godot/drivers/gles3/rasterizer_canvas_gles3.cpp
2024-03-03 15:46:40 -05:00

2901 lines
117 KiB
C++

/**************************************************************************/
/* rasterizer_canvas_gles3.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rasterizer_canvas_gles3.h"
#ifdef GLES3_ENABLED
#include "core/os/os.h"
#include "rasterizer_gles3.h"
#include "rasterizer_scene_gles3.h"
#include "core/config/project_settings.h"
#include "core/math/geometry_2d.h"
#include "servers/rendering/rendering_server_default.h"
#include "storage/config.h"
#include "storage/material_storage.h"
#include "storage/mesh_storage.h"
#include "storage/particles_storage.h"
#include "storage/texture_storage.h"
void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.columns[0][0];
p_mat4[1] = p_transform.columns[0][1];
p_mat4[2] = 0;
p_mat4[3] = 0;
p_mat4[4] = p_transform.columns[1][0];
p_mat4[5] = p_transform.columns[1][1];
p_mat4[6] = 0;
p_mat4[7] = 0;
p_mat4[8] = 0;
p_mat4[9] = 0;
p_mat4[10] = 1;
p_mat4[11] = 0;
p_mat4[12] = p_transform.columns[2][0];
p_mat4[13] = p_transform.columns[2][1];
p_mat4[14] = 0;
p_mat4[15] = 1;
}
void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) {
p_mat2x4[0] = p_transform.columns[0][0];
p_mat2x4[1] = p_transform.columns[1][0];
p_mat2x4[2] = 0;
p_mat2x4[3] = p_transform.columns[2][0];
p_mat2x4[4] = p_transform.columns[0][1];
p_mat2x4[5] = p_transform.columns[1][1];
p_mat2x4[6] = 0;
p_mat2x4[7] = p_transform.columns[2][1];
}
void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) {
p_mat2x3[0] = p_transform.columns[0][0];
p_mat2x3[1] = p_transform.columns[0][1];
p_mat2x3[2] = p_transform.columns[1][0];
p_mat2x3[3] = p_transform.columns[1][1];
p_mat2x3[4] = p_transform.columns[2][0];
p_mat2x3[5] = p_transform.columns[2][1];
}
void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) {
p_mat4[0] = p_transform.basis.rows[0][0];
p_mat4[1] = p_transform.basis.rows[1][0];
p_mat4[2] = p_transform.basis.rows[2][0];
p_mat4[3] = 0;
p_mat4[4] = p_transform.basis.rows[0][1];
p_mat4[5] = p_transform.basis.rows[1][1];
p_mat4[6] = p_transform.basis.rows[2][1];
p_mat4[7] = 0;
p_mat4[8] = p_transform.basis.rows[0][2];
p_mat4[9] = p_transform.basis.rows[1][2];
p_mat4[10] = p_transform.basis.rows[2][2];
p_mat4[11] = 0;
p_mat4[12] = p_transform.origin.x;
p_mat4[13] = p_transform.origin.y;
p_mat4[14] = p_transform.origin.z;
p_mat4[15] = 1;
}
void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RS::CanvasItemTextureFilter p_default_filter, RS::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used, RenderingMethod::RenderInfo *r_render_info) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse();
// Clear out any state that may have been left from the 3D pass.
reset_canvas();
if (state.canvas_instance_data_buffers[state.current_data_buffer_index].fence != GLsync()) {
GLint syncStatus;
glGetSynciv(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, GL_SYNC_STATUS, 1, nullptr, &syncStatus);
if (syncStatus == GL_UNSIGNALED) {
// If older than 2 frames, wait for sync OpenGL can have up to 3 frames in flight, any more and we need to sync anyway.
if (state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used < RSG::rasterizer->get_frame_number() - 2) {
#ifndef WEB_ENABLED
// On web, we do nothing as the glSubBufferData will force a sync anyway and WebGL does not like waiting.
glClientWaitSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, 0, 100000000); // wait for up to 100ms
#endif
state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number();
glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence);
state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync();
} else {
// Used in last frame or frame before that. OpenGL can get up to two frames behind, so these buffers may still be in use
// Allocate a new buffer and use that.
_allocate_instance_data_buffer();
}
} else {
// Already finished all rendering commands, we can use it.
state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number();
glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence);
state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync();
}
}
//setup directional lights if exist
uint32_t light_count = 0;
uint32_t directional_light_count = 0;
{
Light *l = p_directional_light_list;
uint32_t index = 0;
while (l) {
if (index == data.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized();
state.light_uniforms[index].position[0] = -canvas_light_dir.x;
state.light_uniforms[index].position[1] = -canvas_light_dir.y;
_update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height; //0..1 here
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb != 0) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
directional_light_count = light_count;
state.using_directional_lights = directional_light_count > 0;
}
//setup lights if exist
{
Light *l = p_light_list;
uint32_t index = light_count;
while (l) {
if (index == data.max_lights_per_render) {
l->render_index_cache = -1;
l = l->next_ptr;
continue;
}
CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal);
if (!clight) { //unused or invalid texture
l->render_index_cache = -1;
l = l->next_ptr;
ERR_CONTINUE(!clight);
}
Vector2 canvas_light_pos = p_canvas_transform.xform(l->xform.get_origin()); //convert light position to canvas coordinates, as all computation is done in canvas coords to avoid precision loss
state.light_uniforms[index].position[0] = canvas_light_pos.x;
state.light_uniforms[index].position[1] = canvas_light_pos.y;
_update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix);
_update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix);
state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss
for (int i = 0; i < 4; i++) {
state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255));
state.light_uniforms[index].color[i] = l->color[i];
}
state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate
if (state.shadow_fb != 0) {
state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth);
state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far;
state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset;
} else {
state.light_uniforms[index].shadow_pixel_size = 1.0;
state.light_uniforms[index].shadow_z_far_inv = 1.0;
state.light_uniforms[index].shadow_y_ofs = 0;
}
state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT;
state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT;
if (clight->shadow.enabled) {
state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW;
}
if (clight->texture.is_valid()) {
Rect2 atlas_rect = GLES3::TextureStorage::get_singleton()->texture_atlas_get_texture_rect(clight->texture);
state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x;
state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y;
state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width;
state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height;
} else {
state.light_uniforms[index].atlas_rect[0] = 0;
state.light_uniforms[index].atlas_rect[1] = 0;
state.light_uniforms[index].atlas_rect[2] = 0;
state.light_uniforms[index].atlas_rect[3] = 0;
}
l->render_index_cache = index;
index++;
l = l->next_ptr;
}
light_count = index;
}
if (light_count > 0) {
glBindBufferBase(GL_UNIFORM_BUFFER, LIGHT_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].light_ubo);
#ifdef WEB_ENABLED
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, state.light_uniforms);
#else
// On Desktop and mobile we map the memory without synchronizing for maximum speed.
void *ubo = glMapBufferRange(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT);
memcpy(ubo, state.light_uniforms, sizeof(LightUniform) * light_count);
glUnmapBuffer(GL_UNIFORM_BUFFER);
#endif
GLuint texture_atlas = texture_storage->texture_atlas_get_texture();
if (texture_atlas == 0) {
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
texture_atlas = tex->tex_id;
}
glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2);
glBindTexture(GL_TEXTURE_2D, texture_atlas);
GLuint shadow_tex = state.shadow_texture;
if (shadow_tex == 0) {
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
shadow_tex = tex->tex_id;
}
glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3);
glBindTexture(GL_TEXTURE_2D, shadow_tex);
}
{
//update canvas state uniform buffer
StateBuffer state_buffer;
Size2i ssize = texture_storage->render_target_get_size(p_to_render_target);
// If we've overridden the render target's color texture, then we need
// to invert the Y axis, so 2D texture appear right side up.
// We're probably rendering directly to an XR device.
float y_scale = texture_storage->render_target_get_override_color(p_to_render_target).is_valid() ? -2.0f : 2.0f;
Transform3D screen_transform;
screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f);
screen_transform.scale(Vector3(2.0f / ssize.width, y_scale / ssize.height, 1.0f));
_update_transform_to_mat4(screen_transform, state_buffer.screen_transform);
_update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform);
Transform2D normal_transform = p_canvas_transform;
normal_transform.columns[0].normalize();
normal_transform.columns[1].normalize();
normal_transform.columns[2] = Vector2();
_update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform);
state_buffer.canvas_modulate[0] = p_modulate.r;
state_buffer.canvas_modulate[1] = p_modulate.g;
state_buffer.canvas_modulate[2] = p_modulate.b;
state_buffer.canvas_modulate[3] = p_modulate.a;
Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target);
state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x;
state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y;
state_buffer.time = state.time;
state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel;
state_buffer.directional_light_count = directional_light_count;
Vector2 canvas_scale = p_canvas_transform.get_scale();
state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x;
state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y;
state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0];
state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1];
Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target);
Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale);
state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height;
state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width;
state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height;
state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5);
glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].state_ubo);
glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW);
GLuint global_buffer = material_storage->global_shader_parameters_get_uniform_buffer();
glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 5);
glBindTexture(GL_TEXTURE_2D, texture_storage->render_target_get_sdf_texture(p_to_render_target));
{
state.default_filter = p_default_filter;
state.default_repeat = p_default_repeat;
}
Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target);
glViewport(0, 0, render_target_size.x, render_target_size.y);
r_sdf_used = false;
int item_count = 0;
bool backbuffer_cleared = false;
bool time_used = false;
bool material_screen_texture_cached = false;
bool material_screen_texture_mipmaps_cached = false;
Rect2 back_buffer_rect;
bool backbuffer_copy = false;
bool backbuffer_gen_mipmaps = false;
bool update_skeletons = false;
Item *ci = p_item_list;
Item *canvas_group_owner = nullptr;
bool skip_item = false;
state.last_item_index = 0;
while (ci) {
if (ci->copy_back_buffer && canvas_group_owner == nullptr) {
backbuffer_copy = true;
if (ci->copy_back_buffer->full) {
back_buffer_rect = Rect2();
} else {
back_buffer_rect = ci->copy_back_buffer->rect;
}
}
// Check material for something that may change flow of rendering, but do not bind for now.
RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material;
if (material.is_valid()) {
GLES3::CanvasMaterialData *md = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM));
if (md && md->shader_data->valid) {
if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) {
if (!material_screen_texture_cached) {
backbuffer_copy = true;
back_buffer_rect = Rect2();
backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps;
} else if (!material_screen_texture_mipmaps_cached) {
backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps;
}
}
if (md->shader_data->uses_sdf) {
r_sdf_used = true;
}
if (md->shader_data->uses_time) {
time_used = true;
}
}
}
if (ci->skeleton.is_valid()) {
const Item::Command *c = ci->commands;
while (c) {
if (c->type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *cm = static_cast<const Item::CommandMesh *>(c);
if (cm->mesh_instance.is_valid()) {
mesh_storage->mesh_instance_check_for_update(cm->mesh_instance);
mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform);
update_skeletons = true;
}
}
c = c->next;
}
}
if (ci->canvas_group_owner != nullptr) {
if (canvas_group_owner == nullptr) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
// Canvas group begins here, render until before this item
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info);
item_count = 0;
if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) {
Rect2i group_rect = ci->canvas_group_owner->global_rect_cache;
texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false);
if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
ci->canvas_group_owner->use_canvas_group = false;
items[item_count++] = ci->canvas_group_owner;
}
} else if (!backbuffer_cleared) {
texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0));
backbuffer_cleared = true;
}
backbuffer_copy = false;
canvas_group_owner = ci->canvas_group_owner; //continue until owner found
}
ci->canvas_group_owner = nullptr; //must be cleared
}
if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
skip_item = true;
}
if (ci == canvas_group_owner) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true, r_render_info);
item_count = 0;
if (ci->canvas_group->blur_mipmaps) {
texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache);
}
canvas_group_owner = nullptr;
// Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it.
backbuffer_cleared = false;
// Tell the renderer to paint this as a canvas group
ci->use_canvas_group = true;
} else {
ci->use_canvas_group = false;
}
if (backbuffer_copy) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
//render anything pending, including clearing if no items
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info);
item_count = 0;
texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps);
backbuffer_copy = false;
material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies.
material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps;
backbuffer_gen_mipmaps = false;
}
if (backbuffer_gen_mipmaps) {
texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect);
backbuffer_gen_mipmaps = false;
material_screen_texture_mipmaps_cached = true;
}
// just add all items for now
if (skip_item) {
skip_item = false;
} else {
items[item_count++] = ci;
}
if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) {
if (update_skeletons) {
mesh_storage->update_mesh_instances();
update_skeletons = false;
}
_render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr, r_render_info);
//then reset
item_count = 0;
}
ci = ci->next;
}
if (time_used) {
RenderingServerDefault::redraw_request();
}
state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
// Clear out state used in 2D pass
reset_canvas();
state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size();
state.current_instance_buffer_index = 0;
}
void RasterizerCanvasGLES3::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer, RenderingMethod::RenderInfo *r_render_info) {
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
canvas_begin(p_to_render_target, p_to_backbuffer);
if (p_item_count <= 0) {
// Nothing to draw, just call canvas_begin() to clear the render target and return.
return;
}
uint32_t index = 0;
Item *current_clip = nullptr;
GLES3::CanvasShaderData *shader_data_cache = nullptr;
// Record Batches.
// First item always forms its own batch.
bool batch_broken = false;
_new_batch(batch_broken);
// Override the start position and index as we want to start from where we finished off last time.
state.canvas_instance_batches[state.current_batch_index].start = state.last_item_index;
index = 0;
for (int i = 0; i < p_item_count; i++) {
Item *ci = items[i];
if (ci->final_clip_owner != state.canvas_instance_batches[state.current_batch_index].clip) {
_new_batch(batch_broken);
state.canvas_instance_batches[state.current_batch_index].clip = ci->final_clip_owner;
current_clip = ci->final_clip_owner;
}
RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material;
if (ci->use_canvas_group) {
if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) {
material = default_clip_children_material;
} else {
if (material.is_null()) {
if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) {
material = default_clip_children_material;
} else {
material = default_canvas_group_material;
}
}
}
}
if (material != state.canvas_instance_batches[state.current_batch_index].material) {
_new_batch(batch_broken);
GLES3::CanvasMaterialData *material_data = nullptr;
if (material.is_valid()) {
material_data = static_cast<GLES3::CanvasMaterialData *>(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM));
}
shader_data_cache = nullptr;
if (material_data) {
if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) {
shader_data_cache = material_data->shader_data;
}
}
state.canvas_instance_batches[state.current_batch_index].material = material;
state.canvas_instance_batches[state.current_batch_index].material_data = material_data;
if (shader_data_cache) {
state.canvas_instance_batches[state.current_batch_index].vertex_input_mask = shader_data_cache->vertex_input_mask;
}
}
GLES3::CanvasShaderData::BlendMode blend_mode = shader_data_cache ? shader_data_cache->blend_mode : GLES3::CanvasShaderData::BLEND_MODE_MIX;
if (!ci->repeat_size.x && !ci->repeat_size.y) {
_record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used, Point2());
} else {
Point2 start_pos = ci->repeat_size * -(ci->repeat_times / 2);
Point2 end_pos = ci->repeat_size * ci->repeat_times + ci->repeat_size + start_pos;
Point2 pos = start_pos;
do {
do {
_record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used, pos);
pos.y += ci->repeat_size.y;
} while (pos.y < end_pos.y);
pos.x += ci->repeat_size.x;
pos.y = start_pos.y;
} while (pos.x < end_pos.x);
}
}
if (index == 0) {
// Nothing to render, just return.
state.current_batch_index = 0;
state.canvas_instance_batches.clear();
return;
}
// Copy over all data needed for rendering.
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]);
#ifdef WEB_ENABLED
glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * index, state.instance_data_array);
#else
// On Desktop and mobile we map the memory without synchronizing for maximum speed.
void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT);
memcpy(buffer, state.instance_data_array, index * sizeof(InstanceData));
glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
glDisable(GL_SCISSOR_TEST);
current_clip = nullptr;
GLES3::CanvasShaderData::BlendMode last_blend_mode = GLES3::CanvasShaderData::BLEND_MODE_MIX;
Color last_blend_color;
state.current_tex = RID();
for (uint32_t i = 0; i <= state.current_batch_index; i++) {
// Skipping when there is no instances.
if (state.canvas_instance_batches[i].instance_count == 0) {
continue;
}
//setup clip
if (current_clip != state.canvas_instance_batches[i].clip) {
current_clip = state.canvas_instance_batches[i].clip;
if (current_clip) {
glEnable(GL_SCISSOR_TEST);
glScissor(current_clip->final_clip_rect.position.x, current_clip->final_clip_rect.position.y, current_clip->final_clip_rect.size.x, current_clip->final_clip_rect.size.y);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
GLES3::CanvasMaterialData *material_data = state.canvas_instance_batches[i].material_data;
CanvasShaderGLES3::ShaderVariant variant = state.canvas_instance_batches[i].shader_variant;
uint64_t specialization = 0;
specialization |= uint64_t(state.canvas_instance_batches[i].lights_disabled);
specialization |= uint64_t(!GLES3::Config::get_singleton()->float_texture_supported) << 1;
RID shader_version = data.canvas_shader_default_version;
if (material_data) {
if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) {
// Bind uniform buffer and textures
material_data->bind_uniforms();
shader_version = material_data->shader_data->version;
}
}
bool success = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(shader_version, variant, specialization);
if (!success) {
continue;
}
GLES3::CanvasShaderData::BlendMode blend_mode = state.canvas_instance_batches[i].blend_mode;
Color blend_color = state.canvas_instance_batches[i].blend_color;
if (last_blend_mode != blend_mode || last_blend_color != blend_color) {
if (last_blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) {
// re-enable it
glEnable(GL_BLEND);
} else if (blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) {
// disable it
glDisable(GL_BLEND);
}
switch (blend_mode) {
case GLES3::CanvasShaderData::BLEND_MODE_DISABLED: {
// Nothing to do here.
