godot/scene/resources/animation.cpp
Juan Linietsky 118eed485e ObjectTypeDB was renamed to ClassDB. Types are meant to be more generic to Variant.
All usages of "type" to refer to classes were renamed to "class"
ClassDB has been exposed to GDScript.
OBJ_TYPE() macro is now GDCLASS()
2017-01-02 23:03:46 -03:00

2026 lines
46 KiB
C++

/*************************************************************************/
/* animation.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "animation.h"
#include "geometry.h"
bool Animation::_set(const StringName& p_name, const Variant& p_value) {
String name=p_name;
if (name=="length")
set_length(p_value);
else if (name=="loop")
set_loop(p_value);
else if (name=="step")
set_step(p_value);
else if (name.begins_with("tracks/")) {
int track=name.get_slicec('/',1).to_int();
String what=name.get_slicec('/',2);
if (tracks.size()==track && what=="type") {
String type=p_value;
if (type=="transform") {
add_track(TYPE_TRANSFORM);
} else if (type=="value") {
add_track(TYPE_VALUE);
} else if (type=="method") {
add_track(TYPE_METHOD);
} else {
return false;
}
return true;
}
ERR_FAIL_INDEX_V( track, tracks.size(),false );
if (what=="path")
track_set_path(track,p_value);
else if (what=="interp")
track_set_interpolation_type(track,InterpolationType(p_value.operator int()));
else if (what=="imported")
track_set_imported(track,p_value);
else if (what == "keys" || what=="key_values") {
if (track_get_type(track)==TYPE_TRANSFORM) {
TransformTrack *tt = static_cast<TransformTrack*>(tracks[track]);
DVector<float> values=p_value;
int vcount=values.size();
#if 0 // old compatibility hack
if ((vcount%11) == 0) {
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount/11);
for(int i=0;i<(vcount/11);i++) {
TKey<TransformKey> &tk=tt->transforms[i];
const float *ofs=&r[i*11];
tk.time=ofs[0];
tk.value.loc.x=ofs[1];
tk.value.loc.y=ofs[2];
tk.value.loc.z=ofs[3];
tk.value.rot.x=ofs[4];
tk.value.rot.y=ofs[5];
tk.value.rot.z=ofs[6];
tk.value.rot.w=ofs[7];
tk.value.scale.x=ofs[8];
tk.value.scale.y=ofs[9];
tk.value.scale.z=ofs[10];
}
return true;
}
#endif
ERR_FAIL_COND_V(vcount%12,false); // shuld be multiple of 11
DVector<float>::Read r = values.read();
tt->transforms.resize(vcount/12);
for(int i=0;i<(vcount/12);i++) {
TKey<TransformKey> &tk=tt->transforms[i];
const float *ofs=&r[i*12];
tk.time=ofs[0];
tk.transition=ofs[1];
tk.value.loc.x=ofs[2];
tk.value.loc.y=ofs[3];
tk.value.loc.z=ofs[4];
tk.value.rot.x=ofs[5];
tk.value.rot.y=ofs[6];
tk.value.rot.z=ofs[7];
tk.value.rot.w=ofs[8];
tk.value.scale.x=ofs[9];
tk.value.scale.y=ofs[10];
tk.value.scale.z=ofs[11];
}
} else if (track_get_type(track)==TYPE_VALUE) {
ValueTrack *vt = static_cast<ValueTrack*>(tracks[track]);
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"),false);
ERR_FAIL_COND_V(!d.has("values"),false);
if (d.has("cont")) {
bool v = d["cont"];
vt->update_mode=v?UPDATE_CONTINUOUS:UPDATE_DISCRETE;
}
if (d.has("update")) {
int um =d["update"];
if (um<0)
um=0;
else if (um>2)
um=2;
vt->update_mode=UpdateMode(um);
}
DVector<float> times=d["times"];
Array values=d["values"];
ERR_FAIL_COND_V(times.size()!=values.size(),false);
if (times.size()) {
int valcount=times.size();
DVector<float>::Read rt = times.read();
vt->values.resize(valcount);
for(int i=0;i<valcount;i++) {
vt->values[i].time=rt[i];
vt->values[i].value=values[i];
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size()!=valcount,false);
DVector<float>::Read rtr = transitions.read();
for(int i=0;i<valcount;i++) {
vt->values[i].transition=rtr[i];
}
}
}
return true;
} else {
while(track_get_key_count(track))
track_remove_key(track,0); //well shouldn't be set anyway
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("times"),false);
ERR_FAIL_COND_V(!d.has("values"),false);
DVector<float> times=d["times"];
Array values=d["values"];
ERR_FAIL_COND_V(times.size()!=values.size(),false);
if (times.size()) {
int valcount=times.size();
DVector<float>::Read rt = times.read();
for(int i=0;i<valcount;i++) {
track_insert_key(track,rt[i],values[i]);
}
if (d.has("transitions")) {
DVector<float> transitions = d["transitions"];
ERR_FAIL_COND_V(transitions.size()!=valcount,false);
DVector<float>::Read rtr = transitions.read();
for(int i=0;i<valcount;i++) {
track_set_key_transition(track,i,rtr[i]);
}
}
}
}
} else
return false;
} else
return false;
return true;
}
bool Animation::_get(const StringName& p_name,Variant &r_ret) const {
String name=p_name;
if (name=="length")
r_ret= length;
else if (name=="loop")
r_ret= loop;
else if (name=="step")
r_ret= step;
else if (name.begins_with("tracks/")) {
int track=name.get_slicec('/',1).to_int();
String what=name.get_slicec('/',2);
ERR_FAIL_INDEX_V( track, tracks.size(), false );
if (what=="type") {
switch (track_get_type(track)) {
case TYPE_TRANSFORM: r_ret= "transform"; break;
case TYPE_VALUE: r_ret= "value";break;
case TYPE_METHOD: r_ret= "method";break;
}
return true;
} else if (what=="path")
r_ret=track_get_path(track);
else if (what=="interp")
r_ret = track_get_interpolation_type(track);
else if (what=="imported")
r_ret = track_is_imported(track);
