godot/servers/rendering/renderer_rd/effects/debug_effects.cpp
Dario cc4d39b0c1 Acyclic Command Graph for RenderingDevice.
Adds a new system to automatically reorder commands, perform layout transitions and insert synchronization barriers based on the commands issued to RenderingDevice.
2024-01-08 14:54:56 -03:00

378 lines
17 KiB
C++

/**************************************************************************/
/* debug_effects.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "debug_effects.h"
#include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/light_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/uniform_set_cache_rd.h"
using namespace RendererRD;
DebugEffects::DebugEffects() {
{
// Shadow Frustum debug shader
Vector<String> modes;
modes.push_back("");
shadow_frustum.shader.initialize(modes);
shadow_frustum.shader_version = shadow_frustum.shader.version_create();
RD::PipelineRasterizationState raster_state = RD::PipelineRasterizationState();
shadow_frustum.pipelines[SFP_TRANSPARENT].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0);
raster_state.wireframe = true;
shadow_frustum.pipelines[SFP_WIREFRAME].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_LINES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0);
}
{
// Motion Vectors debug shader.
Vector<String> modes;
modes.push_back("");
motion_vectors.shader.initialize(modes);
motion_vectors.shader_version = motion_vectors.shader.version_create();
motion_vectors.pipeline.setup(motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0);
}
}
void DebugEffects::_create_frustum_arrays() {
if (frustum.vertex_buffer.is_null()) {
// Create vertex buffer, but don't put data in it yet
frustum.vertex_buffer = RD::get_singleton()->vertex_buffer_create(8 * sizeof(float) * 3, Vector<uint8_t>(), false);
Vector<RD::VertexAttribute> attributes;
Vector<RID> buffers;
RD::VertexAttribute vd;
vd.location = 0;
vd.stride = sizeof(float) * 3;
vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
attributes.push_back(vd);
buffers.push_back(frustum.vertex_buffer);
frustum.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
frustum.vertex_array = RD::get_singleton()->vertex_array_create(8, frustum.vertex_format, buffers);
}
if (frustum.index_buffer.is_null()) {
uint16_t indices[6 * 2 * 3] = {
// Far
0, 1, 2, // FLT, FLB, FRT
1, 3, 2, // FLB, FRB, FRT
// Near
4, 6, 5, // NLT, NRT, NLB
6, 7, 5, // NRT, NRB, NLB
// Left
0, 4, 1, // FLT, NLT, FLB
4, 5, 1, // NLT, NLB, FLB
// Right
6, 2, 7, // NRT, FRT, NRB
2, 3, 7, // FRT, FRB, NRB
// Top
0, 2, 4, // FLT, FRT, NLT
2, 6, 4, // FRT, NRT, NLT
// Bottom
5, 7, 1, // NLB, NRB, FLB,
7, 3, 1, // NRB, FRB, FLB
};
// Create our index_array
PackedByteArray data;
data.resize(6 * 2 * 3 * 2);
{
uint8_t *w = data.ptrw();
uint16_t *p16 = (uint16_t *)w;
for (int i = 0; i < 6 * 2 * 3; i++) {
*p16 = indices[i];
p16++;
}
}
frustum.index_buffer = RD::get_singleton()->index_buffer_create(6 * 2 * 3, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data);
frustum.index_array = RD::get_singleton()->index_array_create(frustum.index_buffer, 0, 6 * 2 * 3);
}
if (frustum.lines_buffer.is_null()) {
uint16_t indices[12 * 2] = {
0, 1, // FLT - FLB
1, 3, // FLB - FRB
3, 2, // FRB - FRT
2, 0, // FRT - FLT
4, 6, // NLT - NRT
6, 7, // NRT - NRB
7, 5, // NRB - NLB
5, 4, // NLB - NLT
0, 4, // FLT - NLT
1, 5, // FLB - NLB
2, 6, // FRT - NRT
3, 7, // FRB - NRB
};
// Create our lines_array
PackedByteArray data;
data.resize(12 * 2 * 2);
{
uint8_t *w = data.ptrw();
uint16_t *p16 = (uint16_t *)w;
for (int i = 0; i < 12 * 2; i++) {
*p16 = indices[i];
p16++;
}
}
frustum.lines_buffer = RD::get_singleton()->index_buffer_create(12 * 2, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data);
frustum.lines_array = RD::get_singleton()->index_array_create(frustum.lines_buffer, 0, 12 * 2);
}
}
DebugEffects::~DebugEffects() {
shadow_frustum.shader.version_free(shadow_frustum.shader_version);
// Destroy vertex buffer and array.