} break;
case GLES3::CanvasShaderData::BLEND_MODE_LCD: {
glBlendEquation(GL_FUNC_ADD);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE);
}
glBlendColor(blend_color.r, blend_color.g, blend_color.b, blend_color.a);
} break;
case GLES3::CanvasShaderData::BLEND_MODE_MIX: {
glBlendEquation(GL_FUNC_ADD);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
}
} break;
case GLES3::CanvasShaderData::BLEND_MODE_ADD: {
glBlendEquation(GL_FUNC_ADD);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE);
} else {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE);
}
} break;
case GLES3::CanvasShaderData::BLEND_MODE_SUB: {
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE);
} else {
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE);
}
} break;
case GLES3::CanvasShaderData::BLEND_MODE_MUL: {
glBlendEquation(GL_FUNC_ADD);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
} else {
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
}
} break;
case GLES3::CanvasShaderData::BLEND_MODE_PMALPHA: {
glBlendEquation(GL_FUNC_ADD);
if (state.transparent_render_target) {
glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
}
} break;
}
last_blend_mode = blend_mode;
last_blend_color = blend_color;
}
_render_batch(p_lights, i, r_render_info);
}
glDisable(GL_SCISSOR_TEST);
state.current_batch_index = 0;
state.canvas_instance_batches.clear();
state.last_item_index += index;
}
void RasterizerCanvasGLES3::_record_item_commands(const Item *p_item, RID p_render_target, const Transform2D &p_canvas_transform_inverse, Item *&current_clip, GLES3::CanvasShaderData::BlendMode p_blend_mode, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used, const Point2 &p_offset) {
RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? state.default_filter : p_item->texture_filter;
if (texture_filter != state.canvas_instance_batches[state.current_batch_index].filter) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].filter = texture_filter;
}
RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? state.default_repeat : p_item->texture_repeat;
if (texture_repeat != state.canvas_instance_batches[state.current_batch_index].repeat) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].repeat = texture_repeat;
}
Transform2D base_transform = p_canvas_transform_inverse * p_item->final_transform;
if (p_offset.x || p_offset.y) {
base_transform *= Transform2D(0, p_offset / p_item->xform.get_scale());
}
Transform2D draw_transform; // Used by transform command
Color base_color = p_item->final_modulate;
uint32_t base_flags = 0;
Size2 texpixel_size;
bool reclip = false;
bool skipping = false;
// TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance.
uint32_t lights[4] = { 0, 0, 0, 0 };
uint16_t light_count = 0;
{
Light *light = p_lights;
while (light) {
if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) {
uint32_t light_index = light->render_index_cache;
lights[light_count >> 2] |= light_index << ((light_count & 3) * 8);
light_count++;
if (light_count == data.max_lights_per_item - 1) {
break;
}
}
light = light->next_ptr;
}
base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT;
}
bool lights_disabled = light_count == 0 && !state.using_directional_lights;
if (lights_disabled != state.canvas_instance_batches[state.current_batch_index].lights_disabled) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].lights_disabled = lights_disabled;
}
const Item::Command *c = p_item->commands;
while (c) {
if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) {
c = c->next;
continue;
}
if (c->type != Item::Command::TYPE_MESH) {
// For Meshes, this gets updated below.
_update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world);
}
// Zero out most fields.
for (int i = 0; i < 4; i++) {
state.instance_data_array[r_index].modulation[i] = 0.0;
state.instance_data_array[r_index].ninepatch_margins[i] = 0.0;
state.instance_data_array[r_index].src_rect[i] = 0.0;
state.instance_data_array[r_index].dst_rect[i] = 0.0;
state.instance_data_array[r_index].lights[i] = uint32_t(0);
}
state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0;
state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0;
state.instance_data_array[r_index].pad[0] = 0.0;
state.instance_data_array[r_index].pad[1] = 0.0;
state.instance_data_array[r_index].lights[0] = lights[0];
state.instance_data_array[r_index].lights[1] = lights[1];
state.instance_data_array[r_index].lights[2] = lights[2];
state.instance_data_array[r_index].lights[3] = lights[3];
state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); // Reset on each command for safety, keep canvastexture binding config.
Color blend_color = base_color;
GLES3::CanvasShaderData::BlendMode blend_mode = p_blend_mode;
if (c->type == Item::Command::TYPE_RECT) {
const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c);
if (rect->flags & CANVAS_RECT_LCD) {
blend_mode = GLES3::CanvasShaderData::BLEND_MODE_LCD;
blend_color = rect->modulate * base_color;
}
}
if (blend_mode != state.canvas_instance_batches[state.current_batch_index].blend_mode || blend_color != state.canvas_instance_batches[state.current_batch_index].blend_color) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].blend_mode = blend_mode;
state.canvas_instance_batches[state.current_batch_index].blend_color = blend_color;
}
switch (c->type) {
case Item::Command::TYPE_RECT: {
const Item::CommandRect *rect = static_cast<const Item::CommandRect *>(c);
if (rect->flags & CANVAS_RECT_TILE && state.canvas_instance_batches[state.current_batch_index].repeat != RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED;
}
if (rect->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_RECT) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].tex = rect->texture;
state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_RECT;
state.canvas_instance_batches[state.current_batch_index].command = c;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_QUAD;
}
_prepare_canvas_texture(rect->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
Rect2 src_rect;
Rect2 dst_rect;
if (rect->texture != RID()) {
src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1);
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
if (rect->flags & CANVAS_RECT_FLIP_H) {
src_rect.size.x *= -1;
state.instance_data_array[r_index].flags |= FLAGS_FLIP_H;
}
if (rect->flags & CANVAS_RECT_FLIP_V) {
src_rect.size.y *= -1;
state.instance_data_array[r_index].flags |= FLAGS_FLIP_V;
}
if (rect->flags & CANVAS_RECT_TRANSPOSE) {
state.instance_data_array[r_index].flags |= FLAGS_TRANSPOSE_RECT;
}
if (rect->flags & CANVAS_RECT_CLIP_UV) {
state.instance_data_array[r_index].flags |= FLAGS_CLIP_RECT_UV;
}
} else {
dst_rect = Rect2(rect->rect.position, rect->rect.size);
if (dst_rect.size.width < 0) {
dst_rect.position.x += dst_rect.size.width;
dst_rect.size.width *= -1;
}
if (dst_rect.size.height < 0) {
dst_rect.position.y += dst_rect.size.height;
dst_rect.size.height *= -1;
}
src_rect = Rect2(0, 0, 1, 1);
}
if (rect->flags & CANVAS_RECT_MSDF) {
state.instance_data_array[r_index].flags |= FLAGS_USE_MSDF;
state.instance_data_array[r_index].msdf[0] = rect->px_range; // Pixel range.
state.instance_data_array[r_index].msdf[1] = rect->outline; // Outline size.
state.instance_data_array[r_index].msdf[2] = 0.f; // Reserved.
state.instance_data_array[r_index].msdf[3] = 0.f; // Reserved.
} else if (rect->flags & CANVAS_RECT_LCD) {
state.instance_data_array[r_index].flags |= FLAGS_USE_LCD;
}
state.instance_data_array[r_index].modulation[0] = rect->modulate.r * base_color.r;
state.instance_data_array[r_index].modulation[1] = rect->modulate.g * base_color.g;
state.instance_data_array[r_index].modulation[2] = rect->modulate.b * base_color.b;
state.instance_data_array[r_index].modulation[3] = rect->modulate.a * base_color.a;
state.instance_data_array[r_index].src_rect[0] = src_rect.position.x;
state.instance_data_array[r_index].src_rect[1] = src_rect.position.y;
state.instance_data_array[r_index].src_rect[2] = src_rect.size.width;
state.instance_data_array[r_index].src_rect[3] = src_rect.size.height;
state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x;
state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y;
state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width;
state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height;
_add_to_batch(r_index, r_batch_broken);
} break;
case Item::Command::TYPE_NINEPATCH: {
const Item::CommandNinePatch *np = static_cast<const Item::CommandNinePatch *>(c);
if (np->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_NINEPATCH) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].tex = np->texture;
state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_NINEPATCH;
state.canvas_instance_batches[state.current_batch_index].command = c;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_NINEPATCH;
}
_prepare_canvas_texture(np->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
Rect2 src_rect;
Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y);
if (np->texture == RID()) {
texpixel_size = Size2(1, 1);
src_rect = Rect2(0, 0, 1, 1);
} else {
if (np->source != Rect2()) {
src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height);
state.instance_data_array[r_index].color_texture_pixel_size[0] = 1.0 / np->source.size.width;
state.instance_data_array[r_index].color_texture_pixel_size[1] = 1.0 / np->source.size.height;
} else {
src_rect = Rect2(0, 0, 1, 1);
}
}
state.instance_data_array[r_index].modulation[0] = np->color.r * base_color.r;
state.instance_data_array[r_index].modulation[1] = np->color.g * base_color.g;
state.instance_data_array[r_index].modulation[2] = np->color.b * base_color.b;
state.instance_data_array[r_index].modulation[3] = np->color.a * base_color.a;
state.instance_data_array[r_index].src_rect[0] = src_rect.position.x;
state.instance_data_array[r_index].src_rect[1] = src_rect.position.y;
state.instance_data_array[r_index].src_rect[2] = src_rect.size.width;
state.instance_data_array[r_index].src_rect[3] = src_rect.size.height;
state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x;
state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y;
state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width;
state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height;
state.instance_data_array[r_index].flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT;
state.instance_data_array[r_index].flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT;
if (np->draw_center) {
state.instance_data_array[r_index].flags |= FLAGS_NINEPACH_DRAW_CENTER;
}
state.instance_data_array[r_index].ninepatch_margins[0] = np->margin[SIDE_LEFT];
state.instance_data_array[r_index].ninepatch_margins[1] = np->margin[SIDE_TOP];
state.instance_data_array[r_index].ninepatch_margins[2] = np->margin[SIDE_RIGHT];
state.instance_data_array[r_index].ninepatch_margins[3] = np->margin[SIDE_BOTTOM];
_add_to_batch(r_index, r_batch_broken);
// Restore if overridden.
state.instance_data_array[r_index].color_texture_pixel_size[0] = texpixel_size.x;
state.instance_data_array[r_index].color_texture_pixel_size[1] = texpixel_size.y;
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(c);
// Polygon's can't be batched, so always create a new batch
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].tex = polygon->texture;
state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_POLYGON;
state.canvas_instance_batches[state.current_batch_index].command = c;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES;
_prepare_canvas_texture(polygon->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
state.instance_data_array[r_index].modulation[0] = base_color.r;
state.instance_data_array[r_index].modulation[1] = base_color.g;
state.instance_data_array[r_index].modulation[2] = base_color.b;
state.instance_data_array[r_index].modulation[3] = base_color.a;
for (int j = 0; j < 4; j++) {
state.instance_data_array[r_index].src_rect[j] = 0;
state.instance_data_array[r_index].dst_rect[j] = 0;
state.instance_data_array[r_index].ninepatch_margins[j] = 0;
}
_add_to_batch(r_index, r_batch_broken);
} break;
case Item::Command::TYPE_PRIMITIVE: {
const Item::CommandPrimitive *primitive = static_cast<const Item::CommandPrimitive *>(c);
if (primitive->point_count != state.canvas_instance_batches[state.current_batch_index].primitive_points || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_PRIMITIVE) {
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].tex = primitive->texture;
state.canvas_instance_batches[state.current_batch_index].primitive_points = primitive->point_count;
state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_PRIMITIVE;
state.canvas_instance_batches[state.current_batch_index].command = c;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_PRIMITIVE;
}
_prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) {
state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j].x;
state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j].y;
state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j].x;
state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j].y;
Color col = primitive->colors[j] * base_color;
state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
_add_to_batch(r_index, r_batch_broken);
if (primitive->point_count == 4) {
// Reset base data.