else if (what=="keys") {
if (track_get_type(track)==TYPE_TRANSFORM) {
DVector<real_t> keys;
int kk=track_get_key_count(track);
keys.resize(kk*12);
DVector<real_t>::Write w = keys.write();
int idx=0;
for(int i=0;i<track_get_key_count(track);i++) {
Vector3 loc;
Quat rot;
Vector3 scale;
transform_track_get_key(track,i,&loc,&rot,&scale);
w[idx++]=track_get_key_time(track,i);
w[idx++]=track_get_key_transition(track,i);
w[idx++]=loc.x;
w[idx++]=loc.y;
w[idx++]=loc.z;
w[idx++]=rot.x;
w[idx++]=rot.y;
w[idx++]=rot.z;
w[idx++]=rot.w;
w[idx++]=scale.x;
w[idx++]=scale.y;
w[idx++]=scale.z;
}
w = DVector<real_t>::Write();
r_ret=keys;
return true;
} else if (track_get_type(track)==TYPE_VALUE) {
const ValueTrack *vt = static_cast<const ValueTrack*>(tracks[track]);
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk=vt->values.size();
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti=key_times.write();
DVector<float>::Write wtr=key_transitions.write();
int idx=0;
const TKey<Variant> *vls = vt->values.ptr();
for(int i=0;i<kk;i++) {
wti[idx]=vls[i].time;
wtr[idx]=vls[i].transition;
key_values[idx]=vls[i].value;
idx++;
}
wti=DVector<float>::Write();
wtr=DVector<float>::Write();
d["times"]=key_times;
d["transitions"]=key_transitions;
d["values"]=key_values;
if (track_get_type(track)==TYPE_VALUE) {
d["update"]=value_track_get_update_mode(track);
}
r_ret=d;
return true;
} else {
Dictionary d;
DVector<float> key_times;
DVector<float> key_transitions;
Array key_values;
int kk=track_get_key_count(track);
key_times.resize(kk);
key_transitions.resize(kk);
key_values.resize(kk);
DVector<float>::Write wti=key_times.write();
DVector<float>::Write wtr=key_transitions.write();
int idx=0;
for(int i=0;i<track_get_key_count(track);i++) {
wti[idx]=track_get_key_time(track,i);
wtr[idx]=track_get_key_transition(track,i);
key_values[idx]=track_get_key_value(track,i);
idx++;
}
wti=DVector<float>::Write();
wtr=DVector<float>::Write();
d["times"]=key_times;
d["transitions"]=key_transitions;
d["values"]=key_values;
if (track_get_type(track)==TYPE_VALUE) {
d["update"]=value_track_get_update_mode(track);
}
r_ret=d;
return true;
}
} else
return false;
} else
return false;
return true;
}
void Animation::_get_property_list( List<PropertyInfo> *p_list) const {
p_list->push_back( PropertyInfo( Variant::REAL, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001"));
p_list->push_back( PropertyInfo( Variant::BOOL, "loop" ));
p_list->push_back( PropertyInfo( Variant::REAL, "step", PROPERTY_HINT_RANGE, "0,4096,0.001" ));
for (int i=0;i<tracks.size();i++) {
p_list->push_back( PropertyInfo( Variant::STRING, "tracks/"+itos(i)+"/type", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::NODE_PATH, "tracks/"+itos(i)+"/path", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::INT, "tracks/"+itos(i)+"/interp", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::BOOL, "tracks/"+itos(i)+"/imported", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
p_list->push_back( PropertyInfo( Variant::ARRAY, "tracks/"+itos(i)+"/keys", PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR) );
}
}
int Animation::add_track(TrackType p_type,int p_at_pos) {
if (p_at_pos<0 || p_at_pos>=tracks.size())
p_at_pos=tracks.size();
switch( p_type ) {
case TYPE_TRANSFORM: {
TransformTrack *tt = memnew( TransformTrack );
tracks.insert( p_at_pos,tt );
} break;
case TYPE_VALUE: {
tracks.insert( p_at_pos,memnew( ValueTrack ) );
} break;
case TYPE_METHOD: {
tracks.insert( p_at_pos,memnew( MethodTrack ) );
} break;
default: {
ERR_PRINT("Unknown track type");
}
}
emit_changed();
return p_at_pos;
}
void Animation::remove_track(int p_track) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
_clear(tt->transforms);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
_clear(vt->values);
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
_clear(mt->methods);
} break;
}
memdelete( t );
tracks.remove(p_track);
emit_changed();
}
int Animation::get_track_count() const {
return tracks.size();
}
Animation::TrackType Animation::track_get_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_TRANSFORM );
return tracks[p_track]->type;
}
void Animation::track_set_path(int p_track,const NodePath& p_path) {
ERR_FAIL_INDEX(p_track, tracks.size());
tracks[p_track]->path=p_path;
emit_changed();
}
NodePath Animation::track_get_path(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),NodePath());
return tracks[p_track]->path;
}
int Animation::find_track(const NodePath& p_path) const {
for (int i=0; i<tracks.size(); i++) {
if (tracks[i]->path == p_path)
return i;
};
return -1;
};
void Animation::track_set_interpolation_type(int p_track,InterpolationType p_interp) {
ERR_FAIL_INDEX(p_track, tracks.size());
ERR_FAIL_INDEX(p_interp,3);
tracks[p_track]->interpolation=p_interp;
emit_changed();
}
Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),INTERPOLATION_NEAREST);
return tracks[p_track]->interpolation;
}
// transform
/*
template<class T>
int Animation::_insert_pos(float p_time, T& p_keys) {
// simple, linear time inset that should be fast enough in reality.
