5396 lines
206 KiB
C++
5396 lines
206 KiB
C++
/*************************************************************************/
|
|
/* rasterizer_scene_gles3.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "rasterizer_scene_gles3.h"
|
|
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/os/os.h"
|
|
#include "core/project_settings.h"
|
|
#include "rasterizer_canvas_gles3.h"
|
|
#include "servers/camera/camera_feed.h"
|
|
#include "servers/visual/visual_server_raster.h"
|
|
|
|
#ifndef GLES_OVER_GL
|
|
#define glClearDepth glClearDepthf
|
|
#endif
|
|
|
|
static const GLenum _cube_side_enum[6] = {
|
|
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
|
|
|
|
};
|
|
|
|
static _FORCE_INLINE_ void store_transform(const Transform &p_mtx, float *p_array) {
|
|
p_array[0] = p_mtx.basis.elements[0][0];
|
|
p_array[1] = p_mtx.basis.elements[1][0];
|
|
p_array[2] = p_mtx.basis.elements[2][0];
|
|
p_array[3] = 0;
|
|
p_array[4] = p_mtx.basis.elements[0][1];
|
|
p_array[5] = p_mtx.basis.elements[1][1];
|
|
p_array[6] = p_mtx.basis.elements[2][1];
|
|
p_array[7] = 0;
|
|
p_array[8] = p_mtx.basis.elements[0][2];
|
|
p_array[9] = p_mtx.basis.elements[1][2];
|
|
p_array[10] = p_mtx.basis.elements[2][2];
|
|
p_array[11] = 0;
|
|
p_array[12] = p_mtx.origin.x;
|
|
p_array[13] = p_mtx.origin.y;
|
|
p_array[14] = p_mtx.origin.z;
|
|
p_array[15] = 1;
|
|
}
|
|
|
|
static _FORCE_INLINE_ void store_camera(const CameraMatrix &p_mtx, float *p_array) {
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 4; j++) {
|
|
|
|
p_array[i * 4 + j] = p_mtx.matrix[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* SHADOW ATLAS API */
|
|
|
|
RID RasterizerSceneGLES3::shadow_atlas_create() {
|
|
|
|
ShadowAtlas *shadow_atlas = memnew(ShadowAtlas);
|
|
shadow_atlas->fbo = 0;
|
|
shadow_atlas->depth = 0;
|
|
shadow_atlas->size = 0;
|
|
shadow_atlas->smallest_subdiv = 0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
shadow_atlas->size_order[i] = i;
|
|
}
|
|
|
|
return shadow_atlas_owner.make_rid(shadow_atlas);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::shadow_atlas_set_size(RID p_atlas, int p_size) {
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(p_size < 0);
|
|
|
|
p_size = next_power_of_2(p_size);
|
|
|
|
if (p_size == shadow_atlas->size)
|
|
return;
|
|
|
|
// erasing atlas
|
|
if (shadow_atlas->fbo) {
|
|
glDeleteTextures(1, &shadow_atlas->depth);
|
|
glDeleteFramebuffers(1, &shadow_atlas->fbo);
|
|
|
|
shadow_atlas->depth = 0;
|
|
shadow_atlas->fbo = 0;
|
|
}
|
|
for (int i = 0; i < 4; i++) {
|
|
//clear subdivisions
|
|
shadow_atlas->quadrants[i].shadows.resize(0);
|
|
shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
|
|
}
|
|
|
|
//erase shadow atlas reference from lights
|
|
for (Map<RID, uint32_t>::Element *E = shadow_atlas->shadow_owners.front(); E; E = E->next()) {
|
|
LightInstance *li = light_instance_owner.getornull(E->key());
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
//clear owners
|
|
shadow_atlas->shadow_owners.clear();
|
|
|
|
shadow_atlas->size = p_size;
|
|
|
|
if (shadow_atlas->size) {
|
|
glGenFramebuffers(1, &shadow_atlas->fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
|
|
|
|
// Create a texture for storing the depth
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glGenTextures(1, &shadow_atlas->depth);
|
|
glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, shadow_atlas->size, shadow_atlas->size, 0,
|
|
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
|
|
GL_TEXTURE_2D, shadow_atlas->depth, 0);
|
|
|
|
glViewport(0, 0, shadow_atlas->size, shadow_atlas->size);
|
|
glClearDepth(0.0f);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_INDEX(p_quadrant, 4);
|
|
ERR_FAIL_INDEX(p_subdivision, 16384);
|
|
|
|
uint32_t subdiv = next_power_of_2(p_subdivision);
|
|
if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
|
|
subdiv <<= 1;
|
|
}
|
|
|
|
subdiv = int(Math::sqrt((float)subdiv));
|
|
|
|
//obtain the number that will be x*x
|
|
|
|
if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv)
|
|
return;
|
|
|
|
//erase all data from quadrant
|
|
for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
|
|
|
|
if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
|
|
shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
}
|
|
|
|
shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
|
|
shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
|
|
shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
|
|
|
|
//cache the smallest subdiv (for faster allocation in light update)
|
|
|
|
shadow_atlas->smallest_subdiv = 1 << 30;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (shadow_atlas->quadrants[i].subdivision) {
|
|
shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
|
|
}
|
|
}
|
|
|
|
if (shadow_atlas->smallest_subdiv == 1 << 30) {
|
|
shadow_atlas->smallest_subdiv = 0;
|
|
}
|
|
|
|
//resort the size orders, simple bublesort for 4 elements..
|
|
|
|
int swaps = 0;
|
|
do {
|
|
swaps = 0;
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
|
|
SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
|
|
swaps++;
|
|
}
|
|
}
|
|
} while (swaps > 0);
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
|
|
|
|
for (int i = p_quadrant_count - 1; i >= 0; i--) {
|
|
|
|
int qidx = p_in_quadrants[i];
|
|
|
|
if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
|
|
return false;
|
|
}
|
|
|
|
//look for an empty space
|
|
int sc = shadow_atlas->quadrants[qidx].shadows.size();
|
|
ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptrw();
|
|
|
|
int found_free_idx = -1; //found a free one
|
|
int found_used_idx = -1; //found existing one, must steal it
|
|
uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
|
|
|
|
for (int j = 0; j < sc; j++) {
|
|
if (!sarr[j].owner.is_valid()) {
|
|
found_free_idx = j;
|
|
break;
|
|
}
|
|
|
|
LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
|
|
ERR_CONTINUE(!sli);
|
|
|
|
if (sli->last_scene_pass != scene_pass) {
|
|
|
|
//was just allocated, don't kill it so soon, wait a bit..
|
|
if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
|
|
continue;
|
|
|
|
if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
|
|
found_used_idx = j;
|
|
min_pass = sli->last_scene_pass;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found_free_idx == -1 && found_used_idx == -1)
|
|
continue; //nothing found
|
|
|
|
if (found_free_idx == -1 && found_used_idx != -1) {
|
|
found_free_idx = found_used_idx;
|
|
}
|
|
|
|
r_quadrant = qidx;
|
|
r_shadow = found_free_idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) {
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND_V(!shadow_atlas, false);
|
|
|
|
LightInstance *li = light_instance_owner.getornull(p_light_intance);
|
|
ERR_FAIL_COND_V(!li, false);
|
|
|
|
if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t quad_size = shadow_atlas->size >> 1;
|
|
int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
|
|
|
|
int valid_quadrants[4];
|
|
int valid_quadrant_count = 0;
|
|
int best_size = -1; //best size found
|
|
int best_subdiv = -1; //subdiv for the best size
|
|
|
|
//find the quadrants this fits into, and the best possible size it can fit into
|
|
for (int i = 0; i < 4; i++) {
|
|
int q = shadow_atlas->size_order[i];
|
|
int sd = shadow_atlas->quadrants[q].subdivision;
|
|
if (sd == 0)
|
|
continue; //unused
|
|
|
|
int max_fit = quad_size / sd;
|
|
|
|
if (best_size != -1 && max_fit > best_size)
|
|
break; //too large
|
|
|
|
valid_quadrants[valid_quadrant_count++] = q;
|
|
best_subdiv = sd;
|
|
|
|
if (max_fit >= desired_fit) {
|
|
best_size = max_fit;
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
|
|
|
|
uint64_t tick = OS::get_singleton()->get_ticks_msec();
|
|
|
|
//see if it already exists
|
|
|
|
if (shadow_atlas->shadow_owners.has(p_light_intance)) {
|
|
//it does!
|
|
uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
|
|
uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
bool should_realloc = shadow_atlas->quadrants[q].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
|
|
bool should_redraw = shadow_atlas->quadrants[q].shadows[s].version != p_light_version;
|
|
|
|
if (!should_realloc) {
|
|
shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
|
|
//already existing, see if it should redraw or it's just OK
|
|
return should_redraw;
|
|
}
|
|
|
|
int new_quadrant, new_shadow;
|
|
|
|
//find a better place
|
|
if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, shadow_atlas->quadrants[q].subdivision, tick, new_quadrant, new_shadow)) {
|
|
//found a better place!
|
|
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
|
|
if (sh->owner.is_valid()) {
|
|
//is taken, but is invalid, erasing it
|
|
shadow_atlas->shadow_owners.erase(sh->owner);
|
|
LightInstance *sli = light_instance_owner.get(sh->owner);
|
|
sli->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
//erase previous
|
|
shadow_atlas->quadrants[q].shadows.write[s].version = 0;
|
|
shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
|
|
|
|
sh->owner = p_light_intance;
|
|
sh->alloc_tick = tick;
|
|
sh->version = p_light_version;
|
|
li->shadow_atlases.insert(p_atlas);
|
|
|
|
//make new key
|
|
key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
|
|
key |= new_shadow;
|
|
//update it in map
|
|
shadow_atlas->shadow_owners[p_light_intance] = key;
|
|
//make it dirty, as it should redraw anyway
|
|
return true;
|
|
}
|
|
|
|
//no better place for this shadow found, keep current
|
|
|
|
//already existing, see if it should redraw or it's just OK
|
|
|
|
shadow_atlas->quadrants[q].shadows.write[s].version = p_light_version;
|
|
|
|
return should_redraw;
|
|
}
|
|
|
|
int new_quadrant, new_shadow;
|
|
|
|
//find a better place
|
|
if (_shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, -1, tick, new_quadrant, new_shadow)) {
|
|
//found a better place!
