godot/scene/3d/cpu_particles.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

1685 lines
63 KiB
C++

/**************************************************************************/
/* cpu_particles.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "cpu_particles.h"
#include "core/os/os.h"
#include "scene/3d/camera.h"
#include "scene/3d/particles.h"
#include "scene/resources/particles_material.h"
#include "servers/visual_server.h"
AABB CPUParticles::get_aabb() const {
return AABB();
}
PoolVector<Face3> CPUParticles::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void CPUParticles::_set_particles_processing(bool p_enable) {
if (_interpolated) {
set_physics_process_internal(p_enable);
} else {
set_process_internal(p_enable);
}
}
void CPUParticles::set_emitting(bool p_emitting) {
if (emitting == p_emitting) {
return;
}
emitting = p_emitting;
if (emitting) {
_set_particles_processing(true);
// first update before rendering to avoid one frame delay after emitting starts
if ((time == 0) && !_interpolated) {
_update_internal(false);
}
}
}
void CPUParticles::set_amount(int p_amount) {
ERR_FAIL_COND_MSG(p_amount < 1, "Amount of particles must be greater than 0.");
particles.resize(p_amount);
particles_prev.resize(p_amount);
{
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < p_amount; i++) {
w[i].active = false;
w[i].custom[3] = 0.0; // Make sure w component isn't garbage data
particles_prev[i].blank();
}
}
particle_data.resize((12 + 4 + 1) * p_amount);
particle_data_prev.resize(particle_data.size());
// We must fill immediately to prevent garbage data and Nans
// being sent to the visual server with set_as_bulk_array,
// if this is sent before being regularly updated.
particle_data.fill(0);
particle_data_prev.fill(0);
VS::get_singleton()->multimesh_allocate(multimesh, p_amount, VS::MULTIMESH_TRANSFORM_3D, VS::MULTIMESH_COLOR_8BIT, VS::MULTIMESH_CUSTOM_DATA_FLOAT);
particle_order.resize(p_amount);
}
void CPUParticles::set_lifetime(float p_lifetime) {
ERR_FAIL_COND_MSG(p_lifetime <= 0, "Particles lifetime must be greater than 0.");
lifetime = p_lifetime;
}
void CPUParticles::set_one_shot(bool p_one_shot) {
one_shot = p_one_shot;
}
void CPUParticles::set_pre_process_time(float p_time) {
pre_process_time = p_time;
}
void CPUParticles::set_explosiveness_ratio(float p_ratio) {
explosiveness_ratio = p_ratio;
}
void CPUParticles::set_randomness_ratio(float p_ratio) {
randomness_ratio = p_ratio;
}
void CPUParticles::set_lifetime_randomness(float p_random) {
lifetime_randomness = p_random;
}
void CPUParticles::set_use_local_coordinates(bool p_enable) {
local_coords = p_enable;
// prevent sending instance transforms when using global coords
set_instance_use_identity_transform(!p_enable);
}
void CPUParticles::set_speed_scale(float p_scale) {
speed_scale = p_scale;
}
bool CPUParticles::is_emitting() const {
return emitting;
}
int CPUParticles::get_amount() const {
return particles.size();
}
float CPUParticles::get_lifetime() const {
return lifetime;
}
bool CPUParticles::get_one_shot() const {
return one_shot;
}
float CPUParticles::get_pre_process_time() const {
return pre_process_time;
}
float CPUParticles::get_explosiveness_ratio() const {
return explosiveness_ratio;
}
float CPUParticles::get_randomness_ratio() const {
return randomness_ratio;
}
float CPUParticles::get_lifetime_randomness() const {
return lifetime_randomness;
}
bool CPUParticles::get_use_local_coordinates() const {
return local_coords;
}
float CPUParticles::get_speed_scale() const {
return speed_scale;
}
void CPUParticles::set_draw_order(DrawOrder p_order) {
ERR_FAIL_INDEX(p_order, DRAW_ORDER_MAX);
draw_order = p_order;
}
CPUParticles::DrawOrder CPUParticles::get_draw_order() const {
return draw_order;
}
void CPUParticles::set_mesh(const Ref<Mesh> &p_mesh) {
mesh = p_mesh;
if (mesh.is_valid()) {
VS::get_singleton()->multimesh_set_mesh(multimesh, mesh->get_rid());
} else {
VS::get_singleton()->multimesh_set_mesh(multimesh, RID());
}
}
Ref<Mesh> CPUParticles::get_mesh() const {
return mesh;
}
void CPUParticles::set_fixed_fps(int p_count) {
fixed_fps = p_count;
}
int CPUParticles::get_fixed_fps() const {
return fixed_fps;
}
void CPUParticles::set_fractional_delta(bool p_enable) {
fractional_delta = p_enable;
}
bool CPUParticles::get_fractional_delta() const {
return fractional_delta;
}
String CPUParticles::get_configuration_warning() const {
String warnings = GeometryInstance::get_configuration_warning();
bool mesh_found = false;
bool anim_material_found = false;
if (get_mesh().is_valid()) {
mesh_found = true;
for (int j = 0; j < get_mesh()->get_surface_count(); j++) {
anim_material_found = Object::cast_to<ShaderMaterial>(get_mesh()->surface_get_material(j).ptr()) != nullptr;
SpatialMaterial *spat = Object::cast_to<SpatialMaterial>(get_mesh()->surface_get_material(j).ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == SpatialMaterial::BILLBOARD_PARTICLES);
}
}
anim_material_found = anim_material_found || Object::cast_to<ShaderMaterial>(get_material_override().ptr()) != nullptr;
SpatialMaterial *spat = Object::cast_to<SpatialMaterial>(get_material_override().ptr());
anim_material_found = anim_material_found || (spat && spat->get_billboard_mode() == SpatialMaterial::BILLBOARD_PARTICLES);
if (!mesh_found) {
if (warnings != String()) {
warnings += "\n";
}
warnings += "- " + TTR("Nothing is visible because no mesh has been assigned.");
}
if (!anim_material_found && (get_param(PARAM_ANIM_SPEED) != 0.0 || get_param(PARAM_ANIM_OFFSET) != 0.0 || get_param_curve(PARAM_ANIM_SPEED).is_valid() || get_param_curve(PARAM_ANIM_OFFSET).is_valid())) {
if (warnings != String()) {
warnings += "\n";
}
warnings += "- " + TTR("CPUParticles animation requires the usage of a SpatialMaterial whose Billboard Mode is set to \"Particle Billboard\".");
}
return warnings;
}
void CPUParticles::restart() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
emitting = false;
{
int pc = particles.size();
PoolVector<Particle>::Write w = particles.write();
for (int i = 0; i < pc; i++) {
w[i].active = false;
}
}
set_emitting(true);
}
void CPUParticles::set_direction(Vector3 p_direction) {
direction = p_direction;
}
Vector3 CPUParticles::get_direction() const {
return direction;
}
void CPUParticles::set_spread(float p_spread) {
spread = p_spread;
}
float CPUParticles::get_spread() const {
return spread;
}
void CPUParticles::set_flatness(float p_flatness) {
flatness = p_flatness;
}
float CPUParticles::get_flatness() const {
return flatness;
}
void CPUParticles::set_param(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
parameters[p_param] = p_value;
}
float CPUParticles::get_param(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return parameters[p_param];
}
void CPUParticles::set_param_randomness(Parameter p_param, float p_value) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
randomness[p_param] = p_value;
}
float CPUParticles::get_param_randomness(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, 0);
return randomness[p_param];
}