int idx=p_keys.size();
while(true) {
if (idx==0 || p_keys[idx-1].time < p_time) {
//condition for insertion.
p_keys.insert(idx,T());
return idx;
} else if (p_keys[idx-1].time == p_time) {
// condition for replacing.
return idx-1;
}
idx--;
}
}
*/
template<class T, class V>
int Animation::_insert(float p_time, T& p_keys, const V& p_value) {
int idx=p_keys.size();
while(true) {
if (idx==0 || p_keys[idx-1].time < p_time) {
//condition for insertion.
p_keys.insert(idx,p_value);
return idx;
} else if (p_keys[idx-1].time == p_time) {
// condition for replacing.
p_keys[idx-1]=p_value;
return idx-1;
}
idx--;
}
return -1;
}
template<class T>
void Animation::_clear(T& p_keys) {
p_keys.clear();
}
Error Animation::transform_track_get_key(int p_track, int p_key, Vector3* r_loc, Quat* r_rot, Vector3* r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER);
Track *t=tracks[p_track];
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_key,tt->transforms.size(),ERR_INVALID_PARAMETER);
if (r_loc)
*r_loc=tt->transforms[p_key].value.loc;
if (r_rot)
*r_rot=tt->transforms[p_key].value.rot;
if (r_scale)
*r_scale=tt->transforms[p_key].value.scale;
return OK;
}
int Animation::transform_track_insert_key(int p_track, float p_time, const Vector3 p_loc, const Quat& p_rot, const Vector3& p_scale) {
ERR_FAIL_INDEX_V(p_track, tracks.size(),-1);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,-1);
TransformTrack * tt = static_cast<TransformTrack*>(t);
TKey<TransformKey> tkey;
tkey.time=p_time;
tkey.value.loc=p_loc;
tkey.value.rot=p_rot;
tkey.value.scale=p_scale;
int ret = _insert( p_time, tt->transforms, tkey );
emit_changed();
return ret;
}
void Animation::track_remove_key_at_pos(int p_track, float p_pos) {
int idx = track_find_key(p_track,p_pos,true);
ERR_FAIL_COND(idx < 0);
track_remove_key(p_track,idx);
}
void Animation::track_remove_key(int p_track, int p_idx) {
ERR_FAIL_INDEX(p_track,tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX(p_idx,tt->transforms.size());
tt->transforms.remove(p_idx);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX(p_idx,vt->values.size());
vt->values.remove(p_idx);
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX(p_idx,mt->methods.size());
mt->methods.remove(p_idx);
} break;
}
emit_changed();
}
int Animation::track_find_key(int p_track, float p_time, bool p_exact) const {
ERR_FAIL_INDEX_V(p_track,tracks.size(),-1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
int k = _find(tt->transforms,p_time);
if (k<0 || k>=tt->transforms.size())
return -1;
if (tt->transforms[k].time!=p_time && p_exact)
return -1;
return k;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
int k = _find(vt->values,p_time);
if (k<0 || k>=vt->values.size())
return -1;
if (vt->values[k].time!=p_time && p_exact)
return -1;
return k;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
int k = _find(mt->methods,p_time);
if (k<0 || k>=mt->methods.size())
return -1;
if (mt->methods[k].time!=p_time && p_exact)
return -1;
return k;
} break;
}
return -1;
}
void Animation::track_insert_key(int p_track, float p_time, const Variant& p_value,float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
Dictionary d = p_value;
Vector3 loc;
if (d.has("loc"))
loc=d["loc"];
Quat rot;
if (d.has("rot"))
rot=d["rot"];
Vector3 scale;
if (d.has("scale"))
scale=d["scale"];
int idx = transform_track_insert_key(p_track,p_time,loc,rot,scale);
track_set_key_transition(p_track,idx,p_transition);
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
TKey<Variant> k;
k.time=p_time;
k.transition=p_transition;
k.value=p_value;
_insert( p_time, vt->values, k );
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_COND( p_value.get_type() != Variant::DICTIONARY );
Dictionary d=p_value;
ERR_FAIL_COND(!d.has("method") || d["method"].get_type()!=Variant::STRING);
ERR_FAIL_COND(!d.has("args") || !d["args"].is_array());
MethodKey k;
k.time=p_time;
k.transition=p_transition;
k.method=d["method"];
k.params=d["args"];
_insert( p_time, mt->methods, k );
} break;
}
emit_changed();
}
int Animation::track_get_key_count(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),-1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
return tt->transforms.size();
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
return vt->values.size();
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
return mt->methods.size();
} break;
}
ERR_FAIL_V(-1);
}
Variant Animation::track_get_key_value(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), Variant() );
Dictionary d;
d["loc"]=tt->transforms[p_key_idx].value.loc;
d["rot"]=tt->transforms[p_key_idx].value.rot;
d["scale"]=tt->transforms[p_key_idx].value.scale;
return d;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), Variant() );