|
|
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
|
|
if (sh->owner.is_valid()) {
|
|
//is taken, but is invalid, erasing it
|
|
shadow_atlas->shadow_owners.erase(sh->owner);
|
|
LightInstance *sli = light_instance_owner.get(sh->owner);
|
|
sli->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
sh->owner = p_light_intance;
|
|
sh->alloc_tick = tick;
|
|
sh->version = p_light_version;
|
|
li->shadow_atlases.insert(p_atlas);
|
|
|
|
//make new key
|
|
uint32_t key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
|
|
key |= new_shadow;
|
|
//update it in map
|
|
shadow_atlas->shadow_owners[p_light_intance] = key;
|
|
//make it dirty, as it should redraw anyway
|
|
|
|
return true;
|
|
}
|
|
|
|
//no place to allocate this light, apologies
|
|
|
|
return false;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) {
|
|
|
|
directional_shadow.light_count = p_count;
|
|
directional_shadow.current_light = 0;
|
|
}
|
|
|
|
int RasterizerSceneGLES3::get_directional_light_shadow_size(RID p_light_intance) {
|
|
|
|
ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
|
|
|
|
int shadow_size;
|
|
|
|
if (directional_shadow.light_count == 1) {
|
|
shadow_size = directional_shadow.size;
|
|
} else {
|
|
shadow_size = directional_shadow.size / 2; //more than 4 not supported anyway
|
|
}
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
|
|
ERR_FAIL_COND_V(!light_instance, 0);
|
|
|
|
switch (light_instance->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
|
|
break; //none
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size /= 2; break;
|
|
}
|
|
|
|
return shadow_size;
|
|
}
|
|
//////////////////////////////////////////////////////
|
|
|
|
RID RasterizerSceneGLES3::reflection_atlas_create() {
|
|
|
|
ReflectionAtlas *reflection_atlas = memnew(ReflectionAtlas);
|
|
reflection_atlas->subdiv = 0;
|
|
reflection_atlas->color = 0;
|
|
reflection_atlas->size = 0;
|
|
for (int i = 0; i < 6; i++) {
|
|
reflection_atlas->fbo[i] = 0;
|
|
}
|
|
|
|
return reflection_atlas_owner.make_rid(reflection_atlas);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_atlas_set_size(RID p_ref_atlas, int p_size) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
int size = next_power_of_2(p_size);
|
|
|
|
if (size == reflection_atlas->size)
|
|
return;
|
|
if (reflection_atlas->size) {
|
|
for (int i = 0; i < 6; i++) {
|
|
glDeleteFramebuffers(1, &reflection_atlas->fbo[i]);
|
|
reflection_atlas->fbo[i] = 0;
|
|
}
|
|
glDeleteTextures(1, &reflection_atlas->color);
|
|
reflection_atlas->color = 0;
|
|
}
|
|
|
|
reflection_atlas->size = size;
|
|
|
|
for (int i = 0; i < reflection_atlas->reflections.size(); i++) {
|
|
//erase probes reference to this
|
|
if (reflection_atlas->reflections[i].owner.is_valid()) {
|
|
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
|
|
reflection_atlas->reflections.write[i].owner = RID();
|
|
|
|
ERR_CONTINUE(!reflection_probe_instance);
|
|
reflection_probe_instance->reflection_atlas_index = -1;
|
|
reflection_probe_instance->atlas = RID();
|
|
reflection_probe_instance->render_step = -1;
|
|
}
|
|
}
|
|
|
|
if (reflection_atlas->size) {
|
|
|
|
bool use_float = true;
|
|
|
|
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
|
|
GLenum format = GL_RGBA;
|
|
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
|
|
|
|
// Create a texture for storing the color
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glGenTextures(1, &reflection_atlas->color);
|
|
glBindTexture(GL_TEXTURE_2D, reflection_atlas->color);
|
|
|
|
int mmsize = reflection_atlas->size;
|
|
glTexStorage2DCustom(GL_TEXTURE_2D, 6, internal_format, mmsize, mmsize, format, type);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
glGenFramebuffers(1, &reflection_atlas->fbo[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, reflection_atlas->color, i);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
|
|
|
|
glDisable(GL_SCISSOR_TEST);
|
|
glViewport(0, 0, mmsize, mmsize);
|
|
glClearColor(0, 0, 0, 0);
|
|
glClear(GL_COLOR_BUFFER_BIT); //it needs to be cleared, to avoid generating garbage
|
|
|
|
mmsize >>= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_atlas_set_subdivision(RID p_ref_atlas, int p_subdiv) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
int subdiv = next_power_of_2(p_subdiv);
|
|
if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
|
|
subdiv <<= 1;
|
|
}
|
|
|
|
subdiv = int(Math::sqrt((float)subdiv));
|
|
|
|
if (reflection_atlas->subdiv == subdiv)
|
|
return;
|
|
|
|
if (subdiv) {
|
|
|
|
for (int i = 0; i < reflection_atlas->reflections.size(); i++) {
|
|
//erase probes reference to this
|
|
if (reflection_atlas->reflections[i].owner.is_valid()) {
|
|
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
|
|
reflection_atlas->reflections.write[i].owner = RID();
|
|
|
|
ERR_CONTINUE(!reflection_probe_instance);
|
|
reflection_probe_instance->reflection_atlas_index = -1;
|
|
reflection_probe_instance->atlas = RID();
|
|
reflection_probe_instance->render_step = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
reflection_atlas->subdiv = subdiv;
|
|
|
|
reflection_atlas->reflections.resize(subdiv * subdiv);
|
|
}
|
|
|
|
////////////////////////////////////////////////////
|
|
|
|
RID RasterizerSceneGLES3::reflection_probe_instance_create(RID p_probe) {
|
|
|
|
RasterizerStorageGLES3::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
|
|
ERR_FAIL_COND_V(!probe, RID());
|
|
|
|
ReflectionProbeInstance *rpi = memnew(ReflectionProbeInstance);
|
|
|
|
rpi->probe_ptr = probe;
|
|
rpi->self = reflection_probe_instance_owner.make_rid(rpi);
|
|
rpi->probe = p_probe;
|
|
rpi->reflection_atlas_index = -1;
|
|
rpi->render_step = -1;
|
|
rpi->last_pass = 0;
|
|
|
|
return rpi->self;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_probe_instance_set_transform(RID p_instance, const Transform &p_transform) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
rpi->transform = p_transform;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_probe_release_atlas_index(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
if (rpi->reflection_atlas_index == -1)
|
|
return;
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
ERR_FAIL_INDEX(rpi->reflection_atlas_index, reflection_atlas->reflections.size());
|
|
|
|
ERR_FAIL_COND(reflection_atlas->reflections[rpi->reflection_atlas_index].owner != rpi->self);
|
|
|
|
reflection_atlas->reflections.write[rpi->reflection_atlas_index].owner = RID();
|
|
|
|
rpi->reflection_atlas_index = -1;
|
|
rpi->atlas = RID();
|
|
rpi->render_step = -1;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_needs_redraw(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
return rpi->reflection_atlas_index == -1 || rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_has_reflection(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
return rpi->reflection_atlas_index != -1;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, false);
|
|
|
|
rpi->render_step = 0;
|
|
|
|
if (rpi->reflection_atlas_index != -1) {
|
|
return true; //got one already
|
|
}
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
ERR_FAIL_COND_V(!reflection_atlas, false);
|
|
|
|
if (reflection_atlas->size == 0 || reflection_atlas->subdiv == 0) {
|
|
return false;
|
|
}
|
|
|
|
int best_free = -1;
|
|
int best_used = -1;
|
|
uint64_t best_used_frame = 0;
|
|
|
|
for (int i = 0; i < reflection_atlas->reflections.size(); i++) {
|
|
if (reflection_atlas->reflections[i].owner == RID()) {
|
|
best_free = i;
|
|
break;
|
|
}
|
|
|
|
if (rpi->render_step < 0 && reflection_atlas->reflections[i].last_frame < storage->frame.count &&
|
|
(best_used == -1 || reflection_atlas->reflections[i].last_frame < best_used_frame)) {
|
|
best_used = i;
|
|
best_used_frame = reflection_atlas->reflections[i].last_frame;
|
|
}
|
|
}
|
|
|
|
if (best_free == -1 && best_used == -1) {
|
|
return false; // sorry, can not do. Try again next frame.
|
|
}
|
|
|
|
if (best_free == -1) {
|
|
//find best from what is used
|
|
best_free = best_used;
|
|
|
|
ReflectionProbeInstance *victim_rpi = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[best_free].owner);
|
|
ERR_FAIL_COND_V(!victim_rpi, false);
|
|
victim_rpi->atlas = RID();
|
|
victim_rpi->reflection_atlas_index = -1;
|
|
}
|
|
|
|
reflection_atlas->reflections.write[best_free].owner = p_instance;
|
|
reflection_atlas->reflections.write[best_free].last_frame = storage->frame.count;
|
|
|
|
rpi->reflection_atlas_index = best_free;
|
|
rpi->atlas = p_reflection_atlas;
|
|
rpi->render_step = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_postprocess_step(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi, true);
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
|
|
ERR_FAIL_COND_V(!reflection_atlas, false);
|
|
|
|
ERR_FAIL_COND_V(rpi->render_step >= 6, true);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[rpi->render_step]);
|
|
state.cube_to_dp_shader.bind();
|
|
|
|
int target_size = reflection_atlas->size / reflection_atlas->subdiv;
|
|
|
|
int cubemap_index = reflection_cubemaps.size() - 1;
|
|
|
|
for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) {
|
|
//find appropriate cubemap to render to
|
|
if (reflection_cubemaps[i].size > target_size * 2)
|
|
break;
|
|
|
|
cubemap_index = i;
|
|
}
|
|
|
|
glDisable(GL_BLEND);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP, reflection_cubemaps[cubemap_index].cubemap);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID, true);
|
|
storage->shaders.cubemap_filter.bind();
|
|
|
|
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
|
|
for (int i = 0; i < rpi->render_step; i++) {
|
|
cell_size >>= 1; //mipmaps!
|
|
}
|
|
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
|
|
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
|
|
int width = cell_size;
|
|
int height = cell_size;
|
|
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, rpi->render_step == 0);
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, rpi->probe_ptr->update_mode == VS::REFLECTION_PROBE_UPDATE_ALWAYS);
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP, i == 0);
|
|
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, rpi->render_step / 5.0);
|
|
|
|
uint32_t local_width = width, local_height = height;
|
|
uint32_t local_x = x, local_y = y;
|
|
|
|
local_height /= 2;
|
|
local_y += i * local_height;
|
|
|
|
glViewport(local_x, local_y, local_width, local_height);
|
|
|
|
_copy_screen();
|
|
}
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE, false);
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY, false);
|
|
|
|
rpi->render_step++;
|
|
|
|
return rpi->render_step == 6;
|
|
}
|
|
|
|
/* ENVIRONMENT API */
|
|
|
|
RID RasterizerSceneGLES3::environment_create() {
|
|
|
|
Environment *env = memnew(Environment);
|
|
|
|
return environment_owner.make_rid(env);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_background(RID p_env, VS::EnvironmentBG p_bg) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
env->bg_mode = p_bg;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_sky(RID p_env, RID p_sky) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->sky = p_sky;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_sky_custom_fov(RID p_env, float p_scale) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->sky_custom_fov = p_scale;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->sky_orientation = p_orientation;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_bg_color(RID p_env, const Color &p_color) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->bg_color = p_color;
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_bg_energy(RID p_env, float p_energy) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->bg_energy = p_energy;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_canvas_max_layer(RID p_env, int p_max_layer) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->canvas_max_layer = p_max_layer;
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_ambient_light(RID p_env, const Color &p_color, float p_energy, float p_sky_contribution) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ambient_color = p_color;
|
|
env->ambient_energy = p_energy;
|
|
env->ambient_sky_contribution = p_sky_contribution;
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_camera_feed_id(RID p_env, int p_camera_feed_id) {
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->camera_feed_id = p_camera_feed_id;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_dof_blur_far(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->dof_blur_far_enabled = p_enable;
|
|
env->dof_blur_far_distance = p_distance;
|
|
env->dof_blur_far_transition = p_transition;
|
|
env->dof_blur_far_amount = p_amount;
