godot/servers/visual/rasterizer.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

564 lines
20 KiB
C++

/**************************************************************************/
/* rasterizer.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rasterizer.h"
#include "core/os/os.h"
#include "core/print_string.h"
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
#include "core/project_settings.h"
#endif
Rasterizer *(*Rasterizer::_create_func)() = nullptr;
Rasterizer *Rasterizer::create() {
return _create_func();
}
RasterizerStorage *RasterizerStorage::base_singleton = nullptr;
RasterizerStorage::RasterizerStorage() {
base_singleton = this;
}
bool RasterizerStorage::material_uses_tangents(RID p_material) {
return false;
}
bool RasterizerStorage::material_uses_ensure_correct_normals(RID p_material) {
return false;
}
void RasterizerStorage::InterpolationData::notify_free_multimesh(RID p_rid) {
// print_line("free multimesh " + itos(p_rid.get_id()));
// if the instance was on any of the lists, remove
multimesh_interpolate_update_list.erase_multiple_unordered(p_rid);
multimesh_transform_update_lists[0].erase_multiple_unordered(p_rid);
multimesh_transform_update_lists[1].erase_multiple_unordered(p_rid);
}
void RasterizerStorage::update_interpolation_tick(bool p_process) {
// detect any that were on the previous transform list that are no longer active,
// we should remove them from the interpolate list
for (unsigned int n = 0; n < _interpolation_data.multimesh_transform_update_list_prev->size(); n++) {
const RID &rid = (*_interpolation_data.multimesh_transform_update_list_prev)[n];
bool active = true;
// no longer active? (either the instance deleted or no longer being transformed)
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi && !mmi->on_transform_update_list) {
active = false;
mmi->on_interpolate_update_list = false;
// make sure the most recent transform is set
// copy data rather than use Pool = function?
mmi->_data_interpolated = mmi->_data_curr;
// and that both prev and current are the same, just in case of any interpolations
mmi->_data_prev = mmi->_data_curr;
// make sure are updated one more time to ensure the AABBs are correct
//_instance_queue_update(instance, true);
}
if (!mmi) {
active = false;
}
if (!active) {
_interpolation_data.multimesh_interpolate_update_list.erase(rid);
}
}
if (p_process) {
for (unsigned int i = 0; i < _interpolation_data.multimesh_transform_update_list_curr->size(); i++) {
const RID &rid = (*_interpolation_data.multimesh_transform_update_list_curr)[i];
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi) {
// reset for next tick
mmi->on_transform_update_list = false;
mmi->_data_prev = mmi->_data_curr;
}
} // for n
}
// if any have left the transform list, remove from the interpolate list
// we maintain a mirror list for the transform updates, so we can detect when an instance
// is no longer being transformed, and remove it from the interpolate list
SWAP(_interpolation_data.multimesh_transform_update_list_curr, _interpolation_data.multimesh_transform_update_list_prev);
// prepare for the next iteration
_interpolation_data.multimesh_transform_update_list_curr->clear();
}
void RasterizerStorage::update_interpolation_frame(bool p_process) {
if (p_process) {
// Only need 32 bit for interpolation, don't use real_t
float f = Engine::get_singleton()->get_physics_interpolation_fraction();
for (unsigned int c = 0; c < _interpolation_data.multimesh_interpolate_update_list.size(); c++) {
const RID &rid = _interpolation_data.multimesh_interpolate_update_list[c];
// We could use the TransformInterpolator here to slerp transforms, but that might be too expensive,
// so just using a Basis lerp for now.