return vt->values[p_key_idx].value;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), Variant() );
Dictionary d;
d["method"]=mt->methods[p_key_idx].method;
d["args"]=mt->methods[p_key_idx].params;
return d;
} break;
}
ERR_FAIL_V(Variant());
}
float Animation::track_get_key_time(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 );
return tt->transforms[p_key_idx].time;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 );
return vt->values[p_key_idx].time;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 );
return mt->methods[p_key_idx].time;
} break;
}
ERR_FAIL_V(-1);
}
float Animation::track_get_key_transition(int p_track, int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), -1);
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, tt->transforms.size(), -1 );
return tt->transforms[p_key_idx].transition;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, vt->values.size(), -1 );
return vt->values[p_key_idx].transition;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, mt->methods.size(), -1 );
return mt->methods[p_key_idx].transition;
} break;
}
ERR_FAIL_V(0);
}
void Animation::track_set_key_value(int p_track, int p_key_idx,const Variant& p_value) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, tt->transforms.size());
Dictionary d = p_value;
if (d.has("loc"))
tt->transforms[p_key_idx].value.loc=d["loc"];
if (d.has("rot"))
tt->transforms[p_key_idx].value.rot=d["rot"];
if (d.has("scale"))
tt->transforms[p_key_idx].value.scale=d["scale"];
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, vt->values.size());
vt->values[p_key_idx].value=p_value;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, mt->methods.size());
Dictionary d = p_value;
if (d.has("method"))
mt->methods[p_key_idx].method=d["method"];
if (d.has("args"))
mt->methods[p_key_idx].params=d["args"];
} break;
}
}
void Animation::track_set_key_transition(int p_track, int p_key_idx,float p_transition) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
switch(t->type) {
case TYPE_TRANSFORM: {
TransformTrack * tt = static_cast<TransformTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, tt->transforms.size());
tt->transforms[p_key_idx].transition=p_transition;
} break;
case TYPE_VALUE: {
ValueTrack * vt = static_cast<ValueTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, vt->values.size());
vt->values[p_key_idx].transition=p_transition;
} break;
case TYPE_METHOD: {
MethodTrack * mt = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX( p_key_idx, mt->methods.size());
mt->methods[p_key_idx].transition=p_transition;
} break;
}
}
template<class K>
int Animation::_find( const Vector<K>& p_keys, float p_time) const {
int len=p_keys.size();
if (len==0)
return -2;
int low = 0;
int high = len -1;
int middle;
const K* keys =&p_keys[0];
while( low <= high ) {
middle = ( low + high ) / 2;
if( p_time == keys[ middle ].time ) { //match
return middle;
} else if( p_time < keys[middle].time )
high = middle - 1; //search low end of array
else
low = middle + 1; //search high end of array
}
if (keys[middle].time>p_time)
middle--;
return middle;
}
Animation::TransformKey Animation::_interpolate( const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, float p_c) const {
TransformKey ret;
ret.loc=_interpolate(p_a.loc,p_b.loc,p_c);
ret.rot=_interpolate(p_a.rot,p_b.rot,p_c);
ret.scale=_interpolate(p_a.scale,p_b.scale,p_c);
return ret;
}
Vector3 Animation::_interpolate( const Vector3& p_a, const Vector3& p_b, float p_c) const {
return p_a.linear_interpolate(p_b,p_c);
}
Quat Animation::_interpolate( const Quat& p_a, const Quat& p_b, float p_c) const {
return p_a.slerp(p_b,p_c);
}
Variant Animation::_interpolate( const Variant& p_a, const Variant& p_b, float p_c) const {
Variant dst;
Variant::interpolate(p_a,p_b,p_c,dst);
return dst;
}
float Animation::_interpolate( const float& p_a, const float& p_b, float p_c) const {
return p_a*(1.0-p_c) + p_b*p_c;
}
Animation::TransformKey Animation::_cubic_interpolate( const Animation::TransformKey& p_pre_a, const Animation::TransformKey& p_a, const Animation::TransformKey& p_b, const Animation::TransformKey& p_post_b,float p_c) const {
Animation::TransformKey tk;
tk.loc = p_a.loc.cubic_interpolate(p_b.loc,p_pre_a.loc,p_post_b.loc,p_c);
tk.scale = p_a.scale.cubic_interpolate(p_b.scale,p_pre_a.scale,p_post_b.scale,p_c);
tk.rot = p_a.rot.cubic_slerp(p_b.rot,p_pre_a.rot,p_post_b.rot,p_c);
return tk;
}
Vector3 Animation::_cubic_interpolate( const Vector3& p_pre_a,const Vector3& p_a, const Vector3& p_b,const Vector3& p_post_b, float p_c) const {
return p_a.cubic_interpolate(p_b,p_pre_a,p_post_b,p_c);
}