static void _adjust_curve_range(const Ref<Curve> &p_curve, float p_min, float p_max) {
Ref<Curve> curve = p_curve;
if (!curve.is_valid()) {
return;
}
curve->ensure_default_setup(p_min, p_max);
}
void CPUParticles::set_param_curve(Parameter p_param, const Ref<Curve> &p_curve) {
ERR_FAIL_INDEX(p_param, PARAM_MAX);
curve_parameters[p_param] = p_curve;
switch (p_param) {
case PARAM_INITIAL_LINEAR_VELOCITY: {
//do none for this one
} break;
case PARAM_ANGULAR_VELOCITY: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_ORBIT_VELOCITY: {
_adjust_curve_range(p_curve, -500, 500);
} break;
case PARAM_LINEAR_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_RADIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_TANGENTIAL_ACCEL: {
_adjust_curve_range(p_curve, -200, 200);
} break;
case PARAM_DAMPING: {
_adjust_curve_range(p_curve, 0, 100);
} break;
case PARAM_ANGLE: {
_adjust_curve_range(p_curve, -360, 360);
} break;
case PARAM_SCALE: {
} break;
case PARAM_HUE_VARIATION: {
_adjust_curve_range(p_curve, -1, 1);
} break;
case PARAM_ANIM_SPEED: {
_adjust_curve_range(p_curve, 0, 200);
} break;
case PARAM_ANIM_OFFSET: {
} break;
default: {
}
}
}
Ref<Curve> CPUParticles::get_param_curve(Parameter p_param) const {
ERR_FAIL_INDEX_V(p_param, PARAM_MAX, Ref<Curve>());
return curve_parameters[p_param];
}
void CPUParticles::set_color(const Color &p_color) {
color = p_color;
}
Color CPUParticles::get_color() const {
return color;
}
void CPUParticles::set_color_ramp(const Ref<Gradient> &p_ramp) {
color_ramp = p_ramp;
}
Ref<Gradient> CPUParticles::get_color_ramp() const {
return color_ramp;
}
void CPUParticles::set_color_initial_ramp(const Ref<Gradient> &p_ramp) {
color_initial_ramp = p_ramp;
}
Ref<Gradient> CPUParticles::get_color_initial_ramp() const {
return color_initial_ramp;
}
void CPUParticles::set_particle_flag(Flags p_flag, bool p_enable) {
ERR_FAIL_INDEX(p_flag, FLAG_MAX);
flags[p_flag] = p_enable;
if (p_flag == FLAG_DISABLE_Z) {
_change_notify();
}
}
bool CPUParticles::get_particle_flag(Flags p_flag) const {
ERR_FAIL_INDEX_V(p_flag, FLAG_MAX, false);
return flags[p_flag];
}
void CPUParticles::set_emission_shape(EmissionShape p_shape) {
ERR_FAIL_INDEX(p_shape, EMISSION_SHAPE_MAX);
emission_shape = p_shape;
}
void CPUParticles::set_emission_sphere_radius(float p_radius) {
emission_sphere_radius = p_radius;
}
void CPUParticles::set_emission_box_extents(Vector3 p_extents) {
emission_box_extents = p_extents;
}
void CPUParticles::set_emission_points(const PoolVector<Vector3> &p_points) {
emission_points = p_points;
}
void CPUParticles::set_emission_normals(const PoolVector<Vector3> &p_normals) {
emission_normals = p_normals;
}
void CPUParticles::set_emission_colors(const PoolVector<Color> &p_colors) {
emission_colors = p_colors;
}
void CPUParticles::set_emission_ring_height(float p_height) {
emission_ring_height = p_height;
}
void CPUParticles::set_emission_ring_radius(float p_radius) {
emission_ring_radius = p_radius;
}
void CPUParticles::set_emission_ring_inner_radius(float p_offset) {
emission_ring_inner_radius = p_offset;
}
void CPUParticles::set_emission_ring_axis(Vector3 p_axis) {
emission_ring_axis = p_axis;
}
float CPUParticles::get_emission_sphere_radius() const {
return emission_sphere_radius;
}
Vector3 CPUParticles::get_emission_box_extents() const {
return emission_box_extents;
}
PoolVector<Vector3> CPUParticles::get_emission_points() const {
return emission_points;
}
PoolVector<Vector3> CPUParticles::get_emission_normals() const {
return emission_normals;
}
PoolVector<Color> CPUParticles::get_emission_colors() const {
return emission_colors;
}
float CPUParticles::get_emission_ring_height() const {
return emission_ring_height;
}
float CPUParticles::get_emission_ring_inner_radius() const {
return emission_ring_inner_radius;
}
float CPUParticles::get_emission_ring_radius() const {
return emission_ring_radius;
}
Vector3 CPUParticles::get_emission_ring_axis() const {
return emission_ring_axis;
}
CPUParticles::EmissionShape CPUParticles::get_emission_shape() const {
return emission_shape;
}
void CPUParticles::set_gravity(const Vector3 &p_gravity) {
gravity = p_gravity;
}
Vector3 CPUParticles::get_gravity() const {
return gravity;
}
void CPUParticles::_validate_property(PropertyInfo &property) const {
if (property.name == "emission_sphere_radius" && emission_shape != EMISSION_SHAPE_SPHERE) {
property.usage = 0;
}
if (property.name == "emission_box_extents" && emission_shape != EMISSION_SHAPE_BOX) {
property.usage = 0;
}
if ((property.name == "emission_points" || property.name == "emission_colors") && (emission_shape != EMISSION_SHAPE_POINTS) && (emission_shape != EMISSION_SHAPE_DIRECTED_POINTS)) {
property.usage = 0;
}
if (property.name == "emission_normals" && emission_shape != EMISSION_SHAPE_DIRECTED_POINTS) {
property.usage = 0;
}
if (property.name.begins_with("emission_ring") && emission_shape != EMISSION_SHAPE_RING) {
property.usage = 0;
}
if (property.name.begins_with("orbit_") && !flags[FLAG_DISABLE_Z]) {
property.usage = 0;
}
}
static uint32_t idhash(uint32_t x) {
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = ((x >> uint32_t(16)) ^ x) * uint32_t(0x45d9f3b);
x = (x >> uint32_t(16)) ^ x;
return x;
}
static float rand_from_seed(uint32_t &seed) {
int k;
int s = int(seed);
if (s == 0) {
s = 305420679;
}
k = s / 127773;
s = 16807 * (s - k * 127773) - 2836 * k;
if (s < 0) {
s += 2147483647;
}
seed = uint32_t(s);
return float(seed % uint32_t(65536)) / 65535.0;
}
void CPUParticles::_update_internal(bool p_on_physics_tick) {
if (particles.size() == 0 || !is_visible_in_tree()) {
_set_redraw(false);
return;
}
// change update mode?
_refresh_interpolation_state();
float delta = 0.0f;
// Is this update occurring on a physics tick (i.e. interpolated), or a frame tick?
if (p_on_physics_tick) {
delta = get_physics_process_delta_time();
} else {
delta = get_process_delta_time();
}
if (emitting) {
inactive_time = 0;
} else {
inactive_time += delta;
if (inactive_time > lifetime * 1.2) {
_set_particles_processing(false);
_set_redraw(false);
//reset variables
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
return;
}
}
_set_redraw(true);
bool processed = false;
if (time == 0 && pre_process_time > 0.0) {
float frame_time;
if (fixed_fps > 0) {
frame_time = 1.0 / fixed_fps;
} else {
frame_time = 1.0 / 30.0;
}
float todo = pre_process_time;
while (todo >= 0) {
_particles_process(frame_time);
processed = true;
todo -= frame_time;
}
}
if (fixed_fps > 0) {
float frame_time = 1.0 / fixed_fps;
float decr = frame_time;
float ldelta = delta;
if (ldelta > 0.1) { //avoid recursive stalls if fps goes below 10
ldelta = 0.1;
} else if (ldelta <= 0.0) { //unlikely but..
ldelta = 0.001;
}
float todo = frame_remainder + ldelta;
while (todo >= frame_time) {
_particles_process(frame_time);
processed = true;
todo -= decr;
}
frame_remainder = todo;
} else {
_particles_process(delta);
processed = true;
}
if (processed) {
_update_particle_data_buffer();
}
// If we are interpolating, we send the data to the VisualServer
// right away on a physics tick instead of waiting until a render frame.
