hgeometry, unsigned topologyID, RTCSubdivisionMode mode)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometrySubdivisionMode);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setSubdivisionMode(topologyID,mode);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryVertexAttributeTopology(RTCGeometry hgeometry, unsigned int vertexAttributeID, unsigned int topologyID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryVertexAttributeTopology);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setVertexAttributeTopology(vertexAttributeID, topologyID);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryBuffer(RTCGeometry hgeometry, RTCBufferType type, unsigned int slot, RTCFormat format, RTCBuffer hbuffer, size_t byteOffset, size_t byteStride, size_t itemCount)
{
Geometry* geometry = (Geometry*) hgeometry;
Ref<Buffer> buffer = (Buffer*)hbuffer;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryBuffer);
RTC_VERIFY_HANDLE(hgeometry);
RTC_VERIFY_HANDLE(hbuffer);
if (geometry->device != buffer->device)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"inputs are from different devices");
if (itemCount > 0xFFFFFFFFu)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"buffer too large");
geometry->setBuffer(type, slot, format, buffer, byteOffset, byteStride, (unsigned int)itemCount);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetSharedGeometryBuffer(RTCGeometry hgeometry, RTCBufferType type, unsigned int slot, RTCFormat format, const void* ptr, size_t byteOffset, size_t byteStride, size_t itemCount)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetSharedGeometryBuffer);
RTC_VERIFY_HANDLE(hgeometry);
if (itemCount > 0xFFFFFFFFu)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"buffer too large");
Ref<Buffer> buffer = new Buffer(geometry->device, itemCount*byteStride, (char*)ptr + byteOffset);
geometry->setBuffer(type, slot, format, buffer, 0, byteStride, (unsigned int)itemCount);
RTC_CATCH_END2(geometry);
}
RTC_API void* rtcSetNewGeometryBuffer(RTCGeometry hgeometry, RTCBufferType type, unsigned int slot, RTCFormat format, size_t byteStride, size_t itemCount)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetNewGeometryBuffer);
RTC_VERIFY_HANDLE(hgeometry);
if (itemCount > 0xFFFFFFFFu)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"buffer too large");
/* vertex buffers need to get overallocated slightly as elements are accessed using SSE loads */
size_t bytes = itemCount*byteStride;
if (type == RTC_BUFFER_TYPE_VERTEX || type == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE)
bytes += (16 - (byteStride%16))%16;
Ref<Buffer> buffer = new Buffer(geometry->device, bytes);
geometry->setBuffer(type, slot, format, buffer, 0, byteStride, (unsigned int)itemCount);
return buffer->data();
RTC_CATCH_END2(geometry);
return nullptr;
}
RTC_API void* rtcGetGeometryBufferData(RTCGeometry hgeometry, RTCBufferType type, unsigned int slot)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryBufferData);
RTC_VERIFY_HANDLE(hgeometry);
return geometry->getBuffer(type, slot);
RTC_CATCH_END2(geometry);
return nullptr;
}
RTC_API void rtcEnableGeometry (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcEnableGeometry);
RTC_VERIFY_HANDLE(hgeometry);
geometry->enable();
RTC_CATCH_END2(geometry);
}
RTC_API void rtcUpdateGeometryBuffer (RTCGeometry hgeometry, RTCBufferType type, unsigned int slot)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcUpdateGeometryBuffer);
RTC_VERIFY_HANDLE(hgeometry);
geometry->updateBuffer(type, slot);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcDisableGeometry (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcDisableGeometry);
RTC_VERIFY_HANDLE(hgeometry);
geometry->disable();
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryTessellationRate (RTCGeometry hgeometry, float tessellationRate)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryTessellationRate);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setTessellationRate(tessellationRate);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryUserData (RTCGeometry hgeometry, void* ptr)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryUserData);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setUserData(ptr);
RTC_CATCH_END2(geometry);
}
RTC_API void* rtcGetGeometryUserData (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry; // no ref counting here!