_update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world);
_prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
for (uint32_t j = 0; j < 3; j++) {
int offset = j == 0 ? 0 : 1;
// Second triangle in the quad. Uses vertices 0, 2, 3.
state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j + offset].x;
state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j + offset].y;
state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j + offset].x;
state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j + offset].y;
Color col = primitive->colors[j + offset] * base_color;
state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r);
state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b);
}
_add_to_batch(r_index, r_batch_broken);
}
} break;
case Item::Command::TYPE_MESH:
case Item::Command::TYPE_MULTIMESH:
case Item::Command::TYPE_PARTICLES: {
// Mesh's can't be batched, so always create a new batch
_new_batch(r_batch_broken);
Color modulate(1, 1, 1, 1);
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES;
if (c->type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(c);
state.canvas_instance_batches[state.current_batch_index].tex = m->texture;
_update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, state.instance_data_array[r_index].world);
modulate = m->modulate;
} else if (c->type == Item::Command::TYPE_MULTIMESH) {
const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(c);
state.canvas_instance_batches[state.current_batch_index].tex = mm->texture;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED;
if (GLES3::MeshStorage::get_singleton()->multimesh_uses_colors(mm->multimesh)) {
state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS;
}
if (GLES3::MeshStorage::get_singleton()->multimesh_uses_custom_data(mm->multimesh)) {
state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA;
}
} else if (c->type == Item::Command::TYPE_PARTICLES) {
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(c);
RID particles = pt->particles;
state.canvas_instance_batches[state.current_batch_index].tex = pt->texture;
state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED;
state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS;
state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA;
if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target)) {
// Pass collision information.
Transform2D xform = p_item->final_transform;
GLuint sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target);
Rect2 to_screen;
{
Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target);
to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height);
to_screen.position = -sdf_rect.position * to_screen.size;
}
particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture);
} else {
particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), 0);
}
r_sdf_used |= particles_storage->particles_has_collision(particles);
}
state.canvas_instance_batches[state.current_batch_index].command = c;
state.canvas_instance_batches[state.current_batch_index].command_type = c->type;
_prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size);
state.instance_data_array[r_index].modulation[0] = base_color.r * modulate.r;
state.instance_data_array[r_index].modulation[1] = base_color.g * modulate.g;
state.instance_data_array[r_index].modulation[2] = base_color.b * modulate.b;
state.instance_data_array[r_index].modulation[3] = base_color.a * modulate.a;
for (int j = 0; j < 4; j++) {
state.instance_data_array[r_index].src_rect[j] = 0;
state.instance_data_array[r_index].dst_rect[j] = 0;
state.instance_data_array[r_index].ninepatch_margins[j] = 0;
}
_add_to_batch(r_index, r_batch_broken);
} break;
case Item::Command::TYPE_TRANSFORM: {
const Item::CommandTransform *transform = static_cast<const Item::CommandTransform *>(c);
draw_transform = transform->xform;
} break;
case Item::Command::TYPE_CLIP_IGNORE: {
const Item::CommandClipIgnore *ci = static_cast<const Item::CommandClipIgnore *>(c);
if (current_clip) {
if (ci->ignore != reclip) {
_new_batch(r_batch_broken);
if (ci->ignore) {
state.canvas_instance_batches[state.current_batch_index].clip = nullptr;
reclip = true;
} else {
state.canvas_instance_batches[state.current_batch_index].clip = current_clip;
reclip = false;
}
}
}
} break;
case Item::Command::TYPE_ANIMATION_SLICE: {
const Item::CommandAnimationSlice *as = static_cast<const Item::CommandAnimationSlice *>(c);
double current_time = RSG::rasterizer->get_total_time();
double local_time = Math::fposmod(current_time - as->offset, as->animation_length);
skipping = !(local_time >= as->slice_begin && local_time < as->slice_end);
RenderingServerDefault::redraw_request(); // animation visible means redraw request
} break;
}
c = c->next;
r_batch_broken = false;
}
if (current_clip && reclip) {
//will make it re-enable clipping if needed afterwards
current_clip = nullptr;
}
}
_FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) {
static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 };
static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 };
return (p_indices - subtractor[p_primitive]) / divisor[p_primitive];
}
void RasterizerCanvasGLES3::_render_batch(Light *p_lights, uint32_t p_index, RenderingMethod::RenderInfo *r_render_info) {
ERR_FAIL_NULL(state.canvas_instance_batches[state.current_batch_index].command);
// Used by Polygon and Mesh.
static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP };
_bind_canvas_texture(state.canvas_instance_batches[p_index].tex, state.canvas_instance_batches[p_index].filter, state.canvas_instance_batches[p_index].repeat);
switch (state.canvas_instance_batches[p_index].command_type) {
case Item::Command::TYPE_RECT:
case Item::Command::TYPE_NINEPATCH: {
glBindVertexArray(data.indexed_quad_array);
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]);
uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData);
_enable_attributes(range_start, false);
glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0, state.canvas_instance_batches[p_index].instance_count);
glBindVertexArray(0);
if (r_render_info) {
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += state.canvas_instance_batches[p_index].instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += 2 * state.canvas_instance_batches[p_index].instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_POLYGON: {
const Item::CommandPolygon *polygon = static_cast<const Item::CommandPolygon *>(state.canvas_instance_batches[p_index].command);
PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id);
ERR_FAIL_NULL(pb);
glBindVertexArray(pb->vertex_array);
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]);
uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData);
_enable_attributes(range_start, false);
if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) {
glVertexAttrib4f(RS::ARRAY_COLOR, pb->color.r, pb->color.g, pb->color.b, pb->color.a);
}
if (pb->index_buffer != 0) {
glDrawElementsInstanced(prim[polygon->primitive], pb->count, GL_UNSIGNED_INT, nullptr, 1);
} else {
glDrawArraysInstanced(prim[polygon->primitive], 0, pb->count, 1);
}
glBindVertexArray(0);
if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) {
// Reset so this doesn't pollute other draw calls.
glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0);
}
if (r_render_info) {
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(polygon->primitive, pb->count);
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_PRIMITIVE: {
glBindVertexArray(data.canvas_quad_array);
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]);
uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData);
_enable_attributes(range_start, true);
const GLenum primitive[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLES };
int instance_count = state.canvas_instance_batches[p_index].instance_count;
ERR_FAIL_COND(instance_count <= 0);
if (instance_count >= 1) {
glDrawArraysInstanced(primitive[state.canvas_instance_batches[p_index].primitive_points], 0, state.canvas_instance_batches[p_index].primitive_points, instance_count);
}
if (r_render_info) {
const RenderingServer::PrimitiveType rs_primitive[5] = { RS::PRIMITIVE_POINTS, RS::PRIMITIVE_POINTS, RS::PRIMITIVE_LINES, RS::PRIMITIVE_TRIANGLES, RS::PRIMITIVE_TRIANGLES };
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(rs_primitive[state.canvas_instance_batches[p_index].primitive_points], state.canvas_instance_batches[p_index].primitive_points) * instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
} break;
case Item::Command::TYPE_MESH:
case Item::Command::TYPE_MULTIMESH:
case Item::Command::TYPE_PARTICLES: {
GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton();
GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton();
RID mesh;
RID mesh_instance;
uint32_t instance_count = 1;
GLuint instance_buffer = 0;
uint32_t instance_stride = 0;
uint32_t instance_color_offset = 0;
bool instance_uses_color = false;
bool instance_uses_custom_data = false;
bool use_instancing = false;
if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MESH) {
const Item::CommandMesh *m = static_cast<const Item::CommandMesh *>(state.canvas_instance_batches[p_index].command);
mesh = m->mesh;
mesh_instance = m->mesh_instance;
} else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MULTIMESH) {
const Item::CommandMultiMesh *mm = static_cast<const Item::CommandMultiMesh *>(state.canvas_instance_batches[p_index].command);
RID multimesh = mm->multimesh;
mesh = mesh_storage->multimesh_get_mesh(multimesh);
if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) {
break;
}
instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh);
if (instance_count == 0) {
break;
}
instance_buffer = mesh_storage->multimesh_get_gl_buffer(multimesh);
instance_stride = mesh_storage->multimesh_get_stride(multimesh);
instance_color_offset = mesh_storage->multimesh_get_color_offset(multimesh);
instance_uses_color = mesh_storage->multimesh_uses_colors(multimesh);
instance_uses_custom_data = mesh_storage->multimesh_uses_custom_data(multimesh);
use_instancing = true;
} else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_PARTICLES) {
const Item::CommandParticles *pt = static_cast<const Item::CommandParticles *>(state.canvas_instance_batches[p_index].command);
RID particles = pt->particles;
mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0);
ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D);
particles_storage->particles_request_process(particles);
if (particles_storage->particles_is_inactive(particles)) {
break;
}
RenderingServerDefault::redraw_request(); // Active particles means redraw request.
int dpc = particles_storage->particles_get_draw_passes(particles);
if (dpc == 0) {
break; // Nothing to draw.