if (p_on_physics_tick && redraw) {
_update_render_thread();
}
}
void CPUParticles::_particles_process(float p_delta) {
p_delta *= speed_scale;
int pcount = particles.size();
PoolVector<Particle>::Write w = particles.write();
Particle *parray = w.ptr();
float prev_time = time;
time += p_delta;
if (time > lifetime) {
time = Math::fmod(time, lifetime);
cycle++;
if (one_shot && cycle > 0) {
set_emitting(false);
_change_notify();
}
}
Transform emission_xform;
Basis velocity_xform;
if (!local_coords) {
emission_xform = get_global_transform();
velocity_xform = emission_xform.basis;
}
float system_phase = time / lifetime;
real_t physics_tick_delta = 1.0 / Engine::get_singleton()->get_iterations_per_second();
// Streaky particles can "prime" started particles by placing them back in time
// from the current physics tick, to place them in the position they would have reached
// had they been created in an infinite timestream (rather than at fixed iteration times).
bool streaky = _streaky && _interpolated && fractional_delta;
real_t streak_fraction = 1.0f;
for (int i = 0; i < pcount; i++) {
Particle &p = parray[i];
if (!emitting && !p.active) {
continue;
}
// For interpolation we need to keep a record of previous particles
if (_interpolated) {
p.copy_to(particles_prev[i]);
}
float local_delta = p_delta;
// The phase is a ratio between 0 (birth) and 1 (end of life) for each particle.
// While we use time in tests later on, for randomness we use the phase as done in the
// original shader code, and we later multiply by lifetime to get the time.
float restart_phase = float(i) / float(pcount);
if (randomness_ratio > 0.0) {
uint32_t seed = cycle;
if (restart_phase >= system_phase) {
seed -= uint32_t(1);
}
seed *= uint32_t(pcount);
seed += uint32_t(i);
float random = float(idhash(seed) % uint32_t(65536)) / 65536.0;
restart_phase += randomness_ratio * random * 1.0 / float(pcount);
}
restart_phase *= (1.0 - explosiveness_ratio);
float restart_time = restart_phase * lifetime;
bool restart = false;
if (time > prev_time) {
// restart_time >= prev_time is used so particles emit in the first frame they are processed
if (restart_time >= prev_time && restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
} else if (local_delta > 0.0) {
if (restart_time >= prev_time) {
restart = true;
if (fractional_delta) {
local_delta = lifetime - restart_time + time;
}
} else if (restart_time < time) {
restart = true;
if (fractional_delta) {
local_delta = time - restart_time;
}
}
}
// Normal condition for a starting particle, allow priming.
// Possibly test emitting flag here too, if profiling shows it helps.
if (streaky && restart) {
streak_fraction = local_delta / physics_tick_delta;
streak_fraction = CLAMP(streak_fraction, 0.0f, 1.0f);
}
if (p.time * (1.0 - explosiveness_ratio) > p.lifetime) {
restart = true;
// Not absolutely sure on this, may be able to streak this case,
// but turning off in case this is expected to be a similar timed
// explosion.
if (streaky) {
streak_fraction = 1.0f;
}
}
float tv = 0.0;
if (restart) {
if (!emitting) {
p.active = false;
continue;
}
p.active = true;
/*float tex_linear_velocity = 0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(0);
}*/
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(tv);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANGLE]->interpolate(tv);
}
p.seed = Math::rand();
p.angle_rand = Math::randf();
p.scale_rand = Math::randf();
p.hue_rot_rand = Math::randf();
p.anim_offset_rand = Math::randf();
if (color_initial_ramp.is_valid()) {
p.start_color_rand = color_initial_ramp->get_color_at_offset(Math::randf());
} else {
p.start_color_rand = Color(1, 1, 1, 1);
}
if (flags[FLAG_DISABLE_Z]) {
float angle1_rad = Math::atan2(direction.y, direction.x) + (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
Vector3 rot = Vector3(Math::cos(angle1_rad), Math::sin(angle1_rad), 0.0);
p.velocity = rot * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
} else {
//initiate velocity spread in 3D
float angle1_rad = (Math::randf() * 2.0 - 1.0) * Math_PI * spread / 180.0;
float angle2_rad = (Math::randf() * 2.0 - 1.0) * (1.0 - flatness) * Math_PI * spread / 180.0;
Vector3 direction_xz = Vector3(Math::sin(angle1_rad), 0, Math::cos(angle1_rad));
Vector3 direction_yz = Vector3(0, Math::sin(angle2_rad), Math::cos(angle2_rad));
Vector3 spread_direction = Vector3(direction_xz.x * direction_yz.z, direction_yz.y, direction_xz.z * direction_yz.z);
Vector3 direction_nrm = direction;
if (direction_nrm.length_squared() > 0) {
direction_nrm.normalize();
} else {
direction_nrm = Vector3(0, 0, 1);
}
// rotate spread to direction
Vector3 binormal = Vector3(0.0, 1.0, 0.0).cross(direction_nrm);
if (binormal.length_squared() < 0.00000001) {
// direction is parallel to Y. Choose Z as the binormal.
binormal = Vector3(0.0, 0.0, 1.0);
}
binormal.normalize();
Vector3 normal = binormal.cross(direction_nrm);
spread_direction = binormal * spread_direction.x + normal * spread_direction.y + direction_nrm * spread_direction.z;
p.velocity = spread_direction * parameters[PARAM_INITIAL_LINEAR_VELOCITY] * Math::lerp(1.0f, float(Math::randf()), randomness[PARAM_INITIAL_LINEAR_VELOCITY]);
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, p.angle_rand, randomness[PARAM_ANGLE]);
p.custom[0] = Math::deg2rad(base_angle); //angle
p.custom[1] = 0.0; //phase
p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]); //animation offset (0-1)
p.transform = Transform();
p.time = 0;
p.lifetime = lifetime * (1.0 - Math::randf() * lifetime_randomness);
p.base_color = Color(1, 1, 1, 1);
switch (emission_shape) {
case EMISSION_SHAPE_POINT: {
//do none
} break;
case EMISSION_SHAPE_SPHERE: {
float s = 2.0 * Math::randf() - 1.0, t = 2.0 * Math_PI * Math::randf();
float radius = emission_sphere_radius * Math::sqrt(1.0 - s * s);
p.transform.origin = Vector3(radius * Math::cos(t), radius * Math::sin(t), emission_sphere_radius * s);
} break;
case EMISSION_SHAPE_BOX: {
p.transform.origin = Vector3(Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0, Math::randf() * 2.0 - 1.0) * emission_box_extents;
} break;
case EMISSION_SHAPE_POINTS:
case EMISSION_SHAPE_DIRECTED_POINTS: {
int pc = emission_points.size();
if (pc == 0) {
break;
}
int random_idx = Math::rand() % pc;
p.transform.origin = emission_points.get(random_idx);
if (emission_shape == EMISSION_SHAPE_DIRECTED_POINTS && emission_normals.size() == pc) {
if (flags[FLAG_DISABLE_Z]) {
Vector3 normal = emission_normals.get(random_idx);
Vector2 normal_2d(normal.x, normal.y);
Transform2D m2;
m2.set_axis(0, normal_2d);
m2.set_axis(1, normal_2d.tangent());
Vector2 velocity_2d(p.velocity.x, p.velocity.y);
velocity_2d = m2.basis_xform(velocity_2d);
p.velocity.x = velocity_2d.x;
p.velocity.y = velocity_2d.y;
} else {
Vector3 normal = emission_normals.get(random_idx);
Vector3 v0 = Math::abs(normal.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(0, 1.0, 0.0);
Vector3 tangent = v0.cross(normal).normalized();
Vector3 bitangent = tangent.cross(normal).normalized();
Basis m3;
m3.set_axis(0, tangent);
m3.set_axis(1, bitangent);
m3.set_axis(2, normal);
p.velocity = m3.xform(p.velocity);
}
}
if (emission_colors.size() == pc) {
p.base_color = emission_colors.get(random_idx);
}
} break;
case EMISSION_SHAPE_RING: {
float ring_random_angle = Math::randf() * 2.0 * Math_PI;
float ring_random_radius = Math::randf() * (emission_ring_radius - emission_ring_inner_radius) + emission_ring_inner_radius;
Vector3 axis = emission_ring_axis.normalized();
Vector3 ortho_axis = Vector3();
if (axis == Vector3(1.0, 0.0, 0.0)) {
ortho_axis = Vector3(0.0, 1.0, 0.0).cross(axis);
} else {
ortho_axis = Vector3(1.0, 0.0, 0.0).cross(axis);
}
ortho_axis = ortho_axis.normalized();
ortho_axis.rotate(axis, ring_random_angle);
ortho_axis = ortho_axis.normalized();
p.transform.origin = ortho_axis * ring_random_radius + (Math::randf() * emission_ring_height - emission_ring_height / 2.0) * axis;
}
case EMISSION_SHAPE_MAX: { // Max value for validity check.