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryUserData);
RTC_VERIFY_HANDLE(hgeometry);
return geometry->getUserData();
RTC_CATCH_END2(geometry);
return nullptr;
}
RTC_API void rtcSetGeometryBoundsFunction (RTCGeometry hgeometry, RTCBoundsFunction bounds, void* userPtr)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryBoundsFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setBoundsFunction(bounds,userPtr);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryDisplacementFunction (RTCGeometry hgeometry, RTCDisplacementFunctionN displacement)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryDisplacementFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setDisplacementFunction(displacement);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryIntersectFunction (RTCGeometry hgeometry, RTCIntersectFunctionN intersect)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryIntersectFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setIntersectFunctionN(intersect);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryPointQueryFunction(RTCGeometry hgeometry, RTCPointQueryFunction pointQuery)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryPointQueryFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setPointQueryFunction(pointQuery);
RTC_CATCH_END2(geometry);
}
RTC_API unsigned int rtcGetGeometryFirstHalfEdge(RTCGeometry hgeometry, unsigned int faceID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryFirstHalfEdge);
return geometry->getFirstHalfEdge(faceID);
RTC_CATCH_END2(geometry);
return -1;
}
RTC_API unsigned int rtcGetGeometryFace(RTCGeometry hgeometry, unsigned int edgeID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryFace);
return geometry->getFace(edgeID);
RTC_CATCH_END2(geometry);
return -1;
}
RTC_API unsigned int rtcGetGeometryNextHalfEdge(RTCGeometry hgeometry, unsigned int edgeID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryNextHalfEdge);
return geometry->getNextHalfEdge(edgeID);
RTC_CATCH_END2(geometry);
return -1;
}
RTC_API unsigned int rtcGetGeometryPreviousHalfEdge(RTCGeometry hgeometry, unsigned int edgeID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryPreviousHalfEdge);
return geometry->getPreviousHalfEdge(edgeID);
RTC_CATCH_END2(geometry);
return -1;
}
RTC_API unsigned int rtcGetGeometryOppositeHalfEdge(RTCGeometry hgeometry, unsigned int topologyID, unsigned int edgeID)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometryOppositeHalfEdge);
return geometry->getOppositeHalfEdge(topologyID,edgeID);
RTC_CATCH_END2(geometry);
return -1;
}
RTC_API void rtcSetGeometryOccludedFunction (RTCGeometry hgeometry, RTCOccludedFunctionN occluded)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetOccludedFunctionN);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setOccludedFunctionN(occluded);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryIntersectFilterFunction (RTCGeometry hgeometry, RTCFilterFunctionN filter)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryIntersectFilterFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setIntersectionFilterFunctionN(filter);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcSetGeometryOccludedFilterFunction (RTCGeometry hgeometry, RTCFilterFunctionN filter)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcSetGeometryOccludedFilterFunction);
RTC_VERIFY_HANDLE(hgeometry);
geometry->setOcclusionFilterFunctionN(filter);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcInterpolate(const RTCInterpolateArguments* const args)
{
Geometry* geometry = (Geometry*) args->geometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcInterpolate);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(args->geometry);
#endif
geometry->interpolate(args);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcInterpolateN(const RTCInterpolateNArguments* const args)
{
Geometry* geometry = (Geometry*) args->geometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcInterpolateN);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(args->geometry);
#endif
geometry->interpolateN(args);
RTC_CATCH_END2(geometry);
}
RTC_API void rtcCommitGeometry (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcCommitGeometry);
RTC_VERIFY_HANDLE(hgeometry);
return geometry->commit();
RTC_CATCH_END2(geometry);
}
RTC_API unsigned int rtcAttachGeometry (RTCScene hscene, RTCGeometry hgeometry)
{
Scene* scene = (Scene*) hscene;
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcAttachGeometry);
RTC_VERIFY_HANDLE(hscene);
RTC_VERIFY_HANDLE(hgeometry);
if (scene->device != geometry->device)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"inputs are from different devices");
return scene->bind(RTC_INVALID_GEOMETRY_ID,geometry);
RTC_CATCH_END2(scene);
return -1;
}
RTC_API void rtcAttachGeometryByID (RTCScene hscene, RTCGeometry hgeometry, unsigned int geomID)
{
Scene* scene = (Scene*) hscene;
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcAttachGeometryByID);
RTC_VERIFY_HANDLE(hscene);
RTC_VERIFY_HANDLE(hgeometry);
RTC_VERIFY_GEOMID(geomID);
if (scene->device != geometry->device)
throw_RTCError(RTC_ERROR_INVALID_ARGUMENT,"inputs are from different devices");
scene->bind(geomID,geometry);
RTC_CATCH_END2(scene);
}
RTC_API void rtcDetachGeometry (RTCScene hscene, unsigned int geomID)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcDetachGeometry);
RTC_VERIFY_HANDLE(hscene);
RTC_VERIFY_GEOMID(geomID);
scene->detachGeometry(geomID);
RTC_CATCH_END2(scene);
}
RTC_API void rtcRetainGeometry (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcRetainGeometry);
RTC_VERIFY_HANDLE(hgeometry);
geometry->refInc();
RTC_CATCH_END2(geometry);
}
RTC_API void rtcReleaseGeometry (RTCGeometry hgeometry)
{
Geometry* geometry = (Geometry*) hgeometry;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcReleaseGeometry);
RTC_VERIFY_HANDLE(hgeometry);
geometry->refDec();
RTC_CATCH_END2(geometry);
}
RTC_API RTCGeometry rtcGetGeometry (RTCScene hscene, unsigned int geomID)
{
Scene* scene = (Scene*) hscene;
RTC_CATCH_BEGIN;
RTC_TRACE(rtcGetGeometry);
#if defined(DEBUG)
RTC_VERIFY_HANDLE(hscene);
RTC_VERIFY_GEOMID(geomID);
#endif
return (RTCGeometry) scene->get(geomID);
RTC_CATCH_END2(scene);
return nullptr;
}
RTC_NAMESPACE_END