Quat Animation::_cubic_interpolate( const Quat& p_pre_a,const Quat& p_a, const Quat& p_b,const Quat& p_post_b, float p_c) const {
return p_a.cubic_slerp(p_b,p_pre_a,p_post_b,p_c);
}
Variant Animation::_cubic_interpolate( const Variant& p_pre_a,const Variant& p_a, const Variant& p_b, const Variant& p_post_b,float p_c) const {
Variant::Type type_a=p_a.get_type();
Variant::Type type_b=p_b.get_type();
Variant::Type type_pa=p_pre_a.get_type();
Variant::Type type_pb=p_post_b.get_type();
//make int and real play along
uint32_t vformat=1<<type_a;
vformat|=1<<type_b;
vformat|=1<<type_pa;
vformat|=1<<type_pb;
if (vformat==((1<<Variant::INT)|(1<<Variant::REAL)) || vformat==(1<<Variant::REAL)) {
//mix of real and int
real_t p0=p_pre_a;
real_t p1=p_a;
real_t p2=p_b;
real_t p3=p_post_b;
float t = p_c;
float t2 = t * t;
float t3 = t2 * t;
return
0.5f * ( ( p1 * 2.0f) +
( -p0 + p2 ) * t +
( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
} else if ((vformat & (vformat - 1))) {
return p_a; //can't interpolate, mix of types
}
switch(type_a) {
case Variant::VECTOR2: {
Vector2 a=p_a;
Vector2 b=p_b;
Vector2 pa=p_pre_a;
Vector2 pb=p_post_b;
return a.cubic_interpolate(b,pa,pb,p_c);
} break;
case Variant::RECT2: {
Rect2 a=p_a;
Rect2 b=p_b;
Rect2 pa=p_pre_a;
Rect2 pb=p_post_b;
return Rect2(
a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c),
a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c)
);
} break;
case Variant::VECTOR3: {
Vector3 a=p_a;
Vector3 b=p_b;
Vector3 pa=p_pre_a;
Vector3 pb=p_post_b;
return a.cubic_interpolate(b,pa,pb,p_c);
} break;
case Variant::QUAT: {
Quat a=p_a;
Quat b=p_b;
Quat pa=p_pre_a;
Quat pb=p_post_b;
return a.cubic_slerp(b,pa,pb,p_c);
} break;
case Variant::_AABB: {
AABB a=p_a;
AABB b=p_b;
AABB pa=p_pre_a;
AABB pb=p_post_b;
return AABB(
a.pos.cubic_interpolate(b.pos,pa.pos,pb.pos,p_c),
a.size.cubic_interpolate(b.size,pa.size,pb.size,p_c)
);
} break;
default: {
return _interpolate(p_a,p_b,p_c);
}
}
return Variant();
}
float Animation::_cubic_interpolate( const float& p_pre_a,const float& p_a, const float& p_b, const float& p_post_b, float p_c) const {
return _interpolate(p_a,p_b,p_c);
}
template<class T>
T Animation::_interpolate( const Vector< TKey<T> >& p_keys, float p_time, InterpolationType p_interp, bool *p_ok) const {
int len=_find( p_keys, length )+1; // try to find last key (there may be more past the end)
if (len<=0) {
// (-1 or -2 returned originally) (plus one above)
// meaning no keys, or only key time is larger than length
if (p_ok)
*p_ok=false;
return T();
} else if (len==1) { // one key found (0+1), return it
if (p_ok)
*p_ok=true;
return p_keys[0].value;
}
int idx=_find(p_keys, p_time);
ERR_FAIL_COND_V( idx==-2, T());
if (p_ok)
*p_ok=true;
int next=0;
float c=0;
// prepare for all cases of interpolation
if (loop) {
// loop
if (idx>=0) {
if ((idx+1) < len) {
next=idx+1;
float delta=p_keys[next].time - p_keys[idx].time;
float from=p_time-p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
} else {
next=0;
float delta=(length - p_keys[idx].time) + p_keys[next].time;
float from=p_time-p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
}
} else {
// on loop, behind first key
idx=len-1;
next=0;
float endtime=(length - p_keys[idx].time);
if (endtime<0) // may be keys past the end
endtime=0;
float delta=endtime + p_keys[next].time;
float from=endtime+p_time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
}
} else { // no loop
if (idx>=0) {
if ((idx+1) < len) {
next=idx+1;
float delta=p_keys[next].time - p_keys[idx].time;
float from=p_time - p_keys[idx].time;
if (Math::absf(delta)>CMP_EPSILON)
c=from/delta;
else
c=0;
} else {
next=idx;
}
} else if (idx<0) {
idx=next=0;
}
}
float tr = p_keys[idx].transition;
if (tr==0 || idx==next) {
// don't interpolate if not needed
return p_keys[idx].value;
}
if (tr!=1.0) {
c = Math::ease(c,tr);
}
switch(p_interp) {
case INTERPOLATION_NEAREST: {
return p_keys[idx].value;
} break;
case INTERPOLATION_LINEAR: {
return _interpolate(p_keys[idx].value, p_keys[next].value, c);
} break;
case INTERPOLATION_CUBIC: {
int pre = idx-1;
if (pre<0)
pre=0;
int post = next+1;
if (post>=len)
post=next;
return _cubic_interpolate(p_keys[pre].value,p_keys[idx].value, p_keys[next].value,p_keys[post].value, c);
} break;
default: return p_keys[idx].value;
}
// do a barrel roll
}
Error Animation::transform_track_interpolate(int p_track, float p_time, Vector3 * r_loc, Quat *r_rot, Vector3 *r_scale) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),ERR_INVALID_PARAMETER);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_TRANSFORM,ERR_INVALID_PARAMETER);
TransformTrack * tt = static_cast<TransformTrack*>(t);
bool ok;
TransformKey tk = _interpolate( tt->transforms, p_time, tt->interpolation, &ok );
if (!ok) // ??