|
|
env->dof_blur_far_quality = p_quality;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_dof_blur_near(RID p_env, bool p_enable, float p_distance, float p_transition, float p_amount, VS::EnvironmentDOFBlurQuality p_quality) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->dof_blur_near_enabled = p_enable;
|
|
env->dof_blur_near_distance = p_distance;
|
|
env->dof_blur_near_transition = p_transition;
|
|
env->dof_blur_near_amount = p_amount;
|
|
env->dof_blur_near_quality = p_quality;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_threshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, bool p_bicubic_upscale) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->glow_enabled = p_enable;
|
|
env->glow_levels = p_level_flags;
|
|
env->glow_intensity = p_intensity;
|
|
env->glow_strength = p_strength;
|
|
env->glow_bloom = p_bloom_threshold;
|
|
env->glow_blend_mode = p_blend_mode;
|
|
env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold;
|
|
env->glow_hdr_bleed_scale = p_hdr_bleed_scale;
|
|
env->glow_hdr_luminance_cap = p_hdr_luminance_cap;
|
|
env->glow_bicubic_upscale = p_bicubic_upscale;
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_in, float p_fade_out, float p_depth_tolerance, bool p_roughness) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ssr_enabled = p_enable;
|
|
env->ssr_max_steps = p_max_steps;
|
|
env->ssr_fade_in = p_fade_in;
|
|
env->ssr_fade_out = p_fade_out;
|
|
env->ssr_depth_tolerance = p_depth_tolerance;
|
|
env->ssr_roughness = p_roughness;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect, float p_ao_channel_affect, const Color &p_color, VS::EnvironmentSSAOQuality p_quality, VisualServer::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ssao_enabled = p_enable;
|
|
env->ssao_radius = p_radius;
|
|
env->ssao_intensity = p_intensity;
|
|
env->ssao_radius2 = p_radius2;
|
|
env->ssao_intensity2 = p_intensity2;
|
|
env->ssao_bias = p_bias;
|
|
env->ssao_light_affect = p_light_affect;
|
|
env->ssao_ao_channel_affect = p_ao_channel_affect;
|
|
env->ssao_color = p_color;
|
|
env->ssao_filter = p_blur;
|
|
env->ssao_quality = p_quality;
|
|
env->ssao_bilateral_sharpness = p_bilateral_sharpness;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_tonemap(RID p_env, VS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->tone_mapper = p_tone_mapper;
|
|
env->tone_mapper_exposure = p_exposure;
|
|
env->tone_mapper_exposure_white = p_white;
|
|
env->auto_exposure = p_auto_exposure;
|
|
env->auto_exposure_speed = p_auto_exp_speed;
|
|
env->auto_exposure_min = p_min_luminance;
|
|
env->auto_exposure_max = p_max_luminance;
|
|
env->auto_exposure_grey = p_auto_exp_scale;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, RID p_ramp) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->adjustments_enabled = p_enable;
|
|
env->adjustments_brightness = p_brightness;
|
|
env->adjustments_contrast = p_contrast;
|
|
env->adjustments_saturation = p_saturation;
|
|
env->color_correction = p_ramp;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_fog(RID p_env, bool p_enable, const Color &p_color, const Color &p_sun_color, float p_sun_amount) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->fog_enabled = p_enable;
|
|
env->fog_color = p_color;
|
|
env->fog_sun_color = p_sun_color;
|
|
env->fog_sun_amount = p_sun_amount;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->fog_depth_enabled = p_enable;
|
|
env->fog_depth_begin = p_depth_begin;
|
|
env->fog_depth_end = p_depth_end;
|
|
env->fog_depth_curve = p_depth_curve;
|
|
env->fog_transmit_enabled = p_transmit;
|
|
env->fog_transmit_curve = p_transmit_curve;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) {
|
|
|
|
Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->fog_height_enabled = p_enable;
|
|
env->fog_height_min = p_min_height;
|
|
env->fog_height_max = p_max_height;
|
|
env->fog_height_curve = p_height_curve;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::is_environment(RID p_env) {
|
|
|
|
return environment_owner.owns(p_env);
|
|
}
|
|
|
|
VS::EnvironmentBG RasterizerSceneGLES3::environment_get_background(RID p_env) {
|
|
|
|
const Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND_V(!env, VS::ENV_BG_MAX);
|
|
|
|
return env->bg_mode;
|
|
}
|
|
|
|
int RasterizerSceneGLES3::environment_get_canvas_max_layer(RID p_env) {
|
|
|
|
const Environment *env = environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND_V(!env, -1);
|
|
|
|
return env->canvas_max_layer;
|
|
}
|
|
|
|
RID RasterizerSceneGLES3::light_instance_create(RID p_light) {
|
|
|
|
LightInstance *light_instance = memnew(LightInstance);
|
|
|
|
light_instance->last_pass = 0;
|
|
light_instance->last_scene_pass = 0;
|
|
light_instance->last_scene_shadow_pass = 0;
|
|
|
|
light_instance->light = p_light;
|
|
light_instance->light_ptr = storage->light_owner.getornull(p_light);
|
|
|
|
if (!light_instance->light_ptr) {
|
|
memdelete(light_instance);
|
|
ERR_FAIL_V_MSG(RID(), "Condition ' !light_instance->light_ptr ' is true.");
|
|
}
|
|
|
|
light_instance->self = light_instance_owner.make_rid(light_instance);
|
|
|
|
return light_instance->self;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->transform = p_transform;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform &p_transform, float p_far, float p_split, int p_pass, float p_bias_scale) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
if (light_instance->light_ptr->type != VS::LIGHT_DIRECTIONAL) {
|
|
p_pass = 0;
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_pass, 4);
|
|
|
|
light_instance->shadow_transform[p_pass].camera = p_projection;
|
|
light_instance->shadow_transform[p_pass].transform = p_transform;
|
|
light_instance->shadow_transform[p_pass].farplane = p_far;
|
|
light_instance->shadow_transform[p_pass].split = p_split;
|
|
light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::light_instance_mark_visible(RID p_light_instance) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->last_scene_pass = scene_pass;
|
|
}
|
|
|
|
//////////////////////
|
|
|
|
RID RasterizerSceneGLES3::gi_probe_instance_create() {
|
|
|
|
GIProbeInstance *gipi = memnew(GIProbeInstance);
|
|
|
|
return gi_probe_instance_owner.make_rid(gipi);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->data = p_data;
|
|
gipi->probe = storage->gi_probe_owner.getornull(p_base);
|
|
if (p_data.is_valid()) {
|
|
RasterizerStorageGLES3::GIProbeData *gipd = storage->gi_probe_data_owner.getornull(p_data);
|
|
ERR_FAIL_COND(!gipd);
|
|
|
|
gipi->tex_cache = gipd->tex_id;
|
|
gipi->cell_size_cache.x = 1.0 / gipd->width;
|
|
gipi->cell_size_cache.y = 1.0 / gipd->height;
|
|
gipi->cell_size_cache.z = 1.0 / gipd->depth;
|
|
}
|
|
}
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_transform_to_data(RID p_probe, const Transform &p_xform) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->transform_to_data = p_xform;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_bounds(RID p_probe, const Vector3 &p_bounds) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->bounds = p_bounds;
|
|
}
|
|
|
|
////////////////////////////
|
|
////////////////////////////
|
|
////////////////////////////
|
|
|
|
bool RasterizerSceneGLES3::_setup_material(RasterizerStorageGLES3::Material *p_material, bool p_depth_pass, bool p_alpha_pass) {
|
|
|
|
/* this is handled outside
|
|
if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) {
|
|
glDisable(GL_CULL_FACE);
|
|
} else {
|
|
glEnable(GL_CULL_FACE);
|
|
} */
|
|
|
|
if (state.current_line_width != p_material->line_width) {
|
|
//glLineWidth(MAX(p_material->line_width,1.0));
|
|
state.current_line_width = p_material->line_width;
|
|
}
|
|
|
|
if (state.current_depth_test != (!p_material->shader->spatial.no_depth_test)) {
|
|
if (p_material->shader->spatial.no_depth_test) {
|
|
glDisable(GL_DEPTH_TEST);
|
|
|
|
} else {
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
|
|
state.current_depth_test = !p_material->shader->spatial.no_depth_test;
|
|
}
|
|
|
|
if (state.current_depth_draw != p_material->shader->spatial.depth_draw_mode) {
|
|
switch (p_material->shader->spatial.depth_draw_mode) {
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS: {
|
|
glDepthMask(p_depth_pass);
|
|
// If some transparent objects write to depth, we need to re-copy depth texture when we need it
|
|
if (p_alpha_pass && !state.used_depth_prepass) {
|
|
state.prepared_depth_texture = false;
|
|
}
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
|
|
|
|
glDepthMask(!p_alpha_pass);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
|
|
glDepthMask(GL_TRUE);
|
|
// If some transparent objects write to depth, we need to re-copy depth texture when we need it
|
|
if (p_alpha_pass) {
|
|
state.prepared_depth_texture = false;
|
|
}
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER: {
|
|
glDepthMask(GL_FALSE);
|
|
} break;
|
|
}
|
|
|
|
state.current_depth_draw = p_material->shader->spatial.depth_draw_mode;
|
|
}
|
|
|
|
//material parameters
|
|
|
|
state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
|
|
bool rebind = state.scene_shader.bind();
|
|
|
|
if (p_material->ubo_id) {
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 1, p_material->ubo_id);
|
|
}
|
|
|
|
int tc = p_material->textures.size();
|
|
RID *textures = p_material->textures.ptrw();
|
|
ShaderLanguage::ShaderNode::Uniform::Hint *texture_hints = p_material->shader->texture_hints.ptrw();
|
|
const ShaderLanguage::DataType *texture_types = p_material->shader->texture_types.ptr();
|
|
|
|
state.current_main_tex = 0;
|
|
|
|
for (int i = 0; i < tc; i++) {
|
|
|
|
glActiveTexture(GL_TEXTURE0 + i);
|
|
|
|
GLenum target = GL_TEXTURE_2D;
|
|
GLuint tex = 0;
|
|
|
|
RasterizerStorageGLES3::Texture *t = storage->texture_owner.getptr(textures[i]);
|
|
|
|
if (t) {
|
|
|
|
if (t->redraw_if_visible) { //must check before proxy because this is often used with proxies
|
|
VisualServerRaster::redraw_request();
|
|
}
|
|
|
|
t = t->get_ptr(); //resolve for proxies
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (t->detect_3d) {
|
|
t->detect_3d(t->detect_3d_ud);
|
|
}
|
|
#endif
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (t->detect_normal && texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL) {
|
|
t->detect_normal(t->detect_normal_ud);
|
|
}
|
|
#endif
|
|
if (t->render_target)
|
|
t->render_target->used_in_frame = true;
|
|
|
|
target = t->target;
|
|
tex = t->tex_id;
|
|
} else {
|
|
|
|
switch (texture_types[i]) {
|
|
case ShaderLanguage::TYPE_ISAMPLER2D:
|
|
case ShaderLanguage::TYPE_USAMPLER2D:
|
|
case ShaderLanguage::TYPE_SAMPLER2D: {
|
|
target = GL_TEXTURE_2D;
|
|
|
|
switch (texture_hints[i]) {
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
|
|
tex = storage->resources.black_tex;
|
|
} break;
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
|
|
tex = storage->resources.aniso_tex;
|
|
} break;
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
|
|
tex = storage->resources.normal_tex;
|
|
|
|
} break;
|
|
default: {
|
|
tex = storage->resources.white_tex;
|
|
} break;
|
|
}
|
|
|
|
} break;
|
|
|
|
case ShaderLanguage::TYPE_SAMPLERCUBE: {
|
|
// TODO
|
|
} break;
|
|
|
|
case ShaderLanguage::TYPE_ISAMPLER3D:
|
|
case ShaderLanguage::TYPE_USAMPLER3D:
|
|
case ShaderLanguage::TYPE_SAMPLER3D: {
|
|
|
|
target = GL_TEXTURE_3D;
|
|
tex = storage->resources.white_tex_3d;
|
|
|
|
//switch (texture_hints[i]) {
|
|
// TODO
|
|
//}
|
|
|
|
} break;
|
|
|
|
case ShaderLanguage::TYPE_ISAMPLER2DARRAY:
|
|
case ShaderLanguage::TYPE_USAMPLER2DARRAY:
|
|
case ShaderLanguage::TYPE_SAMPLER2DARRAY: {
|
|
|
|
target = GL_TEXTURE_2D_ARRAY;
|
|
tex = storage->resources.white_tex_array;
|
|
|
|
//switch (texture_hints[i]) {
|
|
// TODO
|
|
//}
|
|
|
|
} break;
|
|
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
|
|
glBindTexture(target, tex);
|
|
|
|
if (t && storage->config.srgb_decode_supported) {
|
|
//if SRGB decode extension is present, simply switch the texture to whathever is needed
|
|
bool must_srgb = false;
|
|
|
|
if (t->srgb && (texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || texture_hints[i] == ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO)) {
|
|
must_srgb = true;
|
|
}
|
|
|
|
if (t->using_srgb != must_srgb) {
|
|
if (must_srgb) {
|
|
glTexParameteri(t->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
|
|
#ifdef TOOLS_ENABLED
|
|
if (t->detect_srgb) {
|
|
t->detect_srgb(t->detect_srgb_ud);
|
|
}
|
|
#endif
|
|
|
|
} else {
|
|
glTexParameteri(t->target, _TEXTURE_SRGB_DECODE_EXT, _SKIP_DECODE_EXT);
|
|
}
|
|
t->using_srgb = must_srgb;
|
|
}
|
|
}
|
|
|
|
if (i == 0) {
|
|
state.current_main_tex = tex;
|
|
}
|
|
}
|
|
|
|
return rebind;
|
|
}
|
|
|