MMInterpolator *mmi = _multimesh_get_interpolator(rid);
if (mmi) {
// make sure arrays are correct size
DEV_ASSERT(mmi->_data_prev.size() == mmi->_data_curr.size());
if (mmi->_data_interpolated.size() < mmi->_data_curr.size()) {
mmi->_data_interpolated.resize(mmi->_data_curr.size());
}
DEV_ASSERT(mmi->_data_interpolated.size() >= mmi->_data_curr.size());
DEV_ASSERT((mmi->_data_curr.size() % mmi->_stride) == 0);
int num = mmi->_data_curr.size() / mmi->_stride;
PoolVector<float>::Read r_prev = mmi->_data_prev.read();
PoolVector<float>::Read r_curr = mmi->_data_curr.read();
PoolVector<float>::Write w = mmi->_data_interpolated.write();
const float *pf_prev = r_prev.ptr();
const float *pf_curr = r_curr.ptr();
float *pf_int = w.ptr();
bool use_lerp = mmi->quality == 0;
// temporary transform (needed for swizzling)
// (transform prev, curr and result)
Transform tp, tc, tr;
// Test for cache friendliness versus doing branchless
for (int n = 0; n < num; n++) {
// Transform
if (use_lerp) {
for (int i = 0; i < mmi->_vf_size_xform; i++) {
float a = pf_prev[i];
float b = pf_curr[i];
pf_int[i] = (a + ((b - a) * f));
}
} else {
// Silly swizzling, this will slow things down. no idea why it is using this format
// .. maybe due to the shader.
tp.basis.elements[0][0] = pf_prev[0];
tp.basis.elements[0][1] = pf_prev[1];
tp.basis.elements[0][2] = pf_prev[2];
tp.basis.elements[1][0] = pf_prev[4];
tp.basis.elements[1][1] = pf_prev[5];
tp.basis.elements[1][2] = pf_prev[6];
tp.basis.elements[2][0] = pf_prev[8];
tp.basis.elements[2][1] = pf_prev[9];
tp.basis.elements[2][2] = pf_prev[10];
tp.origin.x = pf_prev[3];
tp.origin.y = pf_prev[7];
tp.origin.z = pf_prev[11];
tc.basis.elements[0][0] = pf_curr[0];
tc.basis.elements[0][1] = pf_curr[1];
tc.basis.elements[0][2] = pf_curr[2];
tc.basis.elements[1][0] = pf_curr[4];
tc.basis.elements[1][1] = pf_curr[5];
tc.basis.elements[1][2] = pf_curr[6];
tc.basis.elements[2][0] = pf_curr[8];
tc.basis.elements[2][1] = pf_curr[9];
tc.basis.elements[2][2] = pf_curr[10];
tc.origin.x = pf_curr[3];
tc.origin.y = pf_curr[7];
tc.origin.z = pf_curr[11];
TransformInterpolator::interpolate_transform(tp, tc, tr, f);
pf_int[0] = tr.basis.elements[0][0];
pf_int[1] = tr.basis.elements[0][1];
pf_int[2] = tr.basis.elements[0][2];
pf_int[4] = tr.basis.elements[1][0];
pf_int[5] = tr.basis.elements[1][1];
pf_int[6] = tr.basis.elements[1][2];
pf_int[8] = tr.basis.elements[2][0];
pf_int[9] = tr.basis.elements[2][1];
pf_int[10] = tr.basis.elements[2][2];
pf_int[3] = tr.origin.x;
pf_int[7] = tr.origin.y;
pf_int[11] = tr.origin.z;
}
pf_prev += mmi->_vf_size_xform;
pf_curr += mmi->_vf_size_xform;
pf_int += mmi->_vf_size_xform;
// Color
if (mmi->_vf_size_color == 1) {
const uint8_t *p8_prev = (const uint8_t *)pf_prev;
const uint8_t *p8_curr = (const uint8_t *)pf_curr;
uint8_t *p8_int = (uint8_t *)pf_int;
_interpolate_RGBA8(p8_prev, p8_curr, p8_int, f);
pf_prev += 1;
pf_curr += 1;
pf_int += 1;
} else if (mmi->_vf_size_color == 4) {
for (int i = 0; i < 4; i++) {
pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f);
}
pf_prev += 4;
pf_curr += 4;
pf_int += 4;
}
// Custom Data
if (mmi->_vf_size_data == 1) {
const uint8_t *p8_prev = (const uint8_t *)pf_prev;
const uint8_t *p8_curr = (const uint8_t *)pf_curr;
uint8_t *p8_int = (uint8_t *)pf_int;
_interpolate_RGBA8(p8_prev, p8_curr, p8_int, f);
pf_prev += 1;
pf_curr += 1;
pf_int += 1;
} else if (mmi->_vf_size_data == 4) {
for (int i = 0; i < 4; i++) {
pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f);
}
pf_prev += 4;
pf_curr += 4;
pf_int += 4;
}
}
_multimesh_set_as_bulk_array(rid, mmi->_data_interpolated);
// make sure AABBs are constantly up to date through the interpolation?