return ERR_UNAVAILABLE;
if (r_loc)
*r_loc=tk.loc;
if (r_rot)
*r_rot=tk.rot;
if (r_scale)
*r_scale=tk.scale;
return OK;
}
Variant Animation::value_track_interpolate(int p_track, float p_time) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),0);
Track *t=tracks[p_track];
ERR_FAIL_COND_V(t->type!=TYPE_VALUE, Variant());
ValueTrack * vt = static_cast<ValueTrack*>(t);
bool ok;
Variant res = _interpolate( vt->values, p_time, vt->update_mode==UPDATE_CONTINUOUS?vt->interpolation:INTERPOLATION_NEAREST, &ok );
if (ok) {
return res;
}
return Variant();
}
void Animation::_value_track_get_key_indices_in_range(const ValueTrack * vt, float from_time, float to_time,List<int> *p_indices) const {
if (from_time!=length && to_time==length)
to_time=length*1.01; //include a little more if at the end
int to=_find( vt->values, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to>=0 && vt->values[to].time>=to_time)
to--;
if (to<0)
return; // not bother
int from=_find( vt->values, from_time);
// position in the right first event.+
if (from<0 || vt->values[from].time<from_time)
from++;
int max=vt->values.size();
for (int i=from;i<=to;i++) {
ERR_CONTINUE( i<0 || i>=max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::value_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_VALUE );
ValueTrack * vt = static_cast<ValueTrack*>(t);
float from_time=p_time-p_delta;
float to_time=p_time;
if (from_time>to_time)
SWAP(from_time,to_time);
if (loop) {
from_time=Math::fposmod(from_time,length);
to_time=Math::fposmod(to_time,length);
if (from_time>to_time) {
// handle loop by splitting
_value_track_get_key_indices_in_range(vt,length-from_time,length,p_indices);
_value_track_get_key_indices_in_range(vt,0,to_time,p_indices);
return;
}
} else {
if (from_time<0)
from_time=0;
if (from_time>length)
from_time=length;
if (to_time<0)
to_time=0;
if (to_time>length)
to_time=length;
}
_value_track_get_key_indices_in_range(vt,from_time,to_time,p_indices);
}
void Animation::value_track_set_update_mode(int p_track, UpdateMode p_mode) {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_VALUE );
ERR_FAIL_INDEX(p_mode,3);
ValueTrack * vt = static_cast<ValueTrack*>(t);
vt->update_mode=p_mode;
}
Animation::UpdateMode Animation::value_track_get_update_mode(int p_track) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(), UPDATE_CONTINUOUS);
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_VALUE, UPDATE_CONTINUOUS );
ValueTrack * vt = static_cast<ValueTrack*>(t);
return vt->update_mode;
}
void Animation::_method_track_get_key_indices_in_range(const MethodTrack * mt, float from_time, float to_time,List<int> *p_indices) const {
if (from_time!=length && to_time==length)
to_time=length*1.01; //include a little more if at the end
int to=_find( mt->methods, to_time);
// can't really send the events == time, will be sent in the next frame.
// if event>=len then it will probably never be requested by the anim player.
if (to>=0 && mt->methods[to].time>=to_time)
to--;
if (to<0)
return; // not bother
int from=_find( mt->methods, from_time);
// position in the right first event.+
if (from<0 || mt->methods[from].time<from_time)
from++;
int max=mt->methods.size();
for (int i=from;i<=to;i++) {
ERR_CONTINUE( i<0 || i>=max); // shouldn't happen
p_indices->push_back(i);
}
}
void Animation::method_track_get_key_indices(int p_track, float p_time, float p_delta,List<int> *p_indices) const {
ERR_FAIL_INDEX(p_track, tracks.size());
Track *t=tracks[p_track];
ERR_FAIL_COND( t->type != TYPE_METHOD );
MethodTrack * mt = static_cast<MethodTrack*>(t);
float from_time=p_time-p_delta;
float to_time=p_time;
if (from_time>to_time)
SWAP(from_time,to_time);
if (loop) {
if (from_time > length || from_time < 0)
from_time=Math::fposmod(from_time,length);
if (to_time > length || to_time < 0)
to_time=Math::fposmod(to_time,length);
if (from_time>to_time) {
// handle loop by splitting
_method_track_get_key_indices_in_range(mt,from_time,length,p_indices);
_method_track_get_key_indices_in_range(mt,0,to_time,p_indices);
return;
}
} else {
if (from_time<0)
from_time=0;
if (from_time>length)
from_time=length;
if (to_time<0)
to_time=0;
if (to_time>length)
to_time=length;
}
_method_track_get_key_indices_in_range(mt,from_time,to_time,p_indices);
}
Vector<Variant> Animation::method_track_get_params(int p_track,int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),Vector<Variant>());
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_METHOD, Vector<Variant>() );
MethodTrack * pm = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), Vector<Variant>() );
const MethodKey& mk=pm->methods[p_key_idx];
return mk.params;
}
StringName Animation::method_track_get_name(int p_track,int p_key_idx) const {
ERR_FAIL_INDEX_V(p_track, tracks.size(),StringName());
Track *t=tracks[p_track];
ERR_FAIL_COND_V( t->type != TYPE_METHOD, StringName() );
MethodTrack * pm = static_cast<MethodTrack*>(t);
ERR_FAIL_INDEX_V( p_key_idx, pm->methods.size(), StringName() );