}
instance_count = particles_storage->particles_get_amount(particles);
instance_buffer = particles_storage->particles_get_gl_buffer(particles);
instance_stride = 12; // 8 bytes for instance transform and 4 bytes for packed color and custom.
instance_color_offset = 8; // 8 bytes for instance transform.
instance_uses_color = true;
instance_uses_custom_data = true;
use_instancing = true;
}
ERR_FAIL_COND(mesh.is_null());
uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh);
for (uint32_t j = 0; j < surf_count; j++) {
void *surface = mesh_storage->mesh_get_surface(mesh, j);
RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface);
ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX);
GLuint vertex_array_gl = 0;
GLuint index_array_gl = 0;
uint64_t vertex_input_mask = state.canvas_instance_batches[p_index].vertex_input_mask;
if (mesh_instance.is_valid()) {
mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, vertex_input_mask, vertex_array_gl);
} else {
mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, vertex_input_mask, vertex_array_gl);
}
index_array_gl = mesh_storage->mesh_surface_get_index_buffer(surface, 0);
bool use_index_buffer = false;
glBindVertexArray(vertex_array_gl);
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]);
uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData);
_enable_attributes(range_start, false, instance_count);
if (index_array_gl != 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl);
use_index_buffer = true;
}
if (use_instancing) {
if (instance_buffer == 0) {
break;
}
// Bind instance buffers.
glBindBuffer(GL_ARRAY_BUFFER, instance_buffer);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0));
glVertexAttribDivisor(1, 1);
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(4 * 4));
glVertexAttribDivisor(2, 1);
if (instance_uses_color || instance_uses_custom_data) {
glEnableVertexAttribArray(5);
glVertexAttribIPointer(5, 4, GL_UNSIGNED_INT, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(instance_color_offset * sizeof(float)));
glVertexAttribDivisor(5, 1);
} else {
// Set all default instance color and custom data values to 1.0 or 0.0 using a compressed format.
uint16_t zero = Math::make_half_float(0.0f);
uint16_t one = Math::make_half_float(1.0f);
GLuint default_color = (uint32_t(one) << 16) | one;
GLuint default_custom = (uint32_t(zero) << 16) | zero;
glVertexAttribI4ui(5, default_color, default_color, default_custom, default_custom);
}
}
GLenum primitive_gl = prim[int(primitive)];
uint32_t vertex_count = mesh_storage->mesh_surface_get_vertices_drawn_count(surface);
if (use_index_buffer) {
glDrawElementsInstanced(primitive_gl, vertex_count, mesh_storage->mesh_surface_get_index_type(surface), 0, instance_count);
} else {
glDrawArraysInstanced(primitive_gl, 0, vertex_count, instance_count);
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
if (use_instancing) {
glDisableVertexAttribArray(5);
glDisableVertexAttribArray(8);
glDisableVertexAttribArray(9);
glDisableVertexAttribArray(10);
}
if (r_render_info) {
// Meshes, Particles, and MultiMesh are always just one object with one draw call.
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(primitive, vertex_count) * instance_count;
r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++;
}
}
} break;
case Item::Command::TYPE_TRANSFORM:
case Item::Command::TYPE_CLIP_IGNORE:
case Item::Command::TYPE_ANIMATION_SLICE: {
// Can ignore these as they only impact batch creation.
} break;
}
}
void RasterizerCanvasGLES3::_add_to_batch(uint32_t &r_index, bool &r_batch_broken) {
state.canvas_instance_batches[state.current_batch_index].instance_count++;
r_index++;
if (r_index + state.last_item_index >= data.max_instances_per_buffer) {
// Copy over all data needed for rendering right away
// then go back to recording item commands.
glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]);
#ifdef WEB_ENABLED
glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * r_index, state.instance_data_array);
#else
// On Desktop and mobile we map the memory without synchronizing for maximum speed.
void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), r_index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT);
memcpy(buffer, state.instance_data_array, r_index * sizeof(InstanceData));
glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
_allocate_instance_buffer();
r_index = 0;
state.last_item_index = 0;
r_batch_broken = false; // Force a new batch to be created
_new_batch(r_batch_broken);
state.canvas_instance_batches[state.current_batch_index].start = 0;
}
}
void RasterizerCanvasGLES3::_new_batch(bool &r_batch_broken) {
if (state.canvas_instance_batches.size() == 0) {
state.canvas_instance_batches.push_back(Batch());
return;
}
if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) {
return;
}
r_batch_broken = true;
// Copy the properties of the current batch, we will manually update the things that changed.
Batch new_batch = state.canvas_instance_batches[state.current_batch_index];
new_batch.instance_count = 0;
new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count;
new_batch.instance_buffer_index = state.current_instance_buffer_index;
state.current_batch_index++;
state.canvas_instance_batches.push_back(new_batch);
}
void RasterizerCanvasGLES3::_enable_attributes(uint32_t p_start, bool p_primitive, uint32_t p_rate) {
uint32_t split = p_primitive ? 13 : 14;
for (uint32_t i = 8; i < split; i++) {
glEnableVertexAttribArray(i);
glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 8) * 4 * sizeof(float)));
glVertexAttribDivisor(i, p_rate);
}
for (uint32_t i = split; i <= 15; i++) {
glEnableVertexAttribArray(i);
glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 8) * 4 * sizeof(float)));
glVertexAttribDivisor(i, p_rate);
}
}
RID RasterizerCanvasGLES3::light_create() {
CanvasLight canvas_light;
return canvas_light_owner.make_rid(canvas_light);
}
void RasterizerCanvasGLES3::light_set_texture(RID p_rid, RID p_texture) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL(cl);
if (cl->texture == p_texture) {
return;
}
ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture));
if (cl->texture.is_valid()) {
texture_storage->texture_remove_from_texture_atlas(cl->texture);
}
cl->texture = p_texture;
if (cl->texture.is_valid()) {
texture_storage->texture_add_to_texture_atlas(cl->texture);
}
}
void RasterizerCanvasGLES3::light_set_use_shadow(RID p_rid, bool p_enable) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL(cl);
cl->shadow.enabled = p_enable;
}
void RasterizerCanvasGLES3::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) {
GLES3::Config *config = GLES3::Config::get_singleton();
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
cl->shadow.z_far = p_far;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2);
glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb);
glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDisable(GL_BLEND);
glEnable(GL_SCISSOR_TEST);
glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2);
glClearColor(p_far, p_far, p_far, 1.0);
RasterizerGLES3::clear_depth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glCullFace(GL_BACK);
glDisable(GL_CULL_FACE);
RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA;
bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant);
if (!success) {
return;
}
for (int i = 0; i < 4; i++) {
glViewport((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2);
Projection projection;
{
real_t fov = 90;
real_t nearp = p_near;
real_t farp = p_far;
real_t aspect = 1.0;
real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5));
real_t ymin = -ymax;
real_t xmin = ymin * aspect;
real_t xmax = ymax * aspect;
projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp);
}
Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0));
projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse());
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant);
static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) };
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, directions[i].x, directions[i].y, shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, p_far, shadow_render.shader_version, variant);
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder);
if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
Transform2D modelview = p_light_xform * instance->xform_cache;
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant);
if (co->cull_mode != cull_mode) {
if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) {
glDisable(GL_CULL_FACE);
} else {
if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) {
// Last time was disabled, so enable and set proper face.
glEnable(GL_CULL_FACE);
}
glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK);
}
cull_mode = co->cull_mode;
}
glBindVertexArray(co->vertex_array);
glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0);
instance = instance->next;
}
}
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
}
void RasterizerCanvasGLES3::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) {
GLES3::Config *config = GLES3::Config::get_singleton();
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_COND(!cl->shadow.enabled);
_update_shadow_atlas();
Vector2 light_dir = p_light_xform.columns[1].normalized();
Vector2 center = p_clip_rect.get_center();
float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(light_dir)) - light_dir.dot(center));
Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance);
float distance = to_edge_distance * 2.0 + p_cull_distance;
float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle
cl->shadow.z_far = distance;
cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2);
Transform2D to_light_xform;
to_light_xform[2] = from_pos;
to_light_xform[1] = light_dir;
to_light_xform[0] = -light_dir.orthogonal();
to_light_xform.invert();
glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb);
glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glDisable(GL_BLEND);
glEnable(GL_SCISSOR_TEST);
glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2);
glClearColor(1.0, 1.0, 1.0, 1.0);
RasterizerGLES3::clear_depth(1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glCullFace(GL_BACK);
glDisable(GL_CULL_FACE);
RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED;
CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA;
bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant);
if (!success) {
return;
}
Projection projection;
projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance);
projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse());
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 1.0, shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, distance, shadow_render.shader_version, variant);
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder);
if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) {
instance = instance->next;
continue;
}
Transform2D modelview = to_light_xform * instance->xform_cache;
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant);
if (co->cull_mode != cull_mode) {
if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) {
glDisable(GL_CULL_FACE);
} else {
if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) {
// Last time was disabled, so enable and set proper face.