|
struct RasterizerGLES3Particle {
|
|
|
|
float color[4];
|
|
float velocity_active[4];
|
|
float custom[4];
|
|
float xform_1[4];
|
|
float xform_2[4];
|
|
float xform_3[4];
|
|
};
|
|
|
|
struct RasterizerGLES3ParticleSort {
|
|
|
|
Vector3 z_dir;
|
|
bool operator()(const RasterizerGLES3Particle &p_a, const RasterizerGLES3Particle &p_b) const {
|
|
|
|
return z_dir.dot(Vector3(p_a.xform_1[3], p_a.xform_2[3], p_a.xform_3[3])) < z_dir.dot(Vector3(p_b.xform_1[3], p_b.xform_2[3], p_b.xform_3[3]));
|
|
}
|
|
};
|
|
|
|
void RasterizerSceneGLES3::_setup_geometry(RenderList::Element *e, const Transform &p_view_transform) {
|
|
|
|
switch (e->instance->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
|
|
if (s->blend_shapes.size() && e->instance->blend_values.size()) {
|
|
//blend shapes, use transform feedback
|
|
storage->mesh_render_blend_shapes(s, e->instance->blend_values.ptr());
|
|
//rebind shader
|
|
state.scene_shader.bind();
|
|
#ifdef DEBUG_ENABLED
|
|
} else if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
glBindVertexArray(s->array_wireframe_id); // everything is so easy nowadays
|
|
#endif
|
|
} else {
|
|
glBindVertexArray(s->array_id); // everything is so easy nowadays
|
|
}
|
|
|
|
} break;
|
|
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh *>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
#ifdef DEBUG_ENABLED
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) {
|
|
|
|
glBindVertexArray(s->instancing_array_wireframe_id); // use the instancing array ID
|
|
} else
|
|
#endif
|
|
{
|
|
glBindVertexArray(s->instancing_array_id); // use the instancing array ID
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, multi_mesh->buffer); //modify the buffer
|
|
|
|
int stride = (multi_mesh->xform_floats + multi_mesh->color_floats + multi_mesh->custom_data_floats) * 4;
|
|
glEnableVertexAttribArray(8);
|
|
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, NULL);
|
|
glVertexAttribDivisor(8, 1);
|
|
glEnableVertexAttribArray(9);
|
|
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(4 * 4));
|
|
glVertexAttribDivisor(9, 1);
|
|
|
|
int color_ofs;
|
|
|
|
if (multi_mesh->transform_format == VS::MULTIMESH_TRANSFORM_3D) {
|
|
glEnableVertexAttribArray(10);
|
|
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(8 * 4));
|
|
glVertexAttribDivisor(10, 1);
|
|
color_ofs = 12 * 4;
|
|
} else {
|
|
glDisableVertexAttribArray(10);
|
|
glVertexAttrib4f(10, 0, 0, 1, 0);
|
|
color_ofs = 8 * 4;
|
|
}
|
|
|
|
int custom_data_ofs = color_ofs;
|
|
|
|
switch (multi_mesh->color_format) {
|
|
|
|
case VS::MULTIMESH_COLOR_MAX:
|
|
case VS::MULTIMESH_COLOR_NONE: {
|
|
glDisableVertexAttribArray(11);
|
|
glVertexAttrib4f(11, 1, 1, 1, 1);
|
|
} break;
|
|
case VS::MULTIMESH_COLOR_8BIT: {
|
|
glEnableVertexAttribArray(11);
|
|
glVertexAttribPointer(11, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
|
|
glVertexAttribDivisor(11, 1);
|
|
custom_data_ofs += 4;
|
|
|
|
} break;
|
|
case VS::MULTIMESH_COLOR_FLOAT: {
|
|
glEnableVertexAttribArray(11);
|
|
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(color_ofs));
|
|
glVertexAttribDivisor(11, 1);
|
|
custom_data_ofs += 4 * 4;
|
|
} break;
|
|
}
|
|
|
|
switch (multi_mesh->custom_data_format) {
|
|
|
|
case VS::MULTIMESH_CUSTOM_DATA_MAX:
|
|
case VS::MULTIMESH_CUSTOM_DATA_NONE: {
|
|
glDisableVertexAttribArray(12);
|
|
glVertexAttrib4f(12, 1, 1, 1, 1);
|
|
} break;
|
|
case VS::MULTIMESH_CUSTOM_DATA_8BIT: {
|
|
glEnableVertexAttribArray(12);
|
|
glVertexAttribPointer(12, 4, GL_UNSIGNED_BYTE, GL_TRUE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
|
|
glVertexAttribDivisor(12, 1);
|
|
|
|
} break;
|
|
case VS::MULTIMESH_CUSTOM_DATA_FLOAT: {
|
|
glEnableVertexAttribArray(12);
|
|
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(custom_data_ofs));
|
|
glVertexAttribDivisor(12, 1);
|
|
} break;
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_PARTICLES: {
|
|
|
|
RasterizerStorageGLES3::Particles *particles = static_cast<RasterizerStorageGLES3::Particles *>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
|
|
if (particles->draw_order == VS::PARTICLES_DRAW_ORDER_VIEW_DEPTH && particles->particle_valid_histories[1]) {
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[1]); //modify the buffer, this was used 2 frames ago so it should be good enough for flushing
|
|
RasterizerGLES3Particle *particle_array;
|
|
#ifndef __EMSCRIPTEN__
|
|
particle_array = static_cast<RasterizerGLES3Particle *>(glMapBufferRange(GL_ARRAY_BUFFER, 0, particles->amount * 24 * sizeof(float), GL_MAP_READ_BIT | GL_MAP_WRITE_BIT));
|
|
#else
|
|
PoolVector<RasterizerGLES3Particle> particle_vector;
|
|
particle_vector.resize(particles->amount);
|
|
PoolVector<RasterizerGLES3Particle>::Write particle_writer = particle_vector.write();
|
|
particle_array = particle_writer.ptr();
|
|
glGetBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(RasterizerGLES3Particle), particle_array);
|
|
#endif
|
|
|
|
SortArray<RasterizerGLES3Particle, RasterizerGLES3ParticleSort> sorter;
|
|
|
|
if (particles->use_local_coords) {
|
|
sorter.compare.z_dir = e->instance->transform.affine_inverse().xform(p_view_transform.basis.get_axis(2)).normalized();
|
|
} else {
|
|
sorter.compare.z_dir = p_view_transform.basis.get_axis(2).normalized();
|
|
}
|
|
|
|
sorter.sort(particle_array, particles->amount);
|
|
|
|
#ifndef __EMSCRIPTEN__
|
|
glUnmapBuffer(GL_ARRAY_BUFFER);
|
|
#else
|
|
particle_writer.release();
|
|
particle_array = NULL;
|
|
{
|
|
PoolVector<RasterizerGLES3Particle>::Read r = particle_vector.read();
|
|
glBufferSubData(GL_ARRAY_BUFFER, 0, particles->amount * sizeof(RasterizerGLES3Particle), r.ptr());
|
|
}
|
|
particle_vector = PoolVector<RasterizerGLES3Particle>();
|
|
#endif
|
|
#ifdef DEBUG_ENABLED
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) {
|
|
glBindVertexArray(s->instancing_array_wireframe_id); // use the wireframe instancing array ID
|
|
} else
|
|
#endif
|
|
{
|
|
|
|
glBindVertexArray(s->instancing_array_id); // use the instancing array ID
|
|
}
|
|
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffer_histories[1]); //modify the buffer
|
|
|
|
} else {
|
|
#ifdef DEBUG_ENABLED
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->instancing_array_wireframe_id) {
|
|
glBindVertexArray(s->instancing_array_wireframe_id); // use the wireframe instancing array ID
|
|
} else
|
|
#endif
|
|
{
|
|
glBindVertexArray(s->instancing_array_id); // use the instancing array ID
|
|
}
|
|
glBindBuffer(GL_ARRAY_BUFFER, particles->particle_buffers[0]); //modify the buffer
|
|
}
|
|
|
|
int stride = sizeof(float) * 4 * 6;
|
|
|
|
//transform
|
|
|
|
if (particles->draw_order != VS::PARTICLES_DRAW_ORDER_LIFETIME) {
|
|
|
|
glEnableVertexAttribArray(8); //xform x
|
|
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
|
|
glVertexAttribDivisor(8, 1);
|
|
glEnableVertexAttribArray(9); //xform y
|
|
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
|
|
glVertexAttribDivisor(9, 1);
|
|
glEnableVertexAttribArray(10); //xform z
|
|
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
|
|
glVertexAttribDivisor(10, 1);
|
|
glEnableVertexAttribArray(11); //color
|
|
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, NULL);
|
|
glVertexAttribDivisor(11, 1);
|
|
glEnableVertexAttribArray(12); //custom
|
|
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
|
|
glVertexAttribDivisor(12, 1);
|
|
}
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
|
|
static const GLenum gl_primitive[] = {
|
|
GL_POINTS,
|
|
GL_LINES,
|
|
GL_LINE_STRIP,
|
|
GL_LINE_LOOP,
|
|
GL_TRIANGLES,
|
|
GL_TRIANGLE_STRIP,
|
|
GL_TRIANGLE_FAN
|
|
};
|
|
|
|
void RasterizerSceneGLES3::_render_geometry(RenderList::Element *e) {
|
|
|
|
switch (e->instance->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
|
|
glDrawElements(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0);
|
|
storage->info.render.vertices_count += s->index_array_len;
|
|
} else
|
|
#endif
|
|
if (s->index_array_len > 0) {
|
|
|
|
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0);
|
|
|
|
storage->info.render.vertices_count += s->index_array_len;
|
|
|
|
} else {
|
|
|
|
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
|
|
|
|
storage->info.render.vertices_count += s->array_len;
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh *>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
|
|
int amount = MIN(multi_mesh->size, multi_mesh->visible_instances);
|
|
|
|
if (amount == -1) {
|
|
amount = multi_mesh->size;
|
|
}
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
|
|
glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount);
|
|
storage->info.render.vertices_count += s->index_array_len * amount;
|
|
} else
|
|
#endif
|
|
if (s->index_array_len > 0) {
|
|
|
|
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount);
|
|
|
|
storage->info.render.vertices_count += s->index_array_len * amount;
|
|
|
|
} else {
|
|
|
|
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount);
|
|
|
|
storage->info.render.vertices_count += s->array_len * amount;
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_IMMEDIATE: {
|
|
|
|
bool restore_tex = false;
|
|
const RasterizerStorageGLES3::Immediate *im = static_cast<const RasterizerStorageGLES3::Immediate *>(e->geometry);
|
|
|
|
if (im->building) {
|
|
return;
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
|
|
glBindVertexArray(state.immediate_array);
|
|
|
|
for (const List<RasterizerStorageGLES3::Immediate::Chunk>::Element *E = im->chunks.front(); E; E = E->next()) {
|
|
|
|
const RasterizerStorageGLES3::Immediate::Chunk &c = E->get();
|
|
if (c.vertices.empty()) {
|
|
continue;
|
|
}
|
|
|
|
int vertices = c.vertices.size();
|
|
uint32_t buf_ofs = 0;
|
|
|
|
storage->info.render.vertices_count += vertices;
|
|
|
|
if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
|
|
|
|
RasterizerStorageGLES3::Texture *t = storage->texture_owner.get(c.texture);
|
|
|
|
if (t->redraw_if_visible) {
|
|
VisualServerRaster::redraw_request();
|
|
}
|
|
t = t->get_ptr(); //resolve for proxies
|
|
|
|
#ifdef TOOLS_ENABLED
|
|
if (t->detect_3d) {
|
|
t->detect_3d(t->detect_3d_ud);
|
|
}
|
|
#endif
|
|
|
|
if (t->render_target) {
|
|
t->render_target->used_in_frame = true;
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(t->target, t->tex_id);
|
|
restore_tex = true;
|
|
|
|
} else if (restore_tex) {
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
|
|
restore_tex = false;
|
|
}
|
|
|
|
if (!c.normals.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.normals.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
buf_ofs += sizeof(Vector3) * vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
|
|
}
|
|
|
|
if (!c.tangents.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Plane) * vertices, c.tangents.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false, sizeof(Plane), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
buf_ofs += sizeof(Plane) * vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
|
|
}
|
|
|
|
if (!c.colors.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_COLOR);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Color) * vertices, c.colors.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false, sizeof(Color), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
buf_ofs += sizeof(Color) * vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_COLOR);
|
|
glVertexAttrib4f(VS::ARRAY_COLOR, 1, 1, 1, 1);
|
|
}
|
|
|
|
if (!c.uvs.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
buf_ofs += sizeof(Vector2) * vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
}
|
|
|
|
if (!c.uvs2.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector2) * vertices, c.uvs2.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false, sizeof(Vector2), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
buf_ofs += sizeof(Vector2) * vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
|
|
}
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
|
|
glBufferSubData(GL_ARRAY_BUFFER, buf_ofs, sizeof(Vector3) * vertices, c.vertices.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false, sizeof(Vector3), CAST_INT_TO_UCHAR_PTR(buf_ofs));
|
|
glDrawArrays(gl_primitive[c.primitive], 0, c.vertices.size());
|
|
}
|
|
|
|
if (restore_tex) {
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, state.current_main_tex);
|
|
restore_tex = false;
|
|
}
|
|
} break;
|
|
case VS::INSTANCE_PARTICLES: {
|
|
|
|
RasterizerStorageGLES3::Particles *particles = static_cast<RasterizerStorageGLES3::Particles *>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface *>(e->geometry);
|
|
|
|
if (!particles->use_local_coords) //not using local coordinates? then clear transform..