// NYI
}
} // for n
}
}
RID RasterizerStorage::multimesh_create() {
return _multimesh_create();
}
void RasterizerStorage::multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->_transform_format = p_transform_format;
mmi->_color_format = p_color_format;
mmi->_data_format = p_data;
mmi->_num_instances = p_instances;
mmi->_vf_size_xform = p_transform_format == VS::MULTIMESH_TRANSFORM_3D ? 12 : 8;
switch (p_color_format) {
default: {
mmi->_vf_size_color = 0;
} break;
case VS::MULTIMESH_COLOR_8BIT: {
mmi->_vf_size_color = 1;
} break;
case VS::MULTIMESH_COLOR_FLOAT: {
mmi->_vf_size_color = 4;
} break;
}
switch (p_data) {
default: {
mmi->_vf_size_data = 0;
} break;
case VS::MULTIMESH_CUSTOM_DATA_8BIT: {
mmi->_vf_size_data = 1;
} break;
case VS::MULTIMESH_CUSTOM_DATA_FLOAT: {
mmi->_vf_size_data = 4;
} break;
}
mmi->_stride = mmi->_vf_size_xform + mmi->_vf_size_color + mmi->_vf_size_data;
int size_in_floats = p_instances * mmi->_stride;
mmi->_data_curr.resize(size_in_floats);
mmi->_data_prev.resize(size_in_floats);
mmi->_data_interpolated.resize(size_in_floats);
}
return _multimesh_allocate(p_multimesh, p_instances, p_transform_format, p_color_format, p_data);
}
int RasterizerStorage::multimesh_get_instance_count(RID p_multimesh) const {
return _multimesh_get_instance_count(p_multimesh);
}
void RasterizerStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
_multimesh_set_mesh(p_multimesh, p_mesh);
}
void RasterizerStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_xform != 12);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = p_index * mmi->_stride;
float *ptr = w.ptr();
ptr += start;
const Transform &t = p_transform;
ptr[0] = t.basis.elements[0][0];
ptr[1] = t.basis.elements[0][1];
ptr[2] = t.basis.elements[0][2];
ptr[3] = t.origin.x;
ptr[4] = t.basis.elements[1][0];
ptr[5] = t.basis.elements[1][1];
ptr[6] = t.basis.elements[1][2];
ptr[7] = t.origin.y;
ptr[8] = t.basis.elements[2][0];
ptr[9] = t.basis.elements[2][1];
ptr[10] = t.basis.elements[2][2];
ptr[11] = t.origin.z;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
return;
}
}
_multimesh_instance_set_transform(p_multimesh, p_index, p_transform);
}
void RasterizerStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
_multimesh_instance_set_transform_2d(p_multimesh, p_index, p_transform);
}
void RasterizerStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_color == 0);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = (p_index * mmi->_stride) + mmi->_vf_size_xform;
float *ptr = w.ptr();
ptr += start;
if (mmi->_vf_size_color == 4) {
for (int n = 0; n < 4; n++) {
ptr[n] = p_color.components[n];
}
} else {
#ifdef DEV_ENABLED
// The options are currently 4, 1, or zero, but just in case this changes in future...
ERR_FAIL_COND(mmi->_vf_size_color != 1);
#endif
uint32_t *pui = (uint32_t *)ptr;
*pui = p_color.to_rgba32();
}
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
return;
}
}
_multimesh_instance_set_color(p_multimesh, p_index, p_color);
}
void RasterizerStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND(p_index >= mmi->_num_instances);
ERR_FAIL_COND(mmi->_vf_size_data == 0);
PoolVector<float>::Write w = mmi->_data_curr.write();
int start = (p_index * mmi->_stride) + mmi->_vf_size_xform + mmi->_vf_size_color;
float *ptr = w.ptr();
ptr += start;
if (mmi->_vf_size_data == 4) {
for (int n = 0; n < 4; n++) {
ptr[n] = p_color.components[n];
}
} else {
#ifdef DEV_ENABLED
// The options are currently 4, 1, or zero, but just in case this changes in future...