break;
}
}
// We could possibly attempt streaking with local_coords as well, but NYI
if (!local_coords) {
// Apply streaking interpolation of start positions between ticks
if (streaky) {
emission_xform = _get_global_transform_interpolated(streak_fraction);
velocity_xform = emission_xform.basis;
p.velocity = velocity_xform.xform(p.velocity);
// prime the particle by moving "backward" in time
real_t adjusted_delta = (1.0f - streak_fraction) * physics_tick_delta;
_particle_process(p, emission_xform, adjusted_delta, tv);
} else {
p.velocity = velocity_xform.xform(p.velocity);
}
p.transform = emission_xform * p.transform;
}
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
// Teleport if starting a new particle, so
// we don't get a streak from the old position
// to this new start.
if (_interpolated) {
p.copy_to(particles_prev[i]);
}
} else if (!p.active) {
continue;
} else if (p.time > p.lifetime) {
p.active = false;
tv = 1.0;
} else {
_particle_process(p, emission_xform, local_delta, tv);
}
//apply color
//apply hue rotation
float tex_scale = 1.0;
if (curve_parameters[PARAM_SCALE].is_valid()) {
tex_scale = curve_parameters[PARAM_SCALE]->interpolate(tv);
}
float tex_hue_variation = 0.0;
if (curve_parameters[PARAM_HUE_VARIATION].is_valid()) {
tex_hue_variation = curve_parameters[PARAM_HUE_VARIATION]->interpolate(tv);
}
float hue_rot_angle = (parameters[PARAM_HUE_VARIATION] + tex_hue_variation) * Math_PI * 2.0 * Math::lerp(1.0f, p.hue_rot_rand * 2.0f - 1.0f, randomness[PARAM_HUE_VARIATION]);
float hue_rot_c = Math::cos(hue_rot_angle);
float hue_rot_s = Math::sin(hue_rot_angle);
Basis hue_rot_mat;
{
Basis mat1(0.299, 0.587, 0.114, 0.299, 0.587, 0.114, 0.299, 0.587, 0.114);
Basis mat2(0.701, -0.587, -0.114, -0.299, 0.413, -0.114, -0.300, -0.588, 0.886);
Basis mat3(0.168, 0.330, -0.497, -0.328, 0.035, 0.292, 1.250, -1.050, -0.203);
for (int j = 0; j < 3; j++) {
hue_rot_mat[j] = mat1[j] + mat2[j] * hue_rot_c + mat3[j] * hue_rot_s;
}
}
if (color_ramp.is_valid()) {
p.color = color_ramp->get_color_at_offset(tv) * color;
} else {
p.color = color;
}
Vector3 color_rgb = hue_rot_mat.xform_inv(Vector3(p.color.r, p.color.g, p.color.b));
p.color.r = color_rgb.x;
p.color.g = color_rgb.y;
p.color.b = color_rgb.z;
p.color *= p.base_color * p.start_color_rand;
if (flags[FLAG_DISABLE_Z]) {
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1));
}
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
} else {
p.transform.basis.set_axis(0, Vector3(Math::cos(p.custom[0]), -Math::sin(p.custom[0]), 0.0));
p.transform.basis.set_axis(1, Vector3(Math::sin(p.custom[0]), Math::cos(p.custom[0]), 0.0));
p.transform.basis.set_axis(2, Vector3(0, 0, 1));
}
} else {
//orient particle Y towards velocity
if (flags[FLAG_ALIGN_Y_TO_VELOCITY]) {
if (p.velocity.length() > 0.0) {
p.transform.basis.set_axis(1, p.velocity.normalized());
} else {
p.transform.basis.set_axis(1, p.transform.basis.get_axis(1).normalized());
}
if (p.transform.basis.get_axis(1) == p.transform.basis.get_axis(0)) {
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
} else {
p.transform.basis.set_axis(2, p.transform.basis.get_axis(0).cross(p.transform.basis.get_axis(1)).normalized());
p.transform.basis.set_axis(0, p.transform.basis.get_axis(1).cross(p.transform.basis.get_axis(2)).normalized());
}
} else {
p.transform.basis.orthonormalize();
}
//turn particle by rotation in Y
if (flags[FLAG_ROTATE_Y]) {
Basis rot_y(Vector3(0, 1, 0), p.custom[0]);
p.transform.basis = p.transform.basis * rot_y;
}
}
//scale by scale
float base_scale = tex_scale * Math::lerp(parameters[PARAM_SCALE], 1.0f, p.scale_rand * randomness[PARAM_SCALE]);
// Prevent zero scale (which can cause rendering issues).