glEnable(GL_CULL_FACE);
}
glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK);
}
cull_mode = co->cull_mode;
}
glBindVertexArray(co->vertex_array);
glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, 0);
instance = instance->next;
}
Transform2D to_shadow;
to_shadow.columns[0].x = 1.0 / -(half_size * 2.0);
to_shadow.columns[2].x = 0.5;
cl->shadow.directional_xform = to_shadow * to_light_xform;
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glDisable(GL_CULL_FACE);
}
void RasterizerCanvasGLES3::_update_shadow_atlas() {
GLES3::Config *config = GLES3::Config::get_singleton();
if (state.shadow_fb == 0) {
glActiveTexture(GL_TEXTURE0);
glGenFramebuffers(1, &state.shadow_fb);
glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb);
glGenRenderbuffers(1, &state.shadow_depth_buffer);
glBindRenderbuffer(GL_RENDERBUFFER, state.shadow_depth_buffer);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, state.shadow_texture_size, data.max_lights_per_render * 2);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, state.shadow_depth_buffer);
glGenTextures(1, &state.shadow_texture);
glBindTexture(GL_TEXTURE_2D, state.shadow_texture);
if (config->float_texture_supported) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RED, GL_FLOAT, nullptr);
} else {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, state.shadow_texture, 0);
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
glDeleteFramebuffers(1, &state.shadow_fb);
glDeleteTextures(1, &state.shadow_texture);
glDeleteRenderbuffers(1, &state.shadow_depth_buffer);
state.shadow_fb = 0;
state.shadow_texture = 0;
state.shadow_depth_buffer = 0;
WARN_PRINT("Could not create CanvasItem shadow atlas, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status));
}
GLES3::Utilities::get_singleton()->texture_allocated_data(state.shadow_texture, state.shadow_texture_size * data.max_lights_per_render * 2 * 4, "2D shadow atlas texture");
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
}
}
void RasterizerCanvasGLES3::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLuint fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target);
Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target);
Transform2D to_sdf;
to_sdf.columns[0] *= rect.size.width;
to_sdf.columns[1] *= rect.size.height;
to_sdf.columns[2] = rect.position;
Transform2D to_clip;
to_clip.columns[0] *= 2.0;
to_clip.columns[1] *= 2.0;
to_clip.columns[2] = -Vector2(1.0, 1.0);
to_clip = to_clip * to_sdf.affine_inverse();
glBindFramebuffer(GL_FRAMEBUFFER, fb);
glViewport(0, 0, rect.size.width, rect.size.height);
glDepthMask(GL_FALSE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_BLEND);
glDisable(GL_CULL_FACE);
glDisable(GL_SCISSOR_TEST);
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
CanvasOcclusionShaderGLES3::ShaderVariant variant = CanvasOcclusionShaderGLES3::MODE_SDF;
bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant);
if (!success) {
return;
}
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, Projection(), shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 0.0, shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, 0.0, shadow_render.shader_version, variant);
LightOccluderInstance *instance = p_occluders;
while (instance) {
OccluderPolygon *oc = occluder_polygon_owner.get_or_null(instance->occluder);
if (!oc || oc->sdf_vertex_array == 0) {
instance = instance->next;
continue;
}
Transform2D modelview = to_clip * instance->xform_cache;
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant);
shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant);
glBindVertexArray(oc->sdf_vertex_array);
glDrawElements(oc->sdf_is_lines ? GL_LINES : GL_TRIANGLES, oc->sdf_index_count, GL_UNSIGNED_INT, 0);
instance = instance->next;
}
texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it
glBindVertexArray(0);
glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo);
}
RID RasterizerCanvasGLES3::occluder_polygon_create() {
OccluderPolygon occluder;
return occluder_polygon_owner.make_rid(occluder);
}
void RasterizerCanvasGLES3::occluder_polygon_set_shape(RID p_occluder, const Vector<Vector2> &p_points, bool p_closed) {
OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder);
ERR_FAIL_NULL(oc);
Vector<Vector2> lines;
if (p_points.size()) {
int lc = p_points.size() * 2;
lines.resize(lc - (p_closed ? 0 : 2));
{
Vector2 *w = lines.ptrw();
const Vector2 *r = p_points.ptr();
int max = lc / 2;
if (!p_closed) {
max--;
}
for (int i = 0; i < max; i++) {
Vector2 a = r[i];
Vector2 b = r[(i + 1) % (lc / 2)];
w[i * 2 + 0] = a;
w[i * 2 + 1] = b;
}
}
}
if (oc->line_point_count != lines.size() && oc->vertex_array != 0) {
glDeleteVertexArrays(1, &oc->vertex_array);
GLES3::Utilities::get_singleton()->buffer_free_data(oc->vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(oc->index_buffer);
oc->vertex_array = 0;
oc->vertex_buffer = 0;
oc->index_buffer = 0;
}
if (lines.size()) {
Vector<uint8_t> geometry;
Vector<uint8_t> indices;
int lc = lines.size();
geometry.resize(lc * 6 * sizeof(float));
indices.resize(lc * 3 * sizeof(uint16_t));
{
uint8_t *vw = geometry.ptrw();
float *vwptr = reinterpret_cast<float *>(vw);
uint8_t *iw = indices.ptrw();
uint16_t *iwptr = (uint16_t *)iw;
const Vector2 *lr = lines.ptr();
const int POLY_HEIGHT = 16384;
for (int i = 0; i < lc / 2; i++) {
vwptr[i * 12 + 0] = lr[i * 2 + 0].x;
vwptr[i * 12 + 1] = lr[i * 2 + 0].y;
vwptr[i * 12 + 2] = POLY_HEIGHT;
vwptr[i * 12 + 3] = lr[i * 2 + 1].x;
vwptr[i * 12 + 4] = lr[i * 2 + 1].y;
vwptr[i * 12 + 5] = POLY_HEIGHT;
vwptr[i * 12 + 6] = lr[i * 2 + 1].x;
vwptr[i * 12 + 7] = lr[i * 2 + 1].y;
vwptr[i * 12 + 8] = -POLY_HEIGHT;
vwptr[i * 12 + 9] = lr[i * 2 + 0].x;
vwptr[i * 12 + 10] = lr[i * 2 + 0].y;
vwptr[i * 12 + 11] = -POLY_HEIGHT;
iwptr[i * 6 + 0] = i * 4 + 0;
iwptr[i * 6 + 1] = i * 4 + 1;
iwptr[i * 6 + 2] = i * 4 + 2;
iwptr[i * 6 + 3] = i * 4 + 2;
iwptr[i * 6 + 4] = i * 4 + 3;
iwptr[i * 6 + 5] = i * 4 + 0;
}
}
if (oc->vertex_array == 0) {
oc->line_point_count = lc;
glGenVertexArrays(1, &oc->vertex_array);
glBindVertexArray(oc->vertex_array);
glGenBuffers(1, &oc->vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->vertex_buffer, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW, "Occluder polygon vertex buffer");
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glVertexAttribPointer(RS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), nullptr);
glGenBuffers(1, &oc->index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW, "Occluder polygon index buffer");
glBindVertexArray(0);
} else {
glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
}
// sdf
Vector<int> sdf_indices;
if (p_points.size()) {
if (p_closed) {
sdf_indices = Geometry2D::triangulate_polygon(p_points);
oc->sdf_is_lines = false;
} else {
int max = p_points.size();
sdf_indices.resize(max * 2);
int *iw = sdf_indices.ptrw();
for (int i = 0; i < max; i++) {
iw[i * 2 + 0] = i;
iw[i * 2 + 1] = (i + 1) % max;
}
oc->sdf_is_lines = true;
}
}
if (oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size() && oc->sdf_vertex_array != 0) {
glDeleteVertexArrays(1, &oc->sdf_vertex_array);
GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_index_buffer);
oc->sdf_vertex_array = 0;
oc->sdf_vertex_buffer = 0;
oc->sdf_index_buffer = 0;
oc->sdf_index_count = sdf_indices.size();
oc->sdf_point_count = p_points.size();
}
if (sdf_indices.size()) {
if (oc->sdf_vertex_array == 0) {
oc->sdf_index_count = sdf_indices.size();
oc->sdf_point_count = p_points.size();
glGenVertexArrays(1, &oc->sdf_vertex_array);
glBindVertexArray(oc->sdf_vertex_array);
glGenBuffers(1, &oc->sdf_vertex_buffer);
glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer, oc->sdf_point_count * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF vertex buffer");
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), nullptr);
glGenBuffers(1, &oc->sdf_index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer, oc->sdf_index_count * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF index buffer");
glBindVertexArray(0);
} else {
glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer);
glBufferData(GL_ARRAY_BUFFER, p_points.size() * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sdf_indices.size() * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
}
}
void RasterizerCanvasGLES3::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) {
OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder);
ERR_FAIL_NULL(oc);
oc->cull_mode = p_mode;
}
void RasterizerCanvasGLES3::set_shadow_texture_size(int p_size) {
GLES3::Config *config = GLES3::Config::get_singleton();
p_size = nearest_power_of_2_templated(p_size);
if (p_size > config->max_texture_size) {
p_size = config->max_texture_size;
WARN_PRINT("Attempting to set CanvasItem shadow atlas size to " + itos(p_size) + " which is beyond limit of " + itos(config->max_texture_size) + "supported by hardware.");
}
if (p_size == state.shadow_texture_size) {
return;
}
state.shadow_texture_size = p_size;
if (state.shadow_fb != 0) {
glDeleteFramebuffers(1, &state.shadow_fb);
GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture);
glDeleteRenderbuffers(1, &state.shadow_depth_buffer);
state.shadow_fb = 0;
state.shadow_texture = 0;
state.shadow_depth_buffer = 0;
}
_update_shadow_atlas();
}
bool RasterizerCanvasGLES3::free(RID p_rid) {
if (canvas_light_owner.owns(p_rid)) {
CanvasLight *cl = canvas_light_owner.get_or_null(p_rid);
ERR_FAIL_NULL_V(cl, false);
canvas_light_owner.free(p_rid);
} else if (occluder_polygon_owner.owns(p_rid)) {
occluder_polygon_set_shape(p_rid, Vector<Vector2>(), false);
occluder_polygon_owner.free(p_rid);
} else {
return false;
}
return true;
}
void RasterizerCanvasGLES3::update() {
}
void RasterizerCanvasGLES3::canvas_begin(RID p_to_render_target, bool p_to_backbuffer) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
GLES3::RenderTarget *render_target = texture_storage->get_render_target(p_to_render_target);
if (p_to_backbuffer) {
glBindFramebuffer(GL_FRAMEBUFFER, render_target->backbuffer_fbo);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4);
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
glBindTexture(GL_TEXTURE_2D, tex->tex_id);
} else {
glBindFramebuffer(GL_FRAMEBUFFER, render_target->fbo);
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4);
glBindTexture(GL_TEXTURE_2D, render_target->backbuffer);
}
if (render_target->is_transparent || p_to_backbuffer) {
state.transparent_render_target = true;
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
} else {
state.transparent_render_target = false;
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
}
if (render_target && render_target->clear_requested) {
const Color &col = render_target->clear_color;
glClearColor(col.r, col.g, col.b, render_target->is_transparent ? col.a : 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
render_target->clear_requested = false;
}
glActiveTexture(GL_TEXTURE0);
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
glBindTexture(GL_TEXTURE_2D, tex->tex_id);
}
void RasterizerCanvasGLES3::_bind_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
if (p_texture == RID()) {
p_texture = default_canvas_texture;
}
if (state.current_tex == p_texture && state.current_filter_mode == p_base_filter && state.current_repeat_mode == p_base_repeat) {
return;
}
state.current_tex = p_texture;
state.current_filter_mode = p_base_filter;
state.current_repeat_mode = p_base_repeat;
GLES3::CanvasTexture *ct = nullptr;
GLES3::Texture *t = texture_storage->get_texture(p_texture);
if (t) {
ERR_FAIL_NULL(t->canvas_texture);
ct = t->canvas_texture;
if (t->render_target) {
t->render_target->used_in_frame = true;
}
} else {
ct = texture_storage->get_canvas_texture(p_texture);
}
if (!ct) {
// Invalid Texture RID.