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, Transform());
|
|
|
|
int amount = particles->amount;
|
|
|
|
if (particles->draw_order == VS::PARTICLES_DRAW_ORDER_LIFETIME) {
|
|
//split
|
|
|
|
int stride = sizeof(float) * 4 * 6;
|
|
int split = int(Math::ceil(particles->phase * particles->amount));
|
|
|
|
if (amount - split > 0) {
|
|
glEnableVertexAttribArray(8); //xform x
|
|
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 3));
|
|
glVertexAttribDivisor(8, 1);
|
|
glEnableVertexAttribArray(9); //xform y
|
|
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 4));
|
|
glVertexAttribDivisor(9, 1);
|
|
glEnableVertexAttribArray(10); //xform z
|
|
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 5));
|
|
glVertexAttribDivisor(10, 1);
|
|
glEnableVertexAttribArray(11); //color
|
|
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + 0));
|
|
glVertexAttribDivisor(11, 1);
|
|
glEnableVertexAttribArray(12); //custom
|
|
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(stride * split + sizeof(float) * 4 * 2));
|
|
glVertexAttribDivisor(12, 1);
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
|
|
glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount - split);
|
|
storage->info.render.vertices_count += s->index_array_len * (amount - split);
|
|
} else
|
|
#endif
|
|
if (s->index_array_len > 0) {
|
|
|
|
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount - split);
|
|
|
|
storage->info.render.vertices_count += s->index_array_len * (amount - split);
|
|
|
|
} else {
|
|
|
|
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount - split);
|
|
|
|
storage->info.render.vertices_count += s->array_len * (amount - split);
|
|
}
|
|
}
|
|
|
|
if (split > 0) {
|
|
glEnableVertexAttribArray(8); //xform x
|
|
glVertexAttribPointer(8, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 3));
|
|
glVertexAttribDivisor(8, 1);
|
|
glEnableVertexAttribArray(9); //xform y
|
|
glVertexAttribPointer(9, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 4));
|
|
glVertexAttribDivisor(9, 1);
|
|
glEnableVertexAttribArray(10); //xform z
|
|
glVertexAttribPointer(10, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 5));
|
|
glVertexAttribDivisor(10, 1);
|
|
glEnableVertexAttribArray(11); //color
|
|
glVertexAttribPointer(11, 4, GL_FLOAT, GL_FALSE, stride, NULL);
|
|
glVertexAttribDivisor(11, 1);
|
|
glEnableVertexAttribArray(12); //custom
|
|
glVertexAttribPointer(12, 4, GL_FLOAT, GL_FALSE, stride, CAST_INT_TO_UCHAR_PTR(sizeof(float) * 4 * 2));
|
|
glVertexAttribDivisor(12, 1);
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
|
|
glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, split);
|
|
storage->info.render.vertices_count += s->index_array_len * split;
|
|
} else
|
|
#endif
|
|
if (s->index_array_len > 0) {
|
|
|
|
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, split);
|
|
|
|
storage->info.render.vertices_count += s->index_array_len * split;
|
|
|
|
} else {
|
|
|
|
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, split);
|
|
|
|
storage->info.render.vertices_count += s->array_len * split;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_WIREFRAME && s->array_wireframe_id) {
|
|
|
|
glDrawElementsInstanced(GL_LINES, s->index_wireframe_len, GL_UNSIGNED_INT, 0, amount);
|
|
storage->info.render.vertices_count += s->index_array_len * amount;
|
|
} else
|
|
#endif
|
|
|
|
if (s->index_array_len > 0) {
|
|
|
|
glDrawElementsInstanced(gl_primitive[s->primitive], s->index_array_len, (s->array_len >= (1 << 16)) ? GL_UNSIGNED_INT : GL_UNSIGNED_SHORT, 0, amount);
|
|
|
|
storage->info.render.vertices_count += s->index_array_len * amount;
|
|
|
|
} else {
|
|
|
|
glDrawArraysInstanced(gl_primitive[s->primitive], 0, s->array_len, amount);
|
|
|
|
storage->info.render.vertices_count += s->array_len * amount;
|
|
}
|
|
}
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_light(RenderList::Element *e, const Transform &p_view_transform) {
|
|
|
|
int maxobj = state.max_forward_lights_per_object;
|
|
int *omni_indices = (int *)alloca(maxobj * sizeof(int));
|
|
int omni_count = 0;
|
|
int *spot_indices = (int *)alloca(maxobj * sizeof(int));
|
|
int spot_count = 0;
|
|
int reflection_indices[16];
|
|
int reflection_count = 0;
|
|
|
|
int lc = e->instance->light_instances.size();
|
|
if (lc) {
|
|
|
|
const RID *lights = e->instance->light_instances.ptr();
|
|
|
|
for (int i = 0; i < lc; i++) {
|
|
LightInstance *li = light_instance_owner.getornull(lights[i]);
|
|
if (!li || li->last_pass != render_pass) {
|
|
continue; // Not visible
|
|
}
|
|
|
|
if (e->instance->baked_light && li->light_ptr->bake_mode == VS::LightBakeMode::LIGHT_BAKE_ALL) {
|
|
continue; // This light is already included in the lightmap
|
|
}
|
|
|
|
if (li && li->light_ptr->type == VS::LIGHT_OMNI) {
|
|
if (omni_count < maxobj && e->instance->layer_mask & li->light_ptr->cull_mask) {
|
|
omni_indices[omni_count++] = li->light_index;
|
|
}
|
|
}
|
|
|
|
if (li && li->light_ptr->type == VS::LIGHT_SPOT) {
|
|
if (spot_count < maxobj && e->instance->layer_mask & li->light_ptr->cull_mask) {
|
|
spot_indices[spot_count++] = li->light_index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, omni_count);
|
|
|
|
if (omni_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES), omni_count, omni_indices);
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, spot_count);
|
|
if (spot_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES), spot_count, spot_indices);
|
|
}
|
|
|
|
int rc = e->instance->reflection_probe_instances.size();
|
|
|
|
if (rc) {
|
|
|
|
const RID *reflections = e->instance->reflection_probe_instances.ptr();
|
|
|
|
for (int i = 0; i < rc; i++) {
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getptr(reflections[i]);
|
|
if (rpi->last_pass != render_pass) //not visible
|
|
continue;
|
|
|
|
if (reflection_count < maxobj) {
|
|
reflection_indices[reflection_count++] = rpi->reflection_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::REFLECTION_COUNT, reflection_count);
|
|
if (reflection_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::REFLECTION_INDICES), reflection_count, reflection_indices);
|
|
}
|
|
|
|
int gi_probe_count = e->instance->gi_probe_instances.size();
|
|
if (gi_probe_count) {
|
|
const RID *ridp = e->instance->gi_probe_instances.ptr();
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getptr(ridp[0]);
|
|
|
|
float bias_scale = e->instance->baked_light ? 1 : 0;
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 9);
|
|
glBindTexture(GL_TEXTURE_3D, gipi->tex_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM1, gipi->transform_to_data * p_view_transform);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS1, gipi->bounds);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER1, gipi->probe ? gipi->probe->dynamic_range * gipi->probe->energy : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BIAS1, gipi->probe ? gipi->probe->bias * bias_scale : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_NORMAL_BIAS1, gipi->probe ? gipi->probe->normal_bias * bias_scale : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT1, gipi->probe ? !gipi->probe->interior : false);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE1, gipi->cell_size_cache);
|
|
if (gi_probe_count > 1) {
|
|
|
|
GIProbeInstance *gipi2 = gi_probe_instance_owner.getptr(ridp[1]);
|
|
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 10);
|
|
glBindTexture(GL_TEXTURE_3D, gipi2->tex_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM2, gipi2->transform_to_data * p_view_transform);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS2, gipi2->bounds);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE2, gipi2->cell_size_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER2, gipi2->probe ? gipi2->probe->dynamic_range * gipi2->probe->energy : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BIAS2, gipi2->probe ? gipi2->probe->bias * bias_scale : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_NORMAL_BIAS2, gipi2->probe ? gipi2->probe->normal_bias * bias_scale : 0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT2, gipi2->probe ? !gipi2->probe->interior : false);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, true);
|
|
} else {
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, false);
|
|
}
|
|
} else if (!e->instance->lightmap_capture_data.empty()) {
|
|
|
|
glUniform4fv(state.scene_shader.get_uniform_location(SceneShaderGLES3::LIGHTMAP_CAPTURES), 12, (const GLfloat *)e->instance->lightmap_capture_data.ptr());
|
|
|
|
} else if (e->instance->lightmap.is_valid()) {
|
|
RasterizerStorageGLES3::Texture *lightmap = storage->texture_owner.getornull(e->instance->lightmap);
|
|
RasterizerStorageGLES3::LightmapCapture *capture = storage->lightmap_capture_data_owner.getornull(e->instance->lightmap_capture->base);
|
|
|
|
if (lightmap && capture) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 9);
|
|
if (e->instance->lightmap_slice == -1) {
|
|
glBindTexture(GL_TEXTURE_2D, lightmap->tex_id);
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY, lightmap->tex_id);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_LAYER, e->instance->lightmap_slice);
|
|
}
|
|
const Rect2 &uvr = e->instance->lightmap_uv_rect;
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_UV_RECT, Color(uvr.get_position().x, uvr.get_position().y, uvr.get_size().x, uvr.get_size().y));
|
|
if (storage->config.use_lightmap_filter_bicubic) {
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_TEXTURE_SIZE, Vector2(lightmap->width, lightmap->height));
|
|
}
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::LIGHTMAP_ENERGY, capture->energy);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_set_cull(bool p_front, bool p_disabled, bool p_reverse_cull) {
|
|
|
|
bool front = p_front;
|
|
if (p_reverse_cull)
|
|
front = !front;
|
|
|
|
if (p_disabled != state.cull_disabled) {
|
|
if (p_disabled)
|
|
glDisable(GL_CULL_FACE);
|
|
else
|
|
glEnable(GL_CULL_FACE);
|
|
|
|
state.cull_disabled = p_disabled;
|
|
}
|
|
|
|
if (front != state.cull_front) {
|
|
|
|
glCullFace(front ? GL_FRONT : GL_BACK);
|
|
state.cull_front = front;
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements, int p_element_count, const Transform &p_view_transform, const CameraMatrix &p_projection, RasterizerStorageGLES3::Sky *p_sky, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow, bool p_directional_add, bool p_directional_shadows) {
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 0, state.scene_ubo); //bind globals ubo
|
|
|
|
bool use_radiance_map = false;
|
|
if (!p_shadow && !p_directional_add) {
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 2, state.env_radiance_ubo); //bind environment radiance info
|
|
|
|
if (p_sky != NULL) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 2);
|
|
if (storage->config.use_texture_array_environment) {
|
|
glBindTexture(GL_TEXTURE_2D_ARRAY, p_sky->radiance);
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D, p_sky->radiance);
|
|
}
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 6);
|
|
glBindTexture(GL_TEXTURE_2D, p_sky->irradiance);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, storage->config.use_texture_array_environment);
|
|
use_radiance_map = true;
|
|
} else {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, false);
|
|
}
|
|
} else {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP_ARRAY, false);
|
|
}
|
|
|
|
state.cull_front = false;
|
|
state.cull_disabled = false;
|
|
glCullFace(GL_BACK);
|
|
glEnable(GL_CULL_FACE);
|
|
|
|