if (frustum.vertex_buffer.is_valid()) {
RD::get_singleton()->free(frustum.vertex_buffer); // Array gets freed as dependency.
}
// Destroy index buffer and array,
if (frustum.index_buffer.is_valid()) {
RD::get_singleton()->free(frustum.index_buffer); // Array gets freed as dependency.
}
// Destroy lines buffer and array.
if (frustum.lines_buffer.is_valid()) {
RD::get_singleton()->free(frustum.lines_buffer); // Array gets freed as dependency.
}
motion_vectors.shader.version_free(motion_vectors.shader_version);
}
void DebugEffects::draw_shadow_frustum(RID p_light, const Projection &p_cam_projection, const Transform3D &p_cam_transform, RID p_dest_fb, const Rect2 p_rect) {
RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
RID base = light_storage->light_instance_get_base_light(p_light);
ERR_FAIL_COND(light_storage->light_get_type(base) != RS::LIGHT_DIRECTIONAL);
// Make sure our buffers and arrays exist.
_create_frustum_arrays();
// Setup a points buffer for our view frustum.
PackedByteArray points;
points.resize(8 * sizeof(float) * 3);
// Get info about our splits.
RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base);
bool overlap = light_storage->light_directional_get_blend_splits(base);
int splits = 1;
if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
splits = 4;
} else if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
splits = 2;
}
// Setup our camera info (this is mostly a duplicate of the logic found in RendererSceneCull::_light_instance_setup_directional_shadow).
bool is_orthogonal = p_cam_projection.is_orthogonal();
real_t aspect = p_cam_projection.get_aspect();
real_t fov = 0.0;
Vector2 vp_he;
if (is_orthogonal) {
vp_he = p_cam_projection.get_viewport_half_extents();
} else {
fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
}
real_t min_distance = p_cam_projection.get_z_near();
real_t max_distance = p_cam_projection.get_z_far();
real_t shadow_max = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
if (shadow_max > 0 && !is_orthogonal) {
max_distance = MIN(shadow_max, max_distance);
}
// Make sure we've not got bad info coming in.
max_distance = MAX(max_distance, min_distance + 0.001);
min_distance = MIN(min_distance, max_distance);
real_t range = max_distance - min_distance;
real_t distances[5];
distances[0] = min_distance;
for (int i = 0; i < splits; i++) {
distances[i + 1] = min_distance + RSG::light_storage->light_get_param(base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
};
distances[splits] = max_distance;
Color colors[4] = {
Color(1.0, 0.0, 0.0, 0.1),
Color(0.0, 1.0, 0.0, 0.1),
Color(0.0, 0.0, 1.0, 0.1),
Color(1.0, 1.0, 0.0, 0.1),
};
for (int split = 0; split < splits; split++) {
// Load frustum points into vertex buffer.
uint8_t *w = points.ptrw();
Vector3 *vw = (Vector3 *)w;
Projection projection;
if (is_orthogonal) {
projection.set_orthogonal(vp_he.y * 2.0, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], false);
} else {
projection.set_perspective(fov, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], true);
}
bool res = projection.get_endpoints(p_cam_transform, vw);
ERR_CONTINUE(!res);
RD::get_singleton()->buffer_update(frustum.vertex_buffer, 0, 8 * sizeof(float) * 3, w);
// Get our light projection info.