base_scale = SGN(base_scale) * MAX(Math::abs(base_scale), 0.000001);
p.transform.basis.scale(Vector3(1, 1, 1) * base_scale);
if (flags[FLAG_DISABLE_Z]) {
p.velocity.z = 0.0;
p.transform.origin.z = 0.0;
}
p.transform.origin += p.velocity * local_delta;
}
}
void CPUParticles::_particle_process(Particle &r_p, const Transform &p_emission_xform, float p_local_delta, float &r_tv) {
uint32_t alt_seed = r_p.seed;
r_p.time += p_local_delta;
r_p.custom[1] = r_p.time / lifetime;
r_tv = r_p.time / r_p.lifetime;
float tex_linear_velocity = 0.0;
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
tex_linear_velocity = curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY]->interpolate(r_tv);
}
float tex_orbit_velocity = 0.0;
if (flags[FLAG_DISABLE_Z]) {
if (curve_parameters[PARAM_ORBIT_VELOCITY].is_valid()) {
tex_orbit_velocity = curve_parameters[PARAM_ORBIT_VELOCITY]->interpolate(r_tv);
}
}
float tex_angular_velocity = 0.0;
if (curve_parameters[PARAM_ANGULAR_VELOCITY].is_valid()) {
tex_angular_velocity = curve_parameters[PARAM_ANGULAR_VELOCITY]->interpolate(r_tv);
}
float tex_linear_accel = 0.0;
if (curve_parameters[PARAM_LINEAR_ACCEL].is_valid()) {
tex_linear_accel = curve_parameters[PARAM_LINEAR_ACCEL]->interpolate(r_tv);
}
float tex_tangential_accel = 0.0;
if (curve_parameters[PARAM_TANGENTIAL_ACCEL].is_valid()) {
tex_tangential_accel = curve_parameters[PARAM_TANGENTIAL_ACCEL]->interpolate(r_tv);
}
float tex_radial_accel = 0.0;
if (curve_parameters[PARAM_RADIAL_ACCEL].is_valid()) {
tex_radial_accel = curve_parameters[PARAM_RADIAL_ACCEL]->interpolate(r_tv);
}
float tex_damping = 0.0;
if (curve_parameters[PARAM_DAMPING].is_valid()) {
tex_damping = curve_parameters[PARAM_DAMPING]->interpolate(r_tv);
}
float tex_angle = 0.0;
if (curve_parameters[PARAM_ANGLE].is_valid()) {
tex_angle = curve_parameters[PARAM_ANGLE]->interpolate(r_tv);
}
float tex_anim_speed = 0.0;
if (curve_parameters[PARAM_ANIM_SPEED].is_valid()) {
tex_anim_speed = curve_parameters[PARAM_ANIM_SPEED]->interpolate(r_tv);
}
float tex_anim_offset = 0.0;
if (curve_parameters[PARAM_ANIM_OFFSET].is_valid()) {
tex_anim_offset = curve_parameters[PARAM_ANIM_OFFSET]->interpolate(r_tv);
}
Vector3 force = gravity;
Vector3 position = r_p.transform.origin;
if (flags[FLAG_DISABLE_Z]) {
position.z = 0.0;
}
//apply linear acceleration
force += r_p.velocity.length() > 0.0 ? r_p.velocity.normalized() * (parameters[PARAM_LINEAR_ACCEL] + tex_linear_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_LINEAR_ACCEL]) : Vector3();
//apply radial acceleration
Vector3 org = p_emission_xform.origin;
Vector3 diff = position - org;
force += diff.length() > 0.0 ? diff.normalized() * (parameters[PARAM_RADIAL_ACCEL] + tex_radial_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_RADIAL_ACCEL]) : Vector3();
//apply tangential acceleration;
if (flags[FLAG_DISABLE_Z]) {
Vector2 yx = Vector2(diff.y, diff.x);
Vector2 yx2 = (yx * Vector2(-1.0, 1.0)).normalized();
force += yx.length() > 0.0 ? Vector3(yx2.x, yx2.y, 0.0) * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
} else {
Vector3 crossDiff = diff.normalized().cross(gravity.normalized());
force += crossDiff.length() > 0.0 ? crossDiff.normalized() * ((parameters[PARAM_TANGENTIAL_ACCEL] + tex_tangential_accel) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_TANGENTIAL_ACCEL])) : Vector3();
}
//apply attractor forces
r_p.velocity += force * p_local_delta;
//orbit velocity
if (flags[FLAG_DISABLE_Z]) {
float orbit_amount = (parameters[PARAM_ORBIT_VELOCITY] + tex_orbit_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ORBIT_VELOCITY]);
if (orbit_amount != 0.0) {
float ang = orbit_amount * p_local_delta * Math_PI * 2.0;
// Not sure why the ParticlesMaterial code uses a clockwise rotation matrix,
// but we use -ang here to reproduce its behavior.
Transform2D rot = Transform2D(-ang, Vector2());
Vector2 rotv = rot.basis_xform(Vector2(diff.x, diff.y));
r_p.transform.origin -= Vector3(diff.x, diff.y, 0);
r_p.transform.origin += Vector3(rotv.x, rotv.y, 0);
}
}
if (curve_parameters[PARAM_INITIAL_LINEAR_VELOCITY].is_valid()) {
r_p.velocity = r_p.velocity.normalized() * tex_linear_velocity;
}
if (parameters[PARAM_DAMPING] + tex_damping > 0.0) {
float v = r_p.velocity.length();
float damp = (parameters[PARAM_DAMPING] + tex_damping) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_DAMPING]);
v -= damp * p_local_delta;
if (v < 0.0) {
r_p.velocity = Vector3();
} else {
r_p.velocity = r_p.velocity.normalized() * v;
}
}
float base_angle = (parameters[PARAM_ANGLE] + tex_angle) * Math::lerp(1.0f, r_p.angle_rand, randomness[PARAM_ANGLE]);
base_angle += r_p.custom[1] * lifetime * (parameters[PARAM_ANGULAR_VELOCITY] + tex_angular_velocity) * Math::lerp(1.0f, rand_from_seed(alt_seed) * 2.0f - 1.0f, randomness[PARAM_ANGULAR_VELOCITY]);
r_p.custom[0] = Math::deg2rad(base_angle); //angle
r_p.custom[2] = (parameters[PARAM_ANIM_OFFSET] + tex_anim_offset) * Math::lerp(1.0f, r_p.anim_offset_rand, randomness[PARAM_ANIM_OFFSET]) + r_tv * (parameters[PARAM_ANIM_SPEED] + tex_anim_speed) * Math::lerp(1.0f, rand_from_seed(alt_seed), randomness[PARAM_ANIM_SPEED]); //angle
}
void CPUParticles::_update_particle_data_buffer() {
update_mutex.lock();
{
int pc = particles.size();
PoolVector<int>::Write ow;
int *order = nullptr;
PoolVector<float>::Write w = particle_data.write();
PoolVector<Particle>::Read r = particles.read();
float *ptr = w.ptr();
PoolVector<float>::Write w_prev;
float *ptr_prev = nullptr;
if (_interpolated) {
w_prev = particle_data_prev.write();
ptr_prev = w_prev.ptr();
}
if (draw_order != DRAW_ORDER_INDEX) {
ow = particle_order.write();
order = ow.ptr();
for (int i = 0; i < pc; i++) {
order[i] = i;
}
if (draw_order == DRAW_ORDER_LIFETIME) {
SortArray<int, SortLifetime> sorter;
sorter.compare.particles = r.ptr();
sorter.sort(order, pc);
} else if (draw_order == DRAW_ORDER_VIEW_DEPTH) {
ERR_FAIL_NULL(get_viewport());
Camera *c = get_viewport()->get_camera();
if (c) {
Vector3 dir = c->get_global_transform().basis.get_axis(2); //far away to close
// now if local_coords is not set, the particles are in global coords
// so should be sorted according to the camera direction
// will look different from Particles in editor as this is based on the camera in the scenetree
// and not the editor camera
dir = dir.normalized();
SortArray<int, SortAxis> sorter;
sorter.compare.particles = r.ptr();
sorter.compare.axis = dir;
sorter.sort(order, pc);
}
}
}
if (_interpolated) {
for (int i = 0; i < pc; i++) {
int idx = order ? order[i] : i;
_fill_particle_data(r[idx], ptr, r[idx].active);
ptr += 17;
_fill_particle_data(particles_prev[idx], ptr_prev, r[idx].active);
ptr_prev += 17;
}
} else {
for (int i = 0; i < pc; i++) {
int idx = order ? order[i] : i;
_fill_particle_data(r[idx], ptr, r[idx].active);
ptr += 17;
}
}
can_update.set();
}
update_mutex.unlock();
}
void CPUParticles::_refresh_interpolation_state() {
if (!is_inside_tree()) {
return;
}
bool interpolated = is_physics_interpolated_and_enabled();
if (_interpolated == interpolated) {
return;
}
bool curr_redraw = redraw;
// Remove all connections
// This isn't super efficient, but should only happen rarely.