state.current_depth_test = true;
|
|
glEnable(GL_DEPTH_TEST);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, false);
|
|
|
|
state.current_blend_mode = -1;
|
|
state.current_line_width = -1;
|
|
state.current_depth_draw = -1;
|
|
|
|
RasterizerStorageGLES3::Material *prev_material = NULL;
|
|
RasterizerStorageGLES3::Geometry *prev_geometry = NULL;
|
|
RasterizerStorageGLES3::GeometryOwner *prev_owner = NULL;
|
|
VS::InstanceType prev_base_type = VS::INSTANCE_MAX;
|
|
|
|
int current_blend_mode = -1;
|
|
|
|
uint32_t prev_shading = 0xFFFFFFFF;
|
|
RasterizerStorageGLES3::Skeleton *prev_skeleton = NULL;
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, true); //by default unshaded (easier to set)
|
|
|
|
bool first = true;
|
|
bool prev_use_instancing = false;
|
|
|
|
storage->info.render.draw_call_count += p_element_count;
|
|
bool prev_opaque_prepass = false;
|
|
|
|
for (int i = 0; i < p_element_count; i++) {
|
|
|
|
RenderList::Element *e = p_elements[i];
|
|
RasterizerStorageGLES3::Material *material = e->material;
|
|
RasterizerStorageGLES3::Skeleton *skeleton = NULL;
|
|
if (e->instance->skeleton.is_valid()) {
|
|
skeleton = storage->skeleton_owner.getornull(e->instance->skeleton);
|
|
}
|
|
|
|
bool rebind = first;
|
|
|
|
uint32_t shading = (e->sort_key >> RenderList::SORT_KEY_SHADING_SHIFT) & RenderList::SORT_KEY_SHADING_MASK;
|
|
|
|
if (!p_shadow) {
|
|
|
|
bool use_directional = directional_light != NULL;
|
|
if (p_directional_add) {
|
|
use_directional = use_directional && !(e->instance->baked_light && directional_light->light_ptr->bake_mode == VS::LightBakeMode::LIGHT_BAKE_ALL);
|
|
use_directional = use_directional && ((e->instance->layer_mask & directional_light->light_ptr->cull_mask) != 0);
|
|
use_directional = use_directional && ((e->sort_key & SORT_KEY_UNSHADED_FLAG) == 0);
|
|
if (!use_directional) {
|
|
continue; // It's a directional-only pass and the directional light is disabled
|
|
}
|
|
} else {
|
|
use_directional = use_directional && (e->sort_key & SORT_KEY_NO_DIRECTIONAL_FLAG) == 0;
|
|
}
|
|
|
|
if (shading != prev_shading) {
|
|
|
|
if (e->sort_key & SORT_KEY_UNSHADED_FLAG) {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_LAYERED, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false);
|
|
|
|
//state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true);
|
|
} else {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, e->instance->gi_probe_instances.size() > 0);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_LAYERED, e->instance->lightmap_slice != -1);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, !e->instance->lightmap_capture_data.empty() && !e->instance->lightmap.is_valid() && e->instance->gi_probe_instances.size() == 0);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, false);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, !p_directional_add);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, (e->sort_key & SORT_KEY_VERTEX_LIT_FLAG));
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, use_directional);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, shadow_filter_mode == SHADOW_FILTER_PCF5);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, shadow_filter_mode == SHADOW_FILTER_PCF13);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, use_radiance_map);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, state.used_contact_shadows);
|
|
|
|
if (use_directional) {
|
|
if (p_directional_shadows && directional_light->light_ptr->shadow) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, true);
|
|
|
|
switch (directional_light->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
|
|
break; //none
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, directional_light->light_ptr->directional_blend_splits);
|
|
break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, directional_light->light_ptr->directional_blend_splits);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rebind = true;
|
|
}
|
|
|
|
if (p_alpha_pass || p_directional_add) {
|
|
int desired_blend_mode;
|
|
if (p_directional_add) {
|
|
desired_blend_mode = RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD;
|
|
} else {
|
|
desired_blend_mode = material->shader->spatial.blend_mode;
|
|
}
|
|
|
|
if (desired_blend_mode != current_blend_mode) {
|
|
|
|
switch (desired_blend_mode) {
|
|
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: {
|
|
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(p_alpha_pass ? GL_SRC_ALPHA : GL_ONE, GL_ONE);
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: {
|
|
|
|
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO);
|
|
} else {
|
|
glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE);
|
|
}
|
|
|
|
} break;
|
|
}
|
|
|
|
current_blend_mode = desired_blend_mode;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool use_opaque_prepass = e->sort_key & RenderList::SORT_KEY_OPAQUE_PRE_PASS;
|
|
|
|
if (use_opaque_prepass != prev_opaque_prepass) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_OPAQUE_PREPASS, use_opaque_prepass);
|
|
rebind = true;
|
|
}
|
|
|
|
bool use_instancing = e->instance->base_type == VS::INSTANCE_MULTIMESH || e->instance->base_type == VS::INSTANCE_PARTICLES;
|
|
|
|
if (use_instancing != prev_use_instancing) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING, use_instancing);
|
|
rebind = true;
|
|
}
|
|
|
|
if (prev_skeleton != skeleton) {
|
|
if ((prev_skeleton == NULL) != (skeleton == NULL)) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, skeleton != NULL);
|
|
rebind = true;
|
|
}
|
|
|
|
if (skeleton) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 1);
|
|
glBindTexture(GL_TEXTURE_2D, skeleton->texture);
|
|
}
|
|
}
|
|
|
|
if (material != prev_material || rebind) {
|
|
|
|
storage->info.render.material_switch_count++;
|
|
|
|
rebind = _setup_material(material, use_opaque_prepass, p_alpha_pass);
|
|
|
|
if (rebind) {
|
|
storage->info.render.shader_rebind_count++;
|
|
}
|
|
}
|
|
|
|
if (!(e->sort_key & SORT_KEY_UNSHADED_FLAG) && !p_directional_add && !p_shadow) {
|
|
_setup_light(e, p_view_transform);
|
|
}
|
|
|
|
if (e->owner != prev_owner || prev_base_type != e->instance->base_type || prev_geometry != e->geometry) {
|
|
|
|
_setup_geometry(e, p_view_transform);
|
|
storage->info.render.surface_switch_count++;
|
|
}
|
|
|
|
_set_cull(e->sort_key & RenderList::SORT_KEY_MIRROR_FLAG, e->sort_key & RenderList::SORT_KEY_CULL_DISABLED_FLAG, p_reverse_cull);
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, e->instance->transform);
|
|
|
|
_render_geometry(e);
|
|
|
|
prev_material = material;
|
|
prev_base_type = e->instance->base_type;
|
|
prev_geometry = e->geometry;
|
|
prev_owner = e->owner;
|
|
prev_shading = shading;
|
|
prev_skeleton = skeleton;
|
|
prev_use_instancing = use_instancing;
|
|
prev_opaque_prepass = use_opaque_prepass;
|
|
first = false;
|
|
}
|
|
|
|
glBindVertexArray(0);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_LAYERED, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_CAPTURE, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_CONTACT_SHADOWS, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_VERTEX_LIGHTING, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_OPAQUE_PREPASS, false);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_add_geometry(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, int p_material, bool p_depth_pass, bool p_shadow_pass) {
|
|
|
|
RasterizerStorageGLES3::Material *m = NULL;
|
|
RID m_src = p_instance->material_override.is_valid() ? p_instance->material_override : (p_material >= 0 ? p_instance->materials[p_material] : p_geometry->material);
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
|
|
m_src = default_overdraw_material;
|
|
}
|
|
|
|
/*
|
|
#ifdef DEBUG_ENABLED
|
|
if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) {
|
|
m_src=overdraw_material;
|
|
}
|
|
|
|
#endif
|
|
*/
|
|
|
|
if (m_src.is_valid()) {
|
|
m = storage->material_owner.getornull(m_src);
|
|
|
|
if (!m->shader || !m->shader->valid) {
|
|
m = NULL;
|
|
}
|
|
}
|
|
|
|
if (!m) {
|
|
m = storage->material_owner.getptr(default_material);
|
|
}
|
|
|
|
ERR_FAIL_COND(!m);
|
|
|
|
_add_geometry_with_material(p_geometry, p_instance, p_owner, m, p_depth_pass, p_shadow_pass);
|
|
|
|
while (m->next_pass.is_valid()) {
|
|
m = storage->material_owner.getornull(m->next_pass);
|
|
if (!m || !m->shader || !m->shader->valid)
|
|
break;
|
|
_add_geometry_with_material(p_geometry, p_instance, p_owner, m, p_depth_pass, p_shadow_pass);
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_add_geometry_with_material(RasterizerStorageGLES3::Geometry *p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner, RasterizerStorageGLES3::Material *p_material, bool p_depth_pass, bool p_shadow_pass) {
|
|
|
|
bool has_base_alpha = (p_material->shader->spatial.uses_alpha && !p_material->shader->spatial.uses_alpha_scissor) || p_material->shader->spatial.uses_screen_texture || p_material->shader->spatial.uses_depth_texture;
|
|
bool has_blend_alpha = p_material->shader->spatial.blend_mode != RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX;
|
|
bool has_alpha = has_base_alpha || has_blend_alpha;
|
|
|
|
bool mirror = p_instance->mirror;
|
|
bool no_cull = false;
|
|
|
|
if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) {
|
|
no_cull = true;
|
|
mirror = false;
|
|
} else if (p_material->shader->spatial.cull_mode == RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_FRONT) {
|
|
mirror = !mirror;
|
|
}
|
|
|
|
if (p_material->shader->spatial.uses_sss) {
|
|
state.used_sss = true;
|
|
}
|
|
|
|
if (p_material->shader->spatial.uses_screen_texture) {
|
|
state.used_screen_texture = true;
|
|
}
|
|
|
|
if (p_material->shader->spatial.uses_depth_texture) {
|
|
state.used_depth_texture = true;
|
|
}
|
|
|
|
if (p_depth_pass) {
|
|
|
|
if (has_blend_alpha || p_material->shader->spatial.uses_depth_texture || ((has_base_alpha || p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) || p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER || p_material->shader->spatial.no_depth_test)
|
|
return; //bye
|
|
|
|
if (!p_material->shader->spatial.uses_alpha_scissor && !p_material->shader->spatial.writes_modelview_or_projection && !p_material->shader->spatial.uses_vertex && !p_material->shader->spatial.uses_discard && p_material->shader->spatial.depth_draw_mode != RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
|
|
//shader does not use discard and does not write a vertex position, use generic material
|
|
if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED) {
|
|
p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material_twosided : default_material_twosided);
|
|
no_cull = true;
|
|
mirror = false;
|
|
} else {
|
|
p_material = storage->material_owner.getptr(!p_shadow_pass && p_material->shader->spatial.uses_world_coordinates ? default_worldcoord_material : default_material);
|
|
}
|
|
}
|
|
|
|
has_alpha = false;
|
|
}
|
|
|
|
RenderList::Element *e = (has_alpha || p_material->shader->spatial.no_depth_test) ? render_list.add_alpha_element() : render_list.add_element();
|
|
|
|
if (!e)
|
|
return;
|
|
|
|
e->geometry = p_geometry;
|
|
e->material = p_material;
|
|
e->instance = p_instance;
|
|
e->owner = p_owner;
|
|
e->sort_key = 0;
|
|
|
|
if (e->geometry->last_pass != render_pass) {
|
|
e->geometry->last_pass = render_pass;
|
|
e->geometry->index = current_geometry_index++;
|
|
}
|
|
|
|
// We sort only by the first directional light. The rest of directional lights will be drawn in additive passes that are skipped if disabled.