Projection light_projection = light_storage->light_instance_get_shadow_camera(p_light, split);
Transform3D light_transform = light_storage->light_instance_get_shadow_transform(p_light, split);
Rect2 atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, split);
if (!is_orthogonal) {
light_transform.orthogonalize();
}
// Setup our push constant.
ShadowFrustumPushConstant push_constant;
MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp);
push_constant.color[0] = colors[split].r;
push_constant.color[1] = colors[split].g;
push_constant.color[2] = colors[split].b;
push_constant.color[3] = colors[split].a;
// Adjust our rect to our atlas position.
Rect2 rect = p_rect;
rect.position.x += atlas_rect_norm.position.x * rect.size.x;
rect.position.y += atlas_rect_norm.position.y * rect.size.y;
rect.size.x *= atlas_rect_norm.size.x;
rect.size.y *= atlas_rect_norm.size.y;
// And draw our frustum.
RD::FramebufferFormatID fb_format_id = RD::get_singleton()->framebuffer_get_format(p_dest_fb);
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, rect);
RID pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
pipeline = shadow_frustum.pipelines[SFP_WIREFRAME].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.lines_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
RD::get_singleton()->draw_list_end();
if (split < (splits - 1) && splits > 1) {
// Also draw it in the last split so we get a proper overview of the whole view frustum...
// Get our light projection info.
light_projection = light_storage->light_instance_get_shadow_camera(p_light, (splits - 1));
light_transform = light_storage->light_instance_get_shadow_transform(p_light, (splits - 1));
atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, (splits - 1));
if (!is_orthogonal) {
light_transform.orthogonalize();
}
// Update our push constant.
MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp);
push_constant.color[0] = colors[split].r;
push_constant.color[1] = colors[split].g;
push_constant.color[2] = colors[split].b;
push_constant.color[3] = colors[split].a;
// Adjust our rect to our atlas position.
rect = p_rect;
rect.position.x += atlas_rect_norm.position.x * rect.size.x;
rect.position.y += atlas_rect_norm.position.y * rect.size.y;
rect.size.x *= atlas_rect_norm.size.x;
rect.size.y *= atlas_rect_norm.size.y;
draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, Vector<Color>(), 1.0, 0, rect);
pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline);
RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array);
RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, true);
RD::get_singleton()->draw_list_end();
}
}
}
void DebugEffects::draw_motion_vectors(RID p_velocity, RID p_depth, RID p_dest_fb, const Projection &p_current_projection, const Transform3D &p_current_transform, const Projection &p_previous_projection, const Transform3D &p_previous_transform, Size2i p_resolution) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
ERR_FAIL_NULL(material_storage);
UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton();
ERR_FAIL_NULL(uniform_set_cache);
RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
RD::Uniform u_source_velocity(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector<RID>({ default_sampler, p_velocity }));
RD::Uniform u_source_depth(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 1, Vector<RID>({ default_sampler, p_depth }));
RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_DISCARD, RD::FINAL_ACTION_DISCARD);
RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, motion_vectors.pipeline.get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_fb), false, RD::get_singleton()->draw_list_get_current_pass()));
Projection reprojection = p_previous_projection.flipped_y() * p_previous_transform.affine_inverse() * p_current_transform * p_current_projection.flipped_y().inverse();
RendererRD::MaterialStorage::store_camera(reprojection, motion_vectors.push_constant.reprojection_matrix);
motion_vectors.push_constant.resolution[0] = p_resolution.width;
motion_vectors.push_constant.resolution[1] = p_resolution.height;
motion_vectors.push_constant.force_derive_from_depth = false;
RID shader = motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0);
RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_velocity, u_source_depth), 0);
RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
#ifdef DRAW_DERIVATION_FROM_DEPTH_ON_TOP
motion_vectors.push_constant.force_derive_from_depth = true;
RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant));
RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u);
#endif
RD::get_singleton()->draw_list_end();
}