_set_redraw(false);
_interpolated = interpolated;
if (_interpolated) {
set_process_internal(false);
set_physics_process_internal(emitting);
} else {
set_physics_process_internal(false);
set_process_internal(emitting);
}
// re-establish all connections
_set_redraw(curr_redraw);
}
void CPUParticles::_set_redraw(bool p_redraw) {
if (redraw == p_redraw) {
return;
}
redraw = p_redraw;
update_mutex.lock();
if (!_interpolated) {
if (redraw) {
VS::get_singleton()->connect("frame_pre_draw", this, "_update_render_thread");
} else {
if (VS::get_singleton()->is_connected("frame_pre_draw", this, "_update_render_thread")) {
VS::get_singleton()->disconnect("frame_pre_draw", this, "_update_render_thread");
}
}
}
if (redraw) {
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, true);
VS::get_singleton()->multimesh_set_visible_instances(multimesh, -1);
} else {
VS::get_singleton()->instance_geometry_set_flag(get_instance(), VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE, false);
VS::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
}
update_mutex.unlock();
}
void CPUParticles::_update_render_thread() {
if (OS::get_singleton()->is_update_pending(true)) {
update_mutex.lock();
if (can_update.is_set()) {
if (_interpolated) {
VS::get_singleton()->multimesh_set_as_bulk_array_interpolated(multimesh, particle_data, particle_data_prev);
} else {
VS::get_singleton()->multimesh_set_as_bulk_array(multimesh, particle_data);
}
can_update.clear(); //wait for next time
}
update_mutex.unlock();
}
}
void CPUParticles::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
set_process_internal(emitting);
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0) && !_interpolated) {
_update_internal(false);
}
}
if (p_what == NOTIFICATION_EXIT_TREE) {
_set_redraw(false);
}
if (p_what == NOTIFICATION_VISIBILITY_CHANGED) {
// first update before rendering to avoid one frame delay after emitting starts
if (emitting && (time == 0) && !_interpolated) {
_update_internal(false);
}
}
if (p_what == NOTIFICATION_INTERNAL_PROCESS) {
_update_internal(false);
}
if (p_what == NOTIFICATION_INTERNAL_PHYSICS_PROCESS) {
_update_internal(true);
}
}
void CPUParticles::convert_from_particles(Node *p_particles) {
Particles *particles = Object::cast_to<Particles>(p_particles);
ERR_FAIL_COND_MSG(!particles, "Only Particles nodes can be converted to CPUParticles.");
set_emitting(particles->is_emitting());
set_amount(particles->get_amount());
set_lifetime(particles->get_lifetime());
set_one_shot(particles->get_one_shot());
set_pre_process_time(particles->get_pre_process_time());
set_explosiveness_ratio(particles->get_explosiveness_ratio());
set_randomness_ratio(particles->get_randomness_ratio());
set_use_local_coordinates(particles->get_use_local_coordinates());
set_fixed_fps(particles->get_fixed_fps());
set_fractional_delta(particles->get_fractional_delta());
set_speed_scale(particles->get_speed_scale());
set_draw_order(DrawOrder(particles->get_draw_order()));
set_mesh(particles->get_draw_pass_mesh(0));
Ref<ParticlesMaterial> material = particles->get_process_material();
if (material.is_null()) {
return;
}
set_direction(material->get_direction());
set_spread(material->get_spread());
set_flatness(material->get_flatness());
set_color(material->get_color());
Ref<GradientTexture> gt = material->get_color_ramp();
if (gt.is_valid()) {
set_color_ramp(gt->get_gradient());
}
Ref<GradientTexture> gti = material->get_color_initial_ramp();
if (gti.is_valid()) {
set_color_initial_ramp(gti->get_gradient());
}
set_particle_flag(FLAG_ALIGN_Y_TO_VELOCITY, material->get_flag(ParticlesMaterial::FLAG_ALIGN_Y_TO_VELOCITY));
set_particle_flag(FLAG_ROTATE_Y, material->get_flag(ParticlesMaterial::FLAG_ROTATE_Y));
set_particle_flag(FLAG_DISABLE_Z, material->get_flag(ParticlesMaterial::FLAG_DISABLE_Z));
set_emission_shape(EmissionShape(material->get_emission_shape()));
set_emission_sphere_radius(material->get_emission_sphere_radius());
set_emission_box_extents(material->get_emission_box_extents());
set_emission_ring_height(material->get_emission_ring_height());
set_emission_ring_inner_radius(material->get_emission_ring_inner_radius());
set_emission_ring_radius(material->get_emission_ring_radius());
set_emission_ring_axis(material->get_emission_ring_axis());
set_gravity(material->get_gravity());
set_lifetime_randomness(material->get_lifetime_randomness());
#define CONVERT_PARAM(m_param) \
set_param(m_param, material->get_param(ParticlesMaterial::m_param)); \
{ \
Ref<CurveTexture> ctex = material->get_param_texture(ParticlesMaterial::m_param); \
if (ctex.is_valid()) \
set_param_curve(m_param, ctex->get_curve()); \
} \
set_param_randomness(m_param, material->get_param_randomness(ParticlesMaterial::m_param));
CONVERT_PARAM(PARAM_INITIAL_LINEAR_VELOCITY);
CONVERT_PARAM(PARAM_ANGULAR_VELOCITY);
CONVERT_PARAM(PARAM_ORBIT_VELOCITY);
CONVERT_PARAM(PARAM_LINEAR_ACCEL);
CONVERT_PARAM(PARAM_RADIAL_ACCEL);
CONVERT_PARAM(PARAM_TANGENTIAL_ACCEL);
CONVERT_PARAM(PARAM_DAMPING);
CONVERT_PARAM(PARAM_ANGLE);
CONVERT_PARAM(PARAM_SCALE);
CONVERT_PARAM(PARAM_HUE_VARIATION);
CONVERT_PARAM(PARAM_ANIM_SPEED);
CONVERT_PARAM(PARAM_ANIM_OFFSET);
#undef CONVERT_PARAM
}
void CPUParticles::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_emitting", "emitting"), &CPUParticles::set_emitting);
ClassDB::bind_method(D_METHOD("set_amount", "amount"), &CPUParticles::set_amount);
ClassDB::bind_method(D_METHOD("set_lifetime", "secs"), &CPUParticles::set_lifetime);
ClassDB::bind_method(D_METHOD("set_one_shot", "enable"), &CPUParticles::set_one_shot);
ClassDB::bind_method(D_METHOD("set_pre_process_time", "secs"), &CPUParticles::set_pre_process_time);
ClassDB::bind_method(D_METHOD("set_explosiveness_ratio", "ratio"), &CPUParticles::set_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("set_randomness_ratio", "ratio"), &CPUParticles::set_randomness_ratio);
ClassDB::bind_method(D_METHOD("set_lifetime_randomness", "random"), &CPUParticles::set_lifetime_randomness);
ClassDB::bind_method(D_METHOD("set_use_local_coordinates", "enable"), &CPUParticles::set_use_local_coordinates);
ClassDB::bind_method(D_METHOD("set_fixed_fps", "fps"), &CPUParticles::set_fixed_fps);
ClassDB::bind_method(D_METHOD("set_fractional_delta", "enable"), &CPUParticles::set_fractional_delta);
ClassDB::bind_method(D_METHOD("set_speed_scale", "scale"), &CPUParticles::set_speed_scale);
ClassDB::bind_method(D_METHOD("is_emitting"), &CPUParticles::is_emitting);
ClassDB::bind_method(D_METHOD("get_amount"), &CPUParticles::get_amount);
ClassDB::bind_method(D_METHOD("get_lifetime"), &CPUParticles::get_lifetime);
ClassDB::bind_method(D_METHOD("get_one_shot"), &CPUParticles::get_one_shot);
ClassDB::bind_method(D_METHOD("get_pre_process_time"), &CPUParticles::get_pre_process_time);
ClassDB::bind_method(D_METHOD("get_explosiveness_ratio"), &CPUParticles::get_explosiveness_ratio);
ClassDB::bind_method(D_METHOD("get_randomness_ratio"), &CPUParticles::get_randomness_ratio);
ClassDB::bind_method(D_METHOD("get_lifetime_randomness"), &CPUParticles::get_lifetime_randomness);
ClassDB::bind_method(D_METHOD("get_use_local_coordinates"), &CPUParticles::get_use_local_coordinates);
ClassDB::bind_method(D_METHOD("get_fixed_fps"), &CPUParticles::get_fixed_fps);
ClassDB::bind_method(D_METHOD("get_fractional_delta"), &CPUParticles::get_fractional_delta);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &CPUParticles::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_draw_order", "order"), &CPUParticles::set_draw_order);
ClassDB::bind_method(D_METHOD("get_draw_order"), &CPUParticles::get_draw_order);
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CPUParticles::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CPUParticles::get_mesh);
ClassDB::bind_method(D_METHOD("restart"), &CPUParticles::restart);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emitting"), "set_emitting", "is_emitting");
ADD_PROPERTY(PropertyInfo(Variant::INT, "amount", PROPERTY_HINT_EXP_RANGE, "1,1000000,1"), "set_amount", "get_amount");
