175 lines
5.0 KiB
C++
175 lines
5.0 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btGeometryUtil.h"
|
|
|
|
/*
|
|
Make sure this dummy function never changes so that it
|
|
can be used by probes that are checking whether the
|
|
library is actually installed.
|
|
*/
|
|
extern "C"
|
|
{
|
|
void btBulletMathProbe();
|
|
|
|
void btBulletMathProbe() {}
|
|
}
|
|
|
|
bool btGeometryUtil::isPointInsidePlanes(const btAlignedObjectArray<btVector3>& planeEquations, const btVector3& point, btScalar margin)
|
|
{
|
|
int numbrushes = planeEquations.size();
|
|
for (int i = 0; i < numbrushes; i++)
|
|
{
|
|
const btVector3& N1 = planeEquations[i];
|
|
btScalar dist = btScalar(N1.dot(point)) + btScalar(N1[3]) - margin;
|
|
if (dist > btScalar(0.))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool btGeometryUtil::areVerticesBehindPlane(const btVector3& planeNormal, const btAlignedObjectArray<btVector3>& vertices, btScalar margin)
|
|
{
|
|
int numvertices = vertices.size();
|
|
for (int i = 0; i < numvertices; i++)
|
|
{
|
|
const btVector3& N1 = vertices[i];
|
|
btScalar dist = btScalar(planeNormal.dot(N1)) + btScalar(planeNormal[3]) - margin;
|
|
if (dist > btScalar(0.))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations);
|
|
|
|
bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations)
|
|
{
|
|
int numbrushes = planeEquations.size();
|
|
for (int i = 0; i < numbrushes; i++)
|
|
{
|
|
const btVector3& N1 = planeEquations[i];
|
|
if (planeEquation.dot(N1) > btScalar(0.999))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void btGeometryUtil::getPlaneEquationsFromVertices(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& planeEquationsOut)
|
|
{
|
|
const int numvertices = vertices.size();
|
|
// brute force:
|
|
for (int i = 0; i < numvertices; i++)
|
|
{
|
|
const btVector3& N1 = vertices[i];
|
|
|
|
for (int j = i + 1; j < numvertices; j++)
|
|
{
|
|
const btVector3& N2 = vertices[j];
|
|
|
|
for (int k = j + 1; k < numvertices; k++)
|
|
{
|
|
const btVector3& N3 = vertices[k];
|
|
|
|
btVector3 planeEquation, edge0, edge1;
|
|
edge0 = N2 - N1;
|
|
edge1 = N3 - N1;
|
|
btScalar normalSign = btScalar(1.);
|
|
for (int ww = 0; ww < 2; ww++)
|
|
{
|
|
planeEquation = normalSign * edge0.cross(edge1);
|
|
if (planeEquation.length2() > btScalar(0.0001))
|
|
{
|
|
planeEquation.normalize();
|
|
if (notExist(planeEquation, planeEquationsOut))
|
|
{
|
|
planeEquation[3] = -planeEquation.dot(N1);
|
|
|
|
//check if inside, and replace supportingVertexOut if needed
|
|
if (areVerticesBehindPlane(planeEquation, vertices, btScalar(0.01)))
|
|
{
|
|
planeEquationsOut.push_back(planeEquation);
|
|
}
|
|
}
|
|
}
|
|
normalSign = btScalar(-1.);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void btGeometryUtil::getVerticesFromPlaneEquations(const btAlignedObjectArray<btVector3>& planeEquations, btAlignedObjectArray<btVector3>& verticesOut)
|
|
{
|
|
const int numbrushes = planeEquations.size();
|
|
// brute force:
|
|
for (int i = 0; i < numbrushes; i++)
|
|
{
|
|
const btVector3& N1 = planeEquations[i];
|
|
|
|
for (int j = i + 1; j < numbrushes; j++)
|
|
{
|
|
const btVector3& N2 = planeEquations[j];
|
|
|
|
for (int k = j + 1; k < numbrushes; k++)
|
|
{
|
|
const btVector3& N3 = planeEquations[k];
|
|
|
|
btVector3 n2n3;
|
|
n2n3 = N2.cross(N3);
|
|
btVector3 n3n1;
|
|
n3n1 = N3.cross(N1);
|
|
btVector3 n1n2;
|
|
n1n2 = N1.cross(N2);
|
|
|
|
if ((n2n3.length2() > btScalar(0.0001)) &&
|
|
(n3n1.length2() > btScalar(0.0001)) &&
|
|
(n1n2.length2() > btScalar(0.0001)))
|
|
{
|
|
//point P out of 3 plane equations:
|
|
|
|
// d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
|
|
//P = -------------------------------------------------------------------------
|
|
// N1 . ( N2 * N3 )
|
|
|
|
btScalar quotient = (N1.dot(n2n3));
|
|
if (btFabs(quotient) > btScalar(0.000001))
|
|
{
|
|
quotient = btScalar(-1.) / quotient;
|
|
n2n3 *= N1[3];
|
|
n3n1 *= N2[3];
|
|
n1n2 *= N3[3];
|
|
btVector3 potentialVertex = n2n3;
|
|
potentialVertex += n3n1;
|
|
potentialVertex += n1n2;
|
|
potentialVertex *= quotient;
|
|
|
|
//check if inside, and replace supportingVertexOut if needed
|
|
if (isPointInsidePlanes(planeEquations, potentialVertex, btScalar(0.01)))
|
|
{
|
|
verticesOut.push_back(potentialVertex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|