|
|
if (first_directional_light.is_valid() && light_instance_owner.owns(first_directional_light)) {
|
|
RasterizerStorageGLES3::Light *directional = light_instance_owner.getptr(first_directional_light)->light_ptr;
|
|
if ((e->instance->layer_mask & directional->cull_mask) == 0 || (e->instance->baked_light && directional->bake_mode == VS::LightBakeMode::LIGHT_BAKE_ALL)) {
|
|
e->sort_key |= SORT_KEY_NO_DIRECTIONAL_FLAG;
|
|
}
|
|
}
|
|
|
|
e->sort_key |= uint64_t(e->geometry->index) << RenderList::SORT_KEY_GEOMETRY_INDEX_SHIFT;
|
|
e->sort_key |= uint64_t(e->instance->base_type) << RenderList::SORT_KEY_GEOMETRY_TYPE_SHIFT;
|
|
|
|
if (e->material->last_pass != render_pass) {
|
|
e->material->last_pass = render_pass;
|
|
e->material->index = current_material_index++;
|
|
}
|
|
|
|
e->sort_key |= uint64_t(e->material->index) << RenderList::SORT_KEY_MATERIAL_INDEX_SHIFT;
|
|
e->sort_key |= uint64_t(e->instance->depth_layer) << RenderList::SORT_KEY_OPAQUE_DEPTH_LAYER_SHIFT;
|
|
|
|
if (!p_depth_pass) {
|
|
|
|
if (e->instance->gi_probe_instances.size()) {
|
|
e->sort_key |= SORT_KEY_GI_PROBES_FLAG;
|
|
}
|
|
|
|
if (e->instance->lightmap.is_valid()) {
|
|
e->sort_key |= SORT_KEY_LIGHTMAP_FLAG;
|
|
if (e->instance->lightmap_slice != -1) {
|
|
e->sort_key |= SORT_KEY_LIGHTMAP_LAYERED_FLAG;
|
|
}
|
|
}
|
|
|
|
if (!e->instance->lightmap_capture_data.empty()) {
|
|
e->sort_key |= SORT_KEY_LIGHTMAP_CAPTURE_FLAG;
|
|
}
|
|
|
|
e->sort_key |= (uint64_t(p_material->render_priority) + 128) << RenderList::SORT_KEY_PRIORITY_SHIFT;
|
|
}
|
|
|
|
/*
|
|
if (e->geometry->type==RasterizerStorageGLES3::Geometry::GEOMETRY_MULTISURFACE)
|
|
e->sort_flags|=RenderList::SORT_FLAG_INSTANCING;
|
|
*/
|
|
|
|
if (mirror) {
|
|
e->sort_key |= RenderList::SORT_KEY_MIRROR_FLAG;
|
|
}
|
|
|
|
if (no_cull) {
|
|
e->sort_key |= RenderList::SORT_KEY_CULL_DISABLED_FLAG;
|
|
}
|
|
|
|
//e->light_type=0xFF; // no lights!
|
|
|
|
if (p_depth_pass || p_material->shader->spatial.unshaded || state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
|
|
e->sort_key |= SORT_KEY_UNSHADED_FLAG;
|
|
}
|
|
|
|
if (p_depth_pass && p_material->shader->spatial.depth_draw_mode == RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
|
|
e->sort_key |= RenderList::SORT_KEY_OPAQUE_PRE_PASS;
|
|
}
|
|
|
|
if (!p_depth_pass && (p_material->shader->spatial.uses_vertex_lighting || storage->config.force_vertex_shading)) {
|
|
|
|
e->sort_key |= SORT_KEY_VERTEX_LIT_FLAG;
|
|
}
|
|
|
|
if (p_material->shader->spatial.uses_time) {
|
|
VisualServerRaster::redraw_request();
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_draw_sky(RasterizerStorageGLES3::Sky *p_sky, const CameraMatrix &p_projection, const Transform &p_transform, bool p_vflip, float p_custom_fov, float p_energy, const Basis &p_sky_orientation) {
|
|
|
|
ERR_FAIL_COND(!p_sky);
|
|
|
|
RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(p_sky->panorama);
|
|
|
|
ERR_FAIL_COND(!tex);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
|
|
tex = tex->get_ptr(); //resolve for proxies
|
|
|
|
glBindTexture(tex->target, tex->tex_id);
|
|
|
|
if (storage->config.srgb_decode_supported && tex->srgb && !tex->using_srgb) {
|
|
|
|
glTexParameteri(tex->target, _TEXTURE_SRGB_DECODE_EXT, _DECODE_EXT);
|
|
tex->using_srgb = true;
|
|
#ifdef TOOLS_ENABLED
|
|
if (!(tex->flags & VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
|
|
tex->flags |= VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
|
|
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
|
|
}
|
|
#endif
|
|
}
|
|
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1, 1, 1, 1);
|
|
|
|
// Camera
|
|
CameraMatrix camera;
|
|
|
|
if (p_custom_fov) {
|
|
|
|
float near_plane = p_projection.get_z_near();
|
|
float far_plane = p_projection.get_z_far();
|
|
float aspect = p_projection.get_aspect();
|
|
|
|
camera.set_perspective(p_custom_fov, aspect, near_plane, far_plane);
|
|
|
|
} else {
|
|
camera = p_projection;
|
|
}
|
|
|
|
float flip_sign = p_vflip ? -1 : 1;
|
|
|
|
/*
|
|
If matrix[2][0] or matrix[2][1] we're dealing with an asymmetrical projection matrix. This is the case for stereoscopic rendering (i.e. VR).
|
|
To ensure the image rendered is perspective correct we need to move some logic into the shader. For this the USE_ASYM_PANO option is introduced.
|
|
It also means the uv coordinates are ignored in this mode and we don't need our loop.
|
|
*/
|
|
bool asymmetrical = ((camera.matrix[2][0] != 0.0) || (camera.matrix[2][1] != 0.0));
|
|
|
|
Vector3 vertices[8] = {
|
|
Vector3(-1, -1 * flip_sign, 1),
|
|
Vector3(0, 1, 0),
|
|
Vector3(1, -1 * flip_sign, 1),
|
|
Vector3(1, 1, 0),
|
|
Vector3(1, 1 * flip_sign, 1),
|
|
Vector3(1, 0, 0),
|
|
Vector3(-1, 1 * flip_sign, 1),
|
|
Vector3(0, 0, 0)
|
|
};
|
|
|
|
if (!asymmetrical) {
|
|
Vector2 vp_he = camera.get_viewport_half_extents();
|
|
float zn;
|
|
zn = p_projection.get_z_near();
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
Vector3 uv = vertices[i * 2 + 1];
|
|
uv.x = (uv.x * 2.0 - 1.0) * vp_he.x;
|
|
uv.y = -(uv.y * 2.0 - 1.0) * vp_he.y;
|
|
uv.z = -zn;
|
|
vertices[i * 2 + 1] = p_transform.basis.xform(uv).normalized();
|
|
vertices[i * 2 + 1].z = -vertices[i * 2 + 1].z;
|
|
}
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
|
|
glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, vertices, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
|
|
|
|
glBindVertexArray(state.sky_array);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, asymmetrical);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, !asymmetrical);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, true);
|
|
storage->shaders.copy.bind();
|
|
|
|
storage->shaders.copy.set_uniform(CopyShaderGLES3::MULTIPLIER, p_energy);
|
|
|
|
// don't know why but I always have problems setting a uniform mat3, so we're using a transform
|
|
storage->shaders.copy.set_uniform(CopyShaderGLES3::SKY_TRANSFORM, Transform(p_sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse());
|
|
|
|
if (asymmetrical) {
|
|
// pack the bits we need from our projection matrix
|
|
storage->shaders.copy.set_uniform(CopyShaderGLES3::ASYM_PROJ, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1]);
|
|
///@TODO I couldn't get mat3 + p_transform.basis to work, that would be better here.
|
|
storage->shaders.copy.set_uniform(CopyShaderGLES3::PANO_TRANSFORM, p_transform);
|
|
}
|
|
|
|
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
|
|
|
|
glBindVertexArray(0);
|
|
glColorMask(1, 1, 1, 1);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_ASYM_PANO, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_MULTIPLIER, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_PANORAMA, false);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_environment(Environment *env, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, bool p_no_fog) {
|
|
Transform sky_orientation;
|
|
|
|
//store camera into ubo
|
|
store_camera(p_cam_projection, state.ubo_data.projection_matrix);
|
|
store_camera(p_cam_projection.inverse(), state.ubo_data.inv_projection_matrix);
|
|
store_transform(p_cam_transform, state.ubo_data.camera_matrix);
|
|
store_transform(p_cam_transform.affine_inverse(), state.ubo_data.camera_inverse_matrix);
|
|
|
|
//time global variables
|
|
state.ubo_data.time = storage->frame.time[0];
|
|
|
|
state.ubo_data.z_far = p_cam_projection.get_z_far();
|
|
//bg and ambient
|
|
if (env) {
|
|
state.ubo_data.bg_energy = env->bg_energy;
|
|
state.ubo_data.ambient_energy = env->ambient_energy;
|
|
Color linear_ambient_color = env->ambient_color.to_linear();
|
|
state.ubo_data.ambient_light_color[0] = linear_ambient_color.r;
|
|
state.ubo_data.ambient_light_color[1] = linear_ambient_color.g;
|
|
state.ubo_data.ambient_light_color[2] = linear_ambient_color.b;
|
|
state.ubo_data.ambient_light_color[3] = linear_ambient_color.a;
|
|
|
|
Color bg_color;
|
|
|
|
switch (env->bg_mode) {
|
|
case VS::ENV_BG_CLEAR_COLOR: {
|
|
bg_color = storage->frame.clear_request_color.to_linear();
|
|
} break;
|
|
case VS::ENV_BG_COLOR: {
|
|
bg_color = env->bg_color.to_linear();
|
|
} break;
|
|
default: {
|
|
bg_color = Color(0, 0, 0, 1);
|
|
} break;
|
|
}
|
|
|
|
state.ubo_data.bg_color[0] = bg_color.r;
|
|
state.ubo_data.bg_color[1] = bg_color.g;
|
|
state.ubo_data.bg_color[2] = bg_color.b;
|
|
state.ubo_data.bg_color[3] = bg_color.a;
|
|
|
|
//use the inverse of our sky_orientation, we may need to skip this if we're using a reflection probe?