ADD_GROUP("Time", "");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lifetime", PROPERTY_HINT_EXP_RANGE, "0.01,600.0,0.01,or_greater"), "set_lifetime", "get_lifetime");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "one_shot"), "set_one_shot", "get_one_shot");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "preprocess", PROPERTY_HINT_EXP_RANGE, "0.00,600.0,0.01"), "set_pre_process_time", "get_pre_process_time");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "speed_scale", PROPERTY_HINT_RANGE, "0,64,0.01"), "set_speed_scale", "get_speed_scale");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "explosiveness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_explosiveness_ratio", "get_explosiveness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_randomness_ratio", "get_randomness_ratio");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "lifetime_randomness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_lifetime_randomness", "get_lifetime_randomness");
ADD_PROPERTY(PropertyInfo(Variant::INT, "fixed_fps", PROPERTY_HINT_RANGE, "0,1000,1"), "set_fixed_fps", "get_fixed_fps");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fract_delta"), "set_fractional_delta", "get_fractional_delta");
ADD_GROUP("Drawing", "");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "local_coords"), "set_use_local_coordinates", "get_use_local_coordinates");
ADD_PROPERTY(PropertyInfo(Variant::INT, "draw_order", PROPERTY_HINT_ENUM, "Index,Lifetime,View Depth"), "set_draw_order", "get_draw_order");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
BIND_ENUM_CONSTANT(DRAW_ORDER_INDEX);
BIND_ENUM_CONSTANT(DRAW_ORDER_LIFETIME);
BIND_ENUM_CONSTANT(DRAW_ORDER_VIEW_DEPTH);
////////////////////////////////
ClassDB::bind_method(D_METHOD("set_direction", "direction"), &CPUParticles::set_direction);
ClassDB::bind_method(D_METHOD("get_direction"), &CPUParticles::get_direction);
ClassDB::bind_method(D_METHOD("set_spread", "degrees"), &CPUParticles::set_spread);
ClassDB::bind_method(D_METHOD("get_spread"), &CPUParticles::get_spread);
ClassDB::bind_method(D_METHOD("set_flatness", "amount"), &CPUParticles::set_flatness);
ClassDB::bind_method(D_METHOD("get_flatness"), &CPUParticles::get_flatness);
ClassDB::bind_method(D_METHOD("set_param", "param", "value"), &CPUParticles::set_param);
ClassDB::bind_method(D_METHOD("get_param", "param"), &CPUParticles::get_param);
ClassDB::bind_method(D_METHOD("set_param_randomness", "param", "randomness"), &CPUParticles::set_param_randomness);
ClassDB::bind_method(D_METHOD("get_param_randomness", "param"), &CPUParticles::get_param_randomness);
ClassDB::bind_method(D_METHOD("set_param_curve", "param", "curve"), &CPUParticles::set_param_curve);
ClassDB::bind_method(D_METHOD("get_param_curve", "param"), &CPUParticles::get_param_curve);
ClassDB::bind_method(D_METHOD("set_color", "color"), &CPUParticles::set_color);
ClassDB::bind_method(D_METHOD("get_color"), &CPUParticles::get_color);
ClassDB::bind_method(D_METHOD("set_color_ramp", "ramp"), &CPUParticles::set_color_ramp);
ClassDB::bind_method(D_METHOD("get_color_ramp"), &CPUParticles::get_color_ramp);
ClassDB::bind_method(D_METHOD("set_color_initial_ramp", "ramp"), &CPUParticles::set_color_initial_ramp);
ClassDB::bind_method(D_METHOD("get_color_initial_ramp"), &CPUParticles::get_color_initial_ramp);
ClassDB::bind_method(D_METHOD("set_particle_flag", "flag", "enable"), &CPUParticles::set_particle_flag);
ClassDB::bind_method(D_METHOD("get_particle_flag", "flag"), &CPUParticles::get_particle_flag);
ClassDB::bind_method(D_METHOD("set_emission_shape", "shape"), &CPUParticles::set_emission_shape);
ClassDB::bind_method(D_METHOD("get_emission_shape"), &CPUParticles::get_emission_shape);
ClassDB::bind_method(D_METHOD("set_emission_sphere_radius", "radius"), &CPUParticles::set_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("get_emission_sphere_radius"), &CPUParticles::get_emission_sphere_radius);
ClassDB::bind_method(D_METHOD("set_emission_box_extents", "extents"), &CPUParticles::set_emission_box_extents);
ClassDB::bind_method(D_METHOD("get_emission_box_extents"), &CPUParticles::get_emission_box_extents);
ClassDB::bind_method(D_METHOD("set_emission_points", "array"), &CPUParticles::set_emission_points);
ClassDB::bind_method(D_METHOD("get_emission_points"), &CPUParticles::get_emission_points);
ClassDB::bind_method(D_METHOD("set_emission_normals", "array"), &CPUParticles::set_emission_normals);
ClassDB::bind_method(D_METHOD("get_emission_normals"), &CPUParticles::get_emission_normals);
ClassDB::bind_method(D_METHOD("set_emission_colors", "array"), &CPUParticles::set_emission_colors);
ClassDB::bind_method(D_METHOD("get_emission_colors"), &CPUParticles::get_emission_colors);
ClassDB::bind_method(D_METHOD("set_emission_ring_radius", "radius"), &CPUParticles::set_emission_ring_radius);
ClassDB::bind_method(D_METHOD("get_emission_ring_radius"), &CPUParticles::get_emission_ring_radius);
ClassDB::bind_method(D_METHOD("set_emission_ring_inner_radius", "offset"), &CPUParticles::set_emission_ring_inner_radius);
ClassDB::bind_method(D_METHOD("get_emission_ring_inner_radius"), &CPUParticles::get_emission_ring_inner_radius);
ClassDB::bind_method(D_METHOD("set_emission_ring_height", "height"), &CPUParticles::set_emission_ring_height);
ClassDB::bind_method(D_METHOD("get_emission_ring_height"), &CPUParticles::get_emission_ring_height);
ClassDB::bind_method(D_METHOD("set_emission_ring_axis", "axis"), &CPUParticles::set_emission_ring_axis);
ClassDB::bind_method(D_METHOD("get_emission_ring_axis"), &CPUParticles::get_emission_ring_axis);
ClassDB::bind_method(D_METHOD("get_gravity"), &CPUParticles::get_gravity);
ClassDB::bind_method(D_METHOD("set_gravity", "accel_vec"), &CPUParticles::set_gravity);
ClassDB::bind_method(D_METHOD("convert_from_particles", "particles"), &CPUParticles::convert_from_particles);
ClassDB::bind_method(D_METHOD("_update_render_thread"), &CPUParticles::_update_render_thread);
ADD_GROUP("Emission Shape", "emission_");
ADD_PROPERTY(PropertyInfo(Variant::INT, "emission_shape", PROPERTY_HINT_ENUM, "Point,Sphere,Box,Points,Directed Points,Ring", PROPERTY_USAGE_DEFAULT | PROPERTY_USAGE_UPDATE_ALL_IF_MODIFIED), "set_emission_shape", "get_emission_shape");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_sphere_radius", PROPERTY_HINT_RANGE, "0.01,128,0.01,or_greater"), "set_emission_sphere_radius", "get_emission_sphere_radius");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_box_extents"), "set_emission_box_extents", "get_emission_box_extents");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_points"), "set_emission_points", "get_emission_points");
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR3_ARRAY, "emission_normals"), "set_emission_normals", "get_emission_normals");
ADD_PROPERTY(PropertyInfo(Variant::POOL_COLOR_ARRAY, "emission_colors"), "set_emission_colors", "get_emission_colors");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_ring_radius", PROPERTY_HINT_RANGE, "0.01,1000,0.01,or_greater"), "set_emission_ring_radius", "get_emission_ring_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_ring_inner_radius", PROPERTY_HINT_RANGE, "0.0,1000,0.01,or_greater"), "set_emission_ring_inner_radius", "get_emission_ring_inner_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_ring_height", PROPERTY_HINT_RANGE, "0.0,100,0.01,or_greater"), "set_emission_ring_height", "get_emission_ring_height");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "emission_ring_axis"), "set_emission_ring_axis", "get_emission_ring_axis");
ADD_GROUP("Flags", "flag_");
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_align_y"), "set_particle_flag", "get_particle_flag", FLAG_ALIGN_Y_TO_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_rotate_y"), "set_particle_flag", "get_particle_flag", FLAG_ROTATE_Y);
ADD_PROPERTYI(PropertyInfo(Variant::BOOL, "flag_disable_z"), "set_particle_flag", "get_particle_flag", FLAG_DISABLE_Z);