return pm->methods[ p_key_idx ].method;
}
void Animation::set_length(float p_length) {
ERR_FAIL_COND( length<0 );
length=p_length;
emit_changed();
}
float Animation::get_length() const {
return length;
}
void Animation::set_loop(bool p_enabled) {
loop=p_enabled;
emit_changed();
}
bool Animation::has_loop() const {
return loop;
}
void Animation::track_move_up(int p_track) {
if (p_track>=0 && p_track<(tracks.size()-1)) {
SWAP( tracks[p_track], tracks[p_track+1] );
}
emit_changed();
}
void Animation::track_set_imported(int p_track,bool p_imported) {
ERR_FAIL_INDEX(p_track,tracks.size());
tracks[p_track]->imported=p_imported;
}
bool Animation::track_is_imported(int p_track) const{
ERR_FAIL_INDEX_V(p_track,tracks.size(),false);
return tracks[p_track]->imported;
}
void Animation::track_move_down(int p_track) {
if (p_track>0 && p_track<tracks.size()) {
SWAP( tracks[p_track], tracks[p_track-1] );
}
emit_changed();
}
void Animation::set_step(float p_step) {
step=p_step;
emit_changed();
}
float Animation::get_step() const{
return step;
}
void Animation::_bind_methods() {
ClassDB::bind_method(_MD("add_track","type","at_pos"),&Animation::add_track,DEFVAL(-1));
ClassDB::bind_method(_MD("remove_track","idx"),&Animation::remove_track);
ClassDB::bind_method(_MD("get_track_count"),&Animation::get_track_count);
ClassDB::bind_method(_MD("track_get_type","idx"),&Animation::track_get_type);
ClassDB::bind_method(_MD("track_get_path","idx"),&Animation::track_get_path);
ClassDB::bind_method(_MD("track_set_path","idx","path"),&Animation::track_set_path);
ClassDB::bind_method(_MD("find_track","path"),&Animation::find_track);
ClassDB::bind_method(_MD("track_move_up","idx"),&Animation::track_move_up);
ClassDB::bind_method(_MD("track_move_down","idx"),&Animation::track_move_down);
ClassDB::bind_method(_MD("track_set_imported","idx","imported"),&Animation::track_set_imported);
ClassDB::bind_method(_MD("track_is_imported","idx"),&Animation::track_is_imported);
ClassDB::bind_method(_MD("transform_track_insert_key","idx","time","loc","rot","scale"),&Animation::transform_track_insert_key);
ClassDB::bind_method(_MD("track_insert_key","idx","time","key","transition"),&Animation::track_insert_key,DEFVAL(1));
ClassDB::bind_method(_MD("track_remove_key","idx","key_idx"),&Animation::track_remove_key);
ClassDB::bind_method(_MD("track_remove_key_at_pos","idx","pos"),&Animation::track_remove_key_at_pos);
ClassDB::bind_method(_MD("track_set_key_value","idx","key","value"),&Animation::track_set_key_value);
ClassDB::bind_method(_MD("track_set_key_transition","idx","key_idx","transition"),&Animation::track_set_key_transition);
ClassDB::bind_method(_MD("track_get_key_transition","idx","key_idx"),&Animation::track_get_key_transition);
ClassDB::bind_method(_MD("track_get_key_count","idx"),&Animation::track_get_key_count);
ClassDB::bind_method(_MD("track_get_key_value","idx","key_idx"),&Animation::track_get_key_value);
ClassDB::bind_method(_MD("track_get_key_time","idx","key_idx"),&Animation::track_get_key_time);
ClassDB::bind_method(_MD("track_find_key","idx","time","exact"),&Animation::track_find_key,DEFVAL(false));
ClassDB::bind_method(_MD("track_set_interpolation_type","idx","interpolation"),&Animation::track_set_interpolation_type);
ClassDB::bind_method(_MD("track_get_interpolation_type","idx"),&Animation::track_get_interpolation_type);
ClassDB::bind_method(_MD("transform_track_interpolate","idx","time_sec"),&Animation::_transform_track_interpolate);
ClassDB::bind_method(_MD("value_track_set_update_mode","idx","mode"),&Animation::value_track_set_update_mode);
ClassDB::bind_method(_MD("value_track_get_update_mode","idx"),&Animation::value_track_get_update_mode);
ClassDB::bind_method(_MD("value_track_get_key_indices","idx","time_sec","delta"),&Animation::_value_track_get_key_indices);
ClassDB::bind_method(_MD("method_track_get_key_indices","idx","time_sec","delta"),&Animation::_method_track_get_key_indices);
ClassDB::bind_method(_MD("method_track_get_name","idx","key_idx"),&Animation::method_track_get_name);
ClassDB::bind_method(_MD("method_track_get_params","idx","key_idx"),&Animation::method_track_get_params);
ClassDB::bind_method(_MD("set_length","time_sec"),&Animation::set_length);
ClassDB::bind_method(_MD("get_length"),&Animation::get_length);
ClassDB::bind_method(_MD("set_loop","enabled"),&Animation::set_loop);
ClassDB::bind_method(_MD("has_loop"),&Animation::has_loop);
ClassDB::bind_method(_MD("set_step","size_sec"),&Animation::set_step);
ClassDB::bind_method(_MD("get_step"),&Animation::get_step);
ClassDB::bind_method(_MD("clear"),&Animation::clear);
BIND_CONSTANT( TYPE_VALUE );
BIND_CONSTANT( TYPE_TRANSFORM );
BIND_CONSTANT( TYPE_METHOD );
BIND_CONSTANT( INTERPOLATION_NEAREST );
BIND_CONSTANT( INTERPOLATION_LINEAR );
BIND_CONSTANT( INTERPOLATION_CUBIC );
BIND_CONSTANT( UPDATE_CONTINUOUS );
BIND_CONSTANT( UPDATE_DISCRETE );
BIND_CONSTANT( UPDATE_TRIGGER );