ERR_FAIL_COND(mmi->_vf_size_data != 1);
#endif
uint32_t *pui = (uint32_t *)ptr;
*pui = p_color.to_rgba32();
}
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
return;
}
}
_multimesh_instance_set_custom_data(p_multimesh, p_index, p_color);
}
RID RasterizerStorage::multimesh_get_mesh(RID p_multimesh) const {
return _multimesh_get_mesh(p_multimesh);
}
Transform RasterizerStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_transform(p_multimesh, p_index);
}
Transform2D RasterizerStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_transform_2d(p_multimesh, p_index);
}
Color RasterizerStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_color(p_multimesh, p_index);
}
Color RasterizerStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
return _multimesh_instance_get_custom_data(p_multimesh, p_index);
}
void RasterizerStorage::multimesh_set_physics_interpolated(RID p_multimesh, bool p_interpolated) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->interpolated = p_interpolated;
}
}
void RasterizerStorage::multimesh_set_physics_interpolation_quality(RID p_multimesh, VS::MultimeshPhysicsInterpolationQuality p_quality) {
ERR_FAIL_COND((p_quality < 0) || (p_quality > 1));
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
mmi->quality = (int)p_quality;
}
}
void RasterizerStorage::multimesh_instance_reset_physics_interpolation(RID p_multimesh, int p_index) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
ERR_FAIL_INDEX(p_index, mmi->_num_instances);
PoolVector<float>::Write w = mmi->_data_prev.write();
PoolVector<float>::Read r = mmi->_data_curr.read();
int start = p_index * mmi->_stride;
for (int n = 0; n < mmi->_stride; n++) {
w[start + n] = r[start + n];
}
}
}
void RasterizerStorage::_multimesh_add_to_interpolation_lists(RID p_multimesh, MMInterpolator &r_mmi) {
if (!r_mmi.on_interpolate_update_list) {
r_mmi.on_interpolate_update_list = true;
_interpolation_data.multimesh_interpolate_update_list.push_back(p_multimesh);
}
if (!r_mmi.on_transform_update_list) {
r_mmi.on_transform_update_list = true;
_interpolation_data.multimesh_transform_update_list_curr->push_back(p_multimesh);
}
}
void RasterizerStorage::multimesh_set_as_bulk_array_interpolated(RID p_multimesh, const PoolVector<float> &p_array, const PoolVector<float> &p_array_prev) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array for current frame should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size()));
ERR_FAIL_COND_MSG(p_array_prev.size() != mmi->_data_prev.size(), vformat("Array for previous frame should have %d elements, got %d instead.", mmi->_data_prev.size(), p_array_prev.size()));
// We are assuming that mmi->interpolated is the case,
// (can possibly assert this?)
// even if this flag hasn't been set - just calling this function suggests
// interpolation is desired.
mmi->_data_prev = p_array_prev;
mmi->_data_curr = p_array;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
}
}
void RasterizerStorage::multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector<float> &p_array) {
MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh);
if (mmi) {
if (mmi->interpolated) {
ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size()));
mmi->_data_curr = p_array;
_multimesh_add_to_interpolation_lists(p_multimesh, *mmi);
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
if (!Engine::get_singleton()->is_in_physics_frame()) {
static int32_t warn_count = 0;
warn_count++;
if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) {
WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign).");
}
}
#endif
return;
}
}
_multimesh_set_as_bulk_array(p_multimesh, p_array);
}
void RasterizerStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
_multimesh_set_visible_instances(p_multimesh, p_visible);
}
int RasterizerStorage::multimesh_get_visible_instances(RID p_multimesh) const {
return _multimesh_get_visible_instances(p_multimesh);
}
AABB RasterizerStorage::multimesh_get_aabb(RID p_multimesh) const {
return _multimesh_get_aabb(p_multimesh);
}