ADD_GROUP("Direction", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "direction"), "set_direction", "get_direction");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "spread", PROPERTY_HINT_RANGE, "0,180,0.01"), "set_spread", "get_spread");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "flatness", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_flatness", "get_flatness");
ADD_GROUP("Gravity", "");
ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "gravity"), "set_gravity", "get_gravity");
ADD_GROUP("Initial Velocity", "initial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity", PROPERTY_HINT_RANGE, "0,1000,0.01,or_greater"), "set_param", "get_param", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "initial_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_INITIAL_LINEAR_VELOCITY);
ADD_GROUP("Angular Velocity", "angular_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity", PROPERTY_HINT_RANGE, "-720,720,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angular_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGULAR_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angular_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGULAR_VELOCITY);
ADD_GROUP("Orbit Velocity", "orbit_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "orbit_velocity_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ORBIT_VELOCITY);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "orbit_velocity_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ORBIT_VELOCITY);
ADD_GROUP("Linear Accel", "linear_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "linear_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_LINEAR_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "linear_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_LINEAR_ACCEL);
ADD_GROUP("Radial Accel", "radial_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "radial_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_RADIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "radial_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_RADIAL_ACCEL);
ADD_GROUP("Tangential Accel", "tangential_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel", PROPERTY_HINT_RANGE, "-100,100,0.01,or_lesser,or_greater"), "set_param", "get_param", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "tangential_accel_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_TANGENTIAL_ACCEL);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "tangential_accel_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_TANGENTIAL_ACCEL);
ADD_GROUP("Damping", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping", PROPERTY_HINT_RANGE, "0,100,0.01,or_greater"), "set_param", "get_param", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "damping_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_DAMPING);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "damping_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_DAMPING);
ADD_GROUP("Angle", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle", PROPERTY_HINT_RANGE, "-720,720,0.1,or_lesser,or_greater"), "set_param", "get_param", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "angle_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANGLE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "angle_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANGLE);
ADD_GROUP("Scale", "");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale_amount", PROPERTY_HINT_RANGE, "-1000,1000,0.01,or_greater"), "set_param", "get_param", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "scale_amount_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_SCALE);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "scale_amount_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_SCALE);
ADD_GROUP("Color", "");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "color"), "set_color", "get_color");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_ramp", "get_color_ramp");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "color_initial_ramp", PROPERTY_HINT_RESOURCE_TYPE, "Gradient"), "set_color_initial_ramp", "get_color_initial_ramp");
ADD_GROUP("Hue Variation", "hue_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation", PROPERTY_HINT_RANGE, "-1,1,0.01"), "set_param", "get_param", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "hue_variation_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_HUE_VARIATION);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "hue_variation_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_HUE_VARIATION);
ADD_GROUP("Animation", "anim_");
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed", PROPERTY_HINT_RANGE, "0,128,0.01,or_greater"), "set_param", "get_param", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_speed_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_speed_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_SPEED);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param", "get_param", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::REAL, "anim_offset_random", PROPERTY_HINT_RANGE, "0,1,0.01"), "set_param_randomness", "get_param_randomness", PARAM_ANIM_OFFSET);
ADD_PROPERTYI(PropertyInfo(Variant::OBJECT, "anim_offset_curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_param_curve", "get_param_curve", PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_INITIAL_LINEAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ANGULAR_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_ORBIT_VELOCITY);
BIND_ENUM_CONSTANT(PARAM_LINEAR_ACCEL);
BIND_ENUM_CONSTANT(PARAM_RADIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_TANGENTIAL_ACCEL);
BIND_ENUM_CONSTANT(PARAM_DAMPING);
BIND_ENUM_CONSTANT(PARAM_ANGLE);
BIND_ENUM_CONSTANT(PARAM_SCALE);
BIND_ENUM_CONSTANT(PARAM_HUE_VARIATION);
BIND_ENUM_CONSTANT(PARAM_ANIM_SPEED);
BIND_ENUM_CONSTANT(PARAM_ANIM_OFFSET);
BIND_ENUM_CONSTANT(PARAM_MAX);
BIND_ENUM_CONSTANT(FLAG_ALIGN_Y_TO_VELOCITY);
BIND_ENUM_CONSTANT(FLAG_ROTATE_Y);
BIND_ENUM_CONSTANT(FLAG_DISABLE_Z);
BIND_ENUM_CONSTANT(FLAG_MAX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINT);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_SPHERE);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_BOX);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_DIRECTED_POINTS);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_RING);
BIND_ENUM_CONSTANT(EMISSION_SHAPE_MAX);
}
CPUParticles::CPUParticles() {
time = 0;
inactive_time = 0;
frame_remainder = 0;
cycle = 0;
redraw = false;
emitting = false;
set_notify_transform(true);
multimesh = RID_PRIME(VisualServer::get_singleton()->multimesh_create());
VisualServer::get_singleton()->multimesh_set_visible_instances(multimesh, 0);
set_base(multimesh);
set_emitting(true);
set_one_shot(false);
set_amount(8);
set_lifetime(1);
set_fixed_fps(0);
set_fractional_delta(true);
set_pre_process_time(0);
set_explosiveness_ratio(0);
set_randomness_ratio(0);
set_lifetime_randomness(0);
set_use_local_coordinates(true);
set_draw_order(DRAW_ORDER_INDEX);
set_speed_scale(1);
set_direction(Vector3(1, 0, 0));
set_spread(45);
set_flatness(0);
set_param(PARAM_INITIAL_LINEAR_VELOCITY, 0);
set_param(PARAM_ANGULAR_VELOCITY, 0);
set_param(PARAM_ORBIT_VELOCITY, 0);
set_param(PARAM_LINEAR_ACCEL, 0);
set_param(PARAM_RADIAL_ACCEL, 0);
set_param(PARAM_TANGENTIAL_ACCEL, 0);
set_param(PARAM_DAMPING, 0);
set_param(PARAM_ANGLE, 0);
set_param(PARAM_SCALE, 1);
set_param(PARAM_HUE_VARIATION, 0);
set_param(PARAM_ANIM_SPEED, 0);
set_param(PARAM_ANIM_OFFSET, 0);
set_emission_shape(EMISSION_SHAPE_POINT);
set_emission_sphere_radius(1);
set_emission_box_extents(Vector3(1, 1, 1));
set_emission_ring_height(1.0);
set_emission_ring_radius(1.0);
set_emission_ring_inner_radius(0.0);
set_emission_ring_axis(Vector3(0.0, 0.0, 1.0));
set_gravity(Vector3(0, -9.8, 0));
for (int i = 0; i < PARAM_MAX; i++) {
set_param_randomness(Parameter(i), 0);
}
for (int i = 0; i < FLAG_MAX; i++) {
flags[i] = false;
}
set_color(Color(1, 1, 1, 1));
}
CPUParticles::~CPUParticles() {
VS::get_singleton()->free(multimesh);
}