}
void Animation::clear() {
for(int i=0;i<tracks.size();i++)
memdelete( tracks[i] );
tracks.clear();
loop=false;
length=1;
}
bool Animation::_transform_track_optimize_key(const TKey<TransformKey> &t0,const TKey<TransformKey> &t1, const TKey<TransformKey> &t2, float p_alowed_linear_err,float p_alowed_angular_err,float p_max_optimizable_angle,const Vector3& p_norm) {
real_t c = (t1.time-t0.time)/(t2.time-t0.time);
real_t t[3]={-1,-1,-1};
{ //translation
const Vector3 &v0=t0.value.loc;
const Vector3 &v1=t1.value.loc;
const Vector3 &v2=t2.value.loc;
if (v0.distance_to(v2)<CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1)>CMP_EPSILON) {
//not close, not optimizable
return false;
}
} else {
Vector3 pd = (v2-v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1<d0 || d1>d2) {
return false;
}
Vector3 s[2]={ v0, v2 };
real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1);
if (d>pd.length()*p_alowed_linear_err) {
return false; //beyond allowed error for colinearity
}
if (p_norm!=Vector3() && Math::acos(pd.normalized().dot(p_norm))>p_alowed_angular_err)
return false;
t[0] = (d1-d0)/(d2-d0);
}
}
{ //rotation
const Quat &q0=t0.value.rot;
const Quat &q1=t1.value.rot;
const Quat &q2=t2.value.rot;
//localize both to rotation from q0
if ((q0-q2).length() < CMP_EPSILON) {
if ((q0-q1).length() > CMP_EPSILON)
return false;
} else {
Quat r02 = (q0.inverse() * q2).normalized();
Quat r01 = (q0.inverse() * q1).normalized();
Vector3 v02,v01;
real_t a02,a01;
r02.get_axis_and_angle(v02,a02);
r01.get_axis_and_angle(v01,a01);
if (Math::abs(a02)>p_max_optimizable_angle)
return false;
if (v01.dot(v02)<0) {
//make sure both rotations go the same way to compare
v02=-v02;
a02=-a02;
}
real_t err_01 = Math::acos(v01.normalized().dot(v02.normalized()))/Math_PI;
if (err_01>p_alowed_angular_err) {
//not rotating in the same axis
return false;
}
if (a01*a02 < 0 ) {
//not rotating in the same direction
return false;
}
real_t tr = a01/a02;
if (tr<0 || tr>1)
return false; //rotating too much or too less
t[1]=tr;
}
}
{ //scale
const Vector3 &v0=t0.value.scale;
const Vector3 &v1=t1.value.scale;
const Vector3 &v2=t2.value.scale;
if (v0.distance_to(v2)<CMP_EPSILON) {
//0 and 2 are close, let's see if 1 is close
if (v0.distance_to(v1)>CMP_EPSILON) {
//not close, not optimizable
return false;
}
} else {
Vector3 pd = (v2-v0);
float d0 = pd.dot(v0);
float d1 = pd.dot(v1);
float d2 = pd.dot(v2);
if (d1<d0 || d1>d2) {
return false; //beyond segment range
}
Vector3 s[2]={ v0, v2 };
real_t d =Geometry::get_closest_point_to_segment(v1,s).distance_to(v1);
if (d>pd.length()*p_alowed_linear_err) {
return false; //beyond allowed error for colinearity
}
t[2] = (d1-d0)/(d2-d0);
}
}
bool erase=false;
if (t[0]==-1 && t[1]==-1 && t[2]==-1) {
erase=true;
} else {
erase=true;
real_t lt=-1;
for(int j=0;j<3;j++) {
//search for t on first, one must be it
if (t[j]!=-1) {
lt=t[j]; //official t
//validate rest
for(int k=j+1;k<3;k++) {
if (t[k]==-1)
continue;
if (Math::abs(lt-t[k])>p_alowed_linear_err) {
erase=false;
break;
}
}
break;
}
}
ERR_FAIL_COND_V( lt==-1,false );
if (erase) {
if (Math::abs(lt-c)>p_alowed_linear_err) {
//todo, evaluate changing the transition if this fails?
//this could be done as a second pass and would be
//able to optimize more
erase=false;
} else {
//print_line(itos(i)+"because of interp");
}
}
}
return erase;
}
void Animation::_transform_track_optimize(int p_idx,float p_alowed_linear_err,float p_alowed_angular_err,float p_max_optimizable_angle) {
ERR_FAIL_INDEX(p_idx,tracks.size());
ERR_FAIL_COND(tracks[p_idx]->type!=TYPE_TRANSFORM);
TransformTrack *tt= static_cast<TransformTrack*>(tracks[p_idx]);
bool prev_erased=false;
TKey<TransformKey> first_erased;
Vector3 norm;
for(int i=1;i<tt->transforms.size()-1;i++) {
TKey<TransformKey> &t0 = tt->transforms[i-1];
TKey<TransformKey> &t1 = tt->transforms[i];
TKey<TransformKey> &t2 = tt->transforms[i+1];
bool erase = _transform_track_optimize_key(t0,t1,t2,p_alowed_linear_err,p_alowed_angular_err,p_max_optimizable_angle,norm);
if (erase && !prev_erased) {
norm=(t2.value.loc-t1.value.loc).normalized();
}
if (prev_erased && !_transform_track_optimize_key(t0,first_erased,t2,p_alowed_linear_err,p_alowed_angular_err,p_max_optimizable_angle,norm)) {
//avoid error to go beyond first erased key
erase=false;
}
if (erase) {
if (!prev_erased) {
first_erased=t1;
prev_erased=true;
}
tt->transforms.remove(i);
i--;
} else {
prev_erased=false;
norm=Vector3();
}
// print_line(itos(i)+" could be eliminated: "+rtos(tr));
//}
}
}
void Animation::optimize(float p_allowed_linear_err,float p_allowed_angular_err,float p_angle_max) {
for(int i=0;i<tracks.size();i++) {
if (tracks[i]->type==TYPE_TRANSFORM)
_transform_track_optimize(i,p_allowed_linear_err,p_allowed_angular_err,p_angle_max);
}
}
Animation::Animation() {
step=0.1;
loop=false;
length=1;
}
Animation::~Animation() {
for(int i=0;i<tracks.size();i++)
memdelete( tracks[i] );
}