_bind_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat);
return;
}
RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter;
ERR_FAIL_COND(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT);
RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat;
ERR_FAIL_COND(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT);
GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse);
if (!texture) {
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, tex->tex_id);
} else {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
texture->gl_set_filter(filter);
texture->gl_set_repeat(repeat);
if (texture->render_target) {
texture->render_target->used_in_frame = true;
}
}
GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map);
if (!normal_map) {
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_NORMAL));
glBindTexture(GL_TEXTURE_2D, tex->tex_id);
} else {
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6);
glBindTexture(GL_TEXTURE_2D, normal_map->tex_id);
normal_map->gl_set_filter(filter);
normal_map->gl_set_repeat(repeat);
if (normal_map->render_target) {
normal_map->render_target->used_in_frame = true;
}
}
GLES3::Texture *specular_map = texture_storage->get_texture(ct->specular);
if (!specular_map) {
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7);
GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE));
glBindTexture(GL_TEXTURE_2D, tex->tex_id);
} else {
glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7);
glBindTexture(GL_TEXTURE_2D, specular_map->tex_id);
specular_map->gl_set_filter(filter);
specular_map->gl_set_repeat(repeat);
if (specular_map->render_target) {
specular_map->render_target->used_in_frame = true;
}
}
}
void RasterizerCanvasGLES3::_prepare_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, uint32_t &r_index, Size2 &r_texpixel_size) {
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
if (p_texture == RID()) {
p_texture = default_canvas_texture;
}
GLES3::CanvasTexture *ct = nullptr;
GLES3::Texture *t = texture_storage->get_texture(p_texture);
if (t) {
//regular texture
if (!t->canvas_texture) {
t->canvas_texture = memnew(GLES3::CanvasTexture);
t->canvas_texture->diffuse = p_texture;
}
ct = t->canvas_texture;
} else {
ct = texture_storage->get_canvas_texture(p_texture);
}
if (!ct) {
// Invalid Texture RID.
_prepare_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat, r_index, r_texpixel_size);
return;
}
GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse);
Size2i size_cache;
// Cache default white resource ID.
const RID default_texture_id = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE);
// If no texture is assigned, assign default white.
if (!texture) {
ct->diffuse = default_texture_id;
}
// Enforce a 1x1 size if default white texture.
size_cache = ct->diffuse == default_texture_id ? Size2i(1, 1) : Size2i(texture->width, texture->height);
GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map);
if (ct->specular_color.a < 0.999) {
state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED;
} else {
state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED;
}
if (normal_map) {
state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_NORMAL_MAP_USED;
} else {
state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED;
}
state.instance_data_array[r_index].specular_shininess = uint32_t(CLAMP(ct->specular_color.a * 255.0, 0, 255)) << 24;
state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.b * 255.0, 0, 255)) << 16;
state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.g * 255.0, 0, 255)) << 8;
state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.r * 255.0, 0, 255));
r_texpixel_size.x = 1.0 / float(size_cache.x);
r_texpixel_size.y = 1.0 / float(size_cache.y);
state.instance_data_array[r_index].color_texture_pixel_size[0] = r_texpixel_size.x;
state.instance_data_array[r_index].color_texture_pixel_size[1] = r_texpixel_size.y;
}
void RasterizerCanvasGLES3::reset_canvas() {
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glDisable(GL_SCISSOR_TEST);
glEnable(GL_BLEND);
glBlendEquation(GL_FUNC_ADD);
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE);
glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3);
glBindTexture(GL_TEXTURE_2D, 0);
glActiveTexture(GL_TEXTURE0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
void RasterizerCanvasGLES3::draw_lens_distortion_rect(const Rect2 &p_rect, float p_k1, float p_k2, const Vector2 &p_eye_center, float p_oversample) {
}
RendererCanvasRender::PolygonID RasterizerCanvasGLES3::request_polygon(const Vector<int> &p_indices, const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, const Vector<int> &p_bones, const Vector<float> &p_weights) {
// We interleave the vertex data into one big VBO to improve cache coherence
uint32_t vertex_count = p_points.size();
uint32_t stride = 2;
if ((uint32_t)p_colors.size() == vertex_count) {
stride += 4;
}
if ((uint32_t)p_uvs.size() == vertex_count) {
stride += 2;
}
if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
stride += 4;
}
PolygonBuffers pb;
glGenBuffers(1, &pb.vertex_buffer);
glGenVertexArrays(1, &pb.vertex_array);
glBindVertexArray(pb.vertex_array);
pb.count = vertex_count;
pb.index_buffer = 0;
uint32_t buffer_size = stride * p_points.size();
Vector<uint8_t> polygon_buffer;
polygon_buffer.resize(buffer_size * sizeof(float));
{
glBindBuffer(GL_ARRAY_BUFFER, pb.vertex_buffer);
uint8_t *r = polygon_buffer.ptrw();
float *fptr = reinterpret_cast<float *>(r);
uint32_t *uptr = (uint32_t *)r;
uint32_t base_offset = 0;
{
// Always uses vertex positions
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), nullptr);
const Vector2 *points_ptr = p_points.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = points_ptr[i].x;
fptr[base_offset + i * stride + 1] = points_ptr[i].y;
}
base_offset += 2;
}
// Next add colors
if ((uint32_t)p_colors.size() == vertex_count) {
glEnableVertexAttribArray(RS::ARRAY_COLOR);
glVertexAttribPointer(RS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float)));
const Color *color_ptr = p_colors.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = color_ptr[i].r;
fptr[base_offset + i * stride + 1] = color_ptr[i].g;
fptr[base_offset + i * stride + 2] = color_ptr[i].b;
fptr[base_offset + i * stride + 3] = color_ptr[i].a;
}
base_offset += 4;
} else {
glDisableVertexAttribArray(RS::ARRAY_COLOR);
pb.color_disabled = true;
pb.color = p_colors.size() == 1 ? p_colors[0] : Color(1.0, 1.0, 1.0, 1.0);
}
if ((uint32_t)p_uvs.size() == vertex_count) {
glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float)));
const Vector2 *uv_ptr = p_uvs.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
fptr[base_offset + i * stride + 0] = uv_ptr[i].x;
fptr[base_offset + i * stride + 1] = uv_ptr[i].y;
}
base_offset += 2;
} else {
glDisableVertexAttribArray(RS::ARRAY_TEX_UV);
}
if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) {
glEnableVertexAttribArray(RS::ARRAY_BONES);
glVertexAttribPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_INT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float)));
const int *bone_ptr = p_bones.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride];
bone16w[0] = bone_ptr[i * 4 + 0];
bone16w[1] = bone_ptr[i * 4 + 1];
bone16w[2] = bone_ptr[i * 4 + 2];
bone16w[3] = bone_ptr[i * 4 + 3];
}
base_offset += 2;
} else {
glDisableVertexAttribArray(RS::ARRAY_BONES);
}
if ((uint32_t)p_weights.size() == vertex_count * 4) {
glEnableVertexAttribArray(RS::ARRAY_WEIGHTS);
glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float)));
const float *weight_ptr = p_weights.ptr();
for (uint32_t i = 0; i < vertex_count; i++) {
uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride];
weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535);
weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535);
weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535);
weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535);
}
base_offset += 2;
} else {
glDisableVertexAttribArray(RS::ARRAY_WEIGHTS);
}
ERR_FAIL_COND_V(base_offset != stride, 0);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, pb.vertex_buffer, vertex_count * stride * sizeof(float), polygon_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D vertex buffer");
}
if (p_indices.size()) {
//create indices, as indices were requested
Vector<uint8_t> index_buffer;
index_buffer.resize(p_indices.size() * sizeof(int32_t));
{
uint8_t *w = index_buffer.ptrw();
memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size());
}
glGenBuffers(1, &pb.index_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer, p_indices.size() * 4, index_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D index buffer");
pb.count = p_indices.size();
}
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
PolygonID id = polygon_buffers.last_id++;
polygon_buffers.polygons[id] = pb;
return id;
}
void RasterizerCanvasGLES3::free_polygon(PolygonID p_polygon) {
PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon);
ERR_FAIL_NULL(pb_ptr);
PolygonBuffers &pb = *pb_ptr;
if (pb.index_buffer != 0) {
GLES3::Utilities::get_singleton()->buffer_free_data(pb.index_buffer);
}
glDeleteVertexArrays(1, &pb.vertex_array);
GLES3::Utilities::get_singleton()->buffer_free_data(pb.vertex_buffer);
polygon_buffers.polygons.erase(p_polygon);
}
// Creates a new uniform buffer and uses it right away
// This expands the instance buffer continually
// In theory allocations can reach as high as number of windows * 3 frames
// because OpenGL can start rendering subsequent frames before finishing the current one
void RasterizerCanvasGLES3::_allocate_instance_data_buffer() {
GLuint new_buffers[3];
glGenBuffers(3, new_buffers);
// Batch UBO.
glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "2D Batch UBO[" + itos(state.current_data_buffer_index) + "][0]");
// Light uniform buffer.
glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D Lights UBO[" + itos(state.current_data_buffer_index) + "]");
// State buffer.
glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D State UBO[" + itos(state.current_data_buffer_index) + "]");
state.current_data_buffer_index = (state.current_data_buffer_index + 1);
DataBuffer db;
db.instance_buffers.push_back(new_buffers[0]);
db.light_ubo = new_buffers[1];
db.state_ubo = new_buffers[2];
db.last_frame_used = RSG::rasterizer->get_frame_number();
state.canvas_instance_data_buffers.insert(state.current_data_buffer_index, db);
state.current_data_buffer_index = state.current_data_buffer_index % state.canvas_instance_data_buffers.size();
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
void RasterizerCanvasGLES3::_allocate_instance_buffer() {
state.current_instance_buffer_index++;
if (int(state.current_instance_buffer_index) < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) {
// We already allocated another buffer in a previous frame, so we can just use it.
return;
}
GLuint new_buffer;
glGenBuffers(1, &new_buffer);
glBindBuffer(GL_ARRAY_BUFFER, new_buffer);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffer, data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[" + itos(state.current_data_buffer_index) + "][" + itos(state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) + "]");
state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(new_buffer);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
void RasterizerCanvasGLES3::set_time(double p_time) {
state.time = p_time;
}
RasterizerCanvasGLES3 *RasterizerCanvasGLES3::singleton = nullptr;
RasterizerCanvasGLES3 *RasterizerCanvasGLES3::get_singleton() {
return singleton;
}
RasterizerCanvasGLES3::RasterizerCanvasGLES3() {
singleton = this;
GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton();
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
GLES3::Config *config = GLES3::Config::get_singleton();
glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0);
polygon_buffers.last_id = 1;
// quad buffer
{
glGenBuffers(1, &data.canvas_quad_vertices);
glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices);
const float qv[8] = {
0, 0,
0, 1,
1, 1,
1, 0
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 8, qv, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glGenVertexArrays(1, &data.canvas_quad_array);
glBindVertexArray(data.canvas_quad_array);
glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr);
glEnableVertexAttribArray(0);
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
{
//particle quad buffers
glGenBuffers(1, &data.particle_quad_vertices);
glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices);
{
//quad of size 1, with pivot on the center for particles, then regular UVS. Color is general plus fetched from particle
const float qv[16] = {
-0.5, -0.5,
0.0, 0.0,
-0.5, 0.5,
0.0, 1.0,
0.5, 0.5,
1.0, 1.0,
0.5, -0.5,
1.0, 0.0
};
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW);
}
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
glGenVertexArrays(1, &data.particle_quad_array);
glBindVertexArray(data.particle_quad_array);
glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices);
glEnableVertexAttribArray(RS::ARRAY_VERTEX);
glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr);
glEnableVertexAttribArray(RS::ARRAY_TEX_UV);
glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8));
glBindVertexArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
}
// ninepatch buffers
{
// array buffer
glGenBuffers(1, &data.ninepatch_vertices);
glBindBuffer(GL_ARRAY_BUFFER, data.ninepatch_vertices);
glBufferData(GL_ARRAY_BUFFER, sizeof(float) * (16 + 16) * 2, nullptr, GL_DYNAMIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// element buffer
glGenBuffers(1, &data.ninepatch_elements);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ninepatch_elements);
#define _EIDX(y, x) (y * 4 + x)
uint8_t elems[3 * 2 * 9] = {
// first row
_EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1),
_EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0),
_EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2),
_EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1),
_EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3),
_EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2),
// second row
_EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1),
_EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0),
// the center one would be here, but we'll put it at the end
// so it's easier to disable the center and be able to use
// one draw call for both
_EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3),
_EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2),
// third row
_EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1),
_EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0),
_EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2),
_EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1),
_EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3),
_EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2),
// center field
_EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2),
_EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1)
};
#undef _EIDX
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elems), elems, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
int uniform_max_size = config->max_uniform_buffer_size;
if (uniform_max_size < 65536) {
data.max_lights_per_render = 64;
} else {
data.max_lights_per_render = 256;
}
// Reserve 3 Uniform Buffers for instance data Frame N, N+1 and N+2
data.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/gl_compatibility/item_buffer_size"));
data.max_instance_buffer_size = data.max_instances_per_buffer * sizeof(InstanceData); // 16,384 instances * 128 bytes = 2,097,152 bytes = 2,048 kb
state.canvas_instance_data_buffers.resize(3);
state.canvas_instance_batches.reserve(200);
for (int i = 0; i < 3; i++) {
GLuint new_buffers[3];
glGenBuffers(3, new_buffers);
// Batch UBO.
glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[0][0]");
// Light uniform buffer.
glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D lights UBO[0]");
// State buffer.
glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]);
GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D state UBO[0]");
DataBuffer db;
db.instance_buffers.push_back(new_buffers[0]);
db.light_ubo = new_buffers[1];
db.state_ubo = new_buffers[2];
db.last_frame_used = 0;
db.fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0);
state.canvas_instance_data_buffers[i] = db;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
state.instance_data_array = memnew_arr(InstanceData, data.max_instances_per_buffer);
state.light_uniforms = memnew_arr(LightUniform, data.max_lights_per_render);
{
const uint32_t indices[6] = { 0, 2, 1, 3, 2, 0 };
glGenVertexArrays(1, &data.indexed_quad_array);
glBindVertexArray(data.indexed_quad_array);
glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices);
glGenBuffers(1, &data.indexed_quad_buffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.indexed_quad_buffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(uint32_t) * 6, indices, GL_STATIC_DRAW);
glBindVertexArray(0);
}
String global_defines;
global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now
global_defines += "#define MAX_LIGHTS " + itos(data.max_lights_per_render) + "\n";
GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.initialize(global_defines, 1);
data.canvas_shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_create();
state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size");
shadow_render.shader.initialize();
shadow_render.shader_version = shadow_render.shader.version_create();
{
default_canvas_group_shader = material_storage->shader_allocate();
material_storage->shader_initialize(default_canvas_group_shader);
material_storage->shader_set_code(default_canvas_group_shader, R"(
// Default CanvasGroup shader.
shader_type canvas_item;
render_mode unshaded;
uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest;
void fragment() {
vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0);
if (c.a > 0.0001) {
c.rgb /= c.a;
}
COLOR *= c;
}
)");
default_canvas_group_material = material_storage->material_allocate();
material_storage->material_initialize(default_canvas_group_material);
material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader);
}
{
default_clip_children_shader = material_storage->shader_allocate();
material_storage->shader_initialize(default_clip_children_shader);
material_storage->shader_set_code(default_clip_children_shader, R"(
// Default clip children shader.
shader_type canvas_item;
render_mode unshaded;
uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest;
void fragment() {
vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0);
COLOR.rgb = c.rgb;
}
)");
default_clip_children_material = material_storage->material_allocate();
material_storage->material_initialize(default_clip_children_material);
material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader);
}
default_canvas_texture = texture_storage->canvas_texture_allocate();
texture_storage->canvas_texture_initialize(default_canvas_texture);
state.time = 0.0;
}
RasterizerCanvasGLES3::~RasterizerCanvasGLES3() {
singleton = nullptr;
GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton();
material_storage->shaders.canvas_shader.version_free(data.canvas_shader_default_version);
shadow_render.shader.version_free(shadow_render.shader_version);
material_storage->material_free(default_canvas_group_material);
material_storage->shader_free(default_canvas_group_shader);
material_storage->material_free(default_clip_children_material);
material_storage->shader_free(default_clip_children_shader);
singleton = nullptr;
glDeleteBuffers(1, &data.canvas_quad_vertices);
glDeleteVertexArrays(1, &data.canvas_quad_array);
glDeleteBuffers(1, &data.canvas_quad_vertices);
glDeleteVertexArrays(1, &data.canvas_quad_array);
GLES3::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture);
memdelete_arr(state.instance_data_array);
memdelete_arr(state.light_uniforms);
if (state.shadow_fb != 0) {
glDeleteFramebuffers(1, &state.shadow_fb);
GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture);
glDeleteRenderbuffers(1, &state.shadow_depth_buffer);
state.shadow_fb = 0;
state.shadow_texture = 0;
state.shadow_depth_buffer = 0;
}
for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) {
for (int j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) {
if (state.canvas_instance_data_buffers[i].instance_buffers[j]) {
GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].instance_buffers[j]);
}
}
if (state.canvas_instance_data_buffers[i].light_ubo) {
GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].light_ubo);
}
if (state.canvas_instance_data_buffers[i].state_ubo) {
GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].state_ubo);
}
}
}
#endif // GLES3_ENABLED