|
|
sky_orientation = Transform(env->sky_orientation, Vector3(0.0, 0.0, 0.0)).affine_inverse();
|
|
|
|
state.env_radiance_data.ambient_contribution = env->ambient_sky_contribution;
|
|
state.ubo_data.ambient_occlusion_affect_light = env->ssao_light_affect;
|
|
state.ubo_data.ambient_occlusion_affect_ssao = env->ssao_ao_channel_affect;
|
|
|
|
//fog
|
|
|
|
Color linear_fog = env->fog_color.to_linear();
|
|
state.ubo_data.fog_color_enabled[0] = linear_fog.r;
|
|
state.ubo_data.fog_color_enabled[1] = linear_fog.g;
|
|
state.ubo_data.fog_color_enabled[2] = linear_fog.b;
|
|
state.ubo_data.fog_color_enabled[3] = (!p_no_fog && env->fog_enabled) ? 1.0 : 0.0;
|
|
state.ubo_data.fog_density = linear_fog.a;
|
|
|
|
Color linear_sun = env->fog_sun_color.to_linear();
|
|
state.ubo_data.fog_sun_color_amount[0] = linear_sun.r;
|
|
state.ubo_data.fog_sun_color_amount[1] = linear_sun.g;
|
|
state.ubo_data.fog_sun_color_amount[2] = linear_sun.b;
|
|
state.ubo_data.fog_sun_color_amount[3] = env->fog_sun_amount;
|
|
state.ubo_data.fog_depth_enabled = env->fog_depth_enabled;
|
|
state.ubo_data.fog_depth_begin = env->fog_depth_begin;
|
|
state.ubo_data.fog_depth_end = env->fog_depth_end;
|
|
state.ubo_data.fog_depth_curve = env->fog_depth_curve;
|
|
state.ubo_data.fog_transmit_enabled = env->fog_transmit_enabled;
|
|
state.ubo_data.fog_transmit_curve = env->fog_transmit_curve;
|
|
state.ubo_data.fog_height_enabled = env->fog_height_enabled;
|
|
state.ubo_data.fog_height_min = env->fog_height_min;
|
|
state.ubo_data.fog_height_max = env->fog_height_max;
|
|
state.ubo_data.fog_height_curve = env->fog_height_curve;
|
|
|
|
} else {
|
|
state.ubo_data.bg_energy = 1.0;
|
|
state.ubo_data.ambient_energy = 1.0;
|
|
//use from clear color instead, since there is no ambient
|
|
Color linear_ambient_color = storage->frame.clear_request_color.to_linear();
|
|
state.ubo_data.ambient_light_color[0] = linear_ambient_color.r;
|
|
state.ubo_data.ambient_light_color[1] = linear_ambient_color.g;
|
|
state.ubo_data.ambient_light_color[2] = linear_ambient_color.b;
|
|
state.ubo_data.ambient_light_color[3] = linear_ambient_color.a;
|
|
|
|
state.ubo_data.bg_color[0] = linear_ambient_color.r;
|
|
state.ubo_data.bg_color[1] = linear_ambient_color.g;
|
|
state.ubo_data.bg_color[2] = linear_ambient_color.b;
|
|
state.ubo_data.bg_color[3] = linear_ambient_color.a;
|
|
|
|
state.env_radiance_data.ambient_contribution = 0;
|
|
state.ubo_data.ambient_occlusion_affect_light = 0;
|
|
|
|
state.ubo_data.fog_color_enabled[3] = 0.0;
|
|
}
|
|
|
|
{
|
|
//directional shadow
|
|
|
|
state.ubo_data.shadow_directional_pixel_size[0] = 1.0 / directional_shadow.size;
|
|
state.ubo_data.shadow_directional_pixel_size[1] = 1.0 / directional_shadow.size;
|
|
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 4);
|
|
glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
|
|
}
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::SceneDataUBO), &state.ubo_data, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
//fill up environment
|
|
|
|
store_transform(sky_orientation * p_cam_transform, state.env_radiance_data.transform);
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_directional_light(int p_index, const Transform &p_camera_inverse_transform, bool p_use_shadows) {
|
|
|
|
LightInstance *li = directional_lights[p_index];
|
|
|
|
LightDataUBO ubo_data; //used for filling
|
|
|
|
float sign = li->light_ptr->negative ? -1 : 1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
//compensate normalized diffuse range by multiplying by PI
|
|
ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[3] = 0;
|
|
|
|
//omni, keep at 0
|
|
ubo_data.light_pos_inv_radius[0] = 0.0;
|
|
ubo_data.light_pos_inv_radius[1] = 0.0;
|
|
ubo_data.light_pos_inv_radius[2] = 0.0;
|
|
ubo_data.light_pos_inv_radius[3] = 0.0;
|
|
|
|
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0, 0, -1))).normalized();
|
|
ubo_data.light_direction_attenuation[0] = direction.x;
|
|
ubo_data.light_direction_attenuation[1] = direction.y;
|
|
ubo_data.light_direction_attenuation[2] = direction.z;
|
|
ubo_data.light_direction_attenuation[3] = 1.0;
|
|
|
|
ubo_data.light_params[0] = 0;
|
|
ubo_data.light_params[1] = 0;
|
|
ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[3] = 0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color_contact[0] = shadow_color.r;
|
|
ubo_data.light_shadow_color_contact[1] = shadow_color.g;
|
|
ubo_data.light_shadow_color_contact[2] = shadow_color.b;
|
|
ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE];
|
|
|
|
if (p_use_shadows && li->light_ptr->shadow) {
|
|
|
|
int shadow_count = 0;
|
|
|
|
switch (li->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
|
|
shadow_count = 1;
|
|
} break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
|
|
shadow_count = 2;
|
|
} break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
|
|
shadow_count = 4;
|
|
} break;
|
|
}
|
|
|
|
for (int j = 0; j < shadow_count; j++) {
|
|
|
|
uint32_t x = li->directional_rect.position.x;
|
|
uint32_t y = li->directional_rect.position.y;
|
|
uint32_t width = li->directional_rect.size.x;
|
|
uint32_t height = li->directional_rect.size.y;
|
|
|
|
if (li->light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
|
|
|
|
width /= 2;
|
|
height /= 2;
|
|
|
|
if (j == 1) {
|
|
x += width;
|
|
} else if (j == 2) {
|
|
y += height;
|
|
} else if (j == 3) {
|
|
x += width;
|
|
y += height;
|
|
}
|
|
|
|
} else if (li->light_ptr->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
|
|
|
|
height /= 2;
|
|
|
|
if (j != 0) {
|
|
y += height;
|
|
}
|
|
}
|
|
|
|
ubo_data.shadow_split_offsets[j] = li->shadow_transform[j].split;
|
|
|
|
Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).affine_inverse();
|
|
|
|
CameraMatrix bias;
|
|
bias.set_light_bias();
|
|
CameraMatrix rectm;
|
|
Rect2 atlas_rect = Rect2(float(x) / directional_shadow.size, float(y) / directional_shadow.size, float(width) / directional_shadow.size, float(height) / directional_shadow.size);
|
|
rectm.set_light_atlas_rect(atlas_rect);
|
|
|
|
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[j].camera * modelview;
|
|
|
|
store_camera(shadow_mtx, &ubo_data.shadow.matrix[16 * j]);
|
|
|
|
ubo_data.light_clamp[0] = atlas_rect.position.x;
|
|
ubo_data.light_clamp[1] = atlas_rect.position.y;
|
|
ubo_data.light_clamp[2] = atlas_rect.size.x;
|
|
ubo_data.light_clamp[3] = atlas_rect.size.y;
|
|
}
|
|
}
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(LightDataUBO), &ubo_data, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
directional_light = li;
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 3, state.directional_ubo);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_shadow_atlas) {
|
|
|
|
state.omni_light_count = 0;
|
|
state.spot_light_count = 0;
|
|
state.directional_light_count = 0;
|
|
|
|
directional_light = NULL;
|
|
first_directional_light = RID();
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
|
|
for (int i = 0; i < p_light_cull_count; i++) {
|
|
|
|
ERR_BREAK(i >= render_list.max_lights);
|
|
|
|
LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]);
|
|
|
|
LightDataUBO ubo_data; //used for filling
|
|
|
|
switch (li->light_ptr->type) {
|
|
|
|
case VS::LIGHT_DIRECTIONAL: {
|
|
|
|
if (state.directional_light_count == 0) {
|
|
first_directional_light = p_light_cull_result[i];
|
|
}
|
|
|
|
if (state.directional_light_count < RenderList::MAX_DIRECTIONAL_LIGHTS) {
|
|
directional_lights[state.directional_light_count++] = li;
|
|
}
|
|
|
|
} break;
|
|
case VS::LIGHT_OMNI: {
|
|
|
|
float sign = li->light_ptr->negative ? -1 : 1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[3] = 0;
|
|
|
|
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
|
|
|
|
//directional, keep at 0
|
|
ubo_data.light_pos_inv_radius[0] = pos.x;
|
|
ubo_data.light_pos_inv_radius[1] = pos.y;
|
|
ubo_data.light_pos_inv_radius[2] = pos.z;
|
|
ubo_data.light_pos_inv_radius[3] = 1.0 / MAX(0.001, li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
|
|
|
|
ubo_data.light_direction_attenuation[0] = 0;
|
|
ubo_data.light_direction_attenuation[1] = 0;
|
|
ubo_data.light_direction_attenuation[2] = 0;
|
|
ubo_data.light_direction_attenuation[3] = li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
|
|
|
|
ubo_data.light_params[0] = 0;
|
|
ubo_data.light_params[1] = 0;
|
|
ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[3] = 0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color_contact[0] = shadow_color.r;
|
|
ubo_data.light_shadow_color_contact[1] = shadow_color.g;
|
|
ubo_data.light_shadow_color_contact[2] = shadow_color.b;
|
|
ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE];
|
|
|
|
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
|
|
// fill in the shadow information
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[li->self];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t atlas_size = shadow_atlas->size;
|
|
uint32_t quadrant_size = atlas_size >> 1;
|
|
|
|
uint32_t x = (quadrant & 1) * quadrant_size;
|
|
uint32_t y = (quadrant >> 1) * quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
uint32_t width = shadow_size;
|
|
uint32_t height = shadow_size;
|
|
|
|
if (li->light_ptr->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
height /= 2;
|
|
} else {
|
|
width /= 2;
|
|
}
|
|
|
|
Transform proj = (p_camera_inverse_transform * li->transform).inverse();
|
|
|
|
store_transform(proj, ubo_data.shadow.matrix1);
|
|
|
|
ubo_data.light_params[3] = 1.0; //means it has shadow
|
|
ubo_data.light_clamp[0] = float(x) / atlas_size;
|
|
ubo_data.light_clamp[1] = float(y) / atlas_size;
|
|
ubo_data.light_clamp[2] = float(width) / atlas_size;
|
|
ubo_data.light_clamp[3] = float(height) / atlas_size;
|
|
}
|
|
|
|
li->light_index = state.omni_light_count;
|
|
copymem(&state.omni_array_tmp[li->light_index * state.ubo_light_size], &ubo_data, state.ubo_light_size);
|
|
state.omni_light_count++;
|
|
|
|
} break;
|
|
case VS::LIGHT_SPOT: {
|
|
|
|
float sign = li->light_ptr->negative ? -1 : 1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
ubo_data.light_color_energy[0] = linear_col.r * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[1] = linear_col.g * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[2] = linear_col.b * sign * li->light_ptr->param[VS::LIGHT_PARAM_ENERGY] * Math_PI;
|
|
ubo_data.light_color_energy[3] = 0;
|
|
|
|
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
|
|
|
|
//directional, keep at 0
|
|
ubo_data.light_pos_inv_radius[0] = pos.x;
|
|
ubo_data.light_pos_inv_radius[1] = pos.y;
|
|
ubo_data.light_pos_inv_radius[2] = pos.z;
|
|
ubo_data.light_pos_inv_radius[3] = 1.0 / MAX(0.001, li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
|
|
|
|
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0, 0, -1))).normalized();
|
|
ubo_data.light_direction_attenuation[0] = direction.x;
|
|
ubo_data.light_direction_attenuation[1] = direction.y;
|
|
ubo_data.light_direction_attenuation[2] = direction.z;
|
|
ubo_data.light_direction_attenuation[3] = li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
|
|
|
|
ubo_data.light_params[0] = li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
|
|
ubo_data.light_params[1] = Math::cos(Math::deg2rad(li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]));
|
|
ubo_data.light_params[2] = li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[3] = 0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color_contact[0] = shadow_color.r;
|
|
ubo_data.light_shadow_color_contact[1] = shadow_color.g;
|
|
ubo_data.light_shadow_color_contact[2] = shadow_color.b;
|
|
ubo_data.light_shadow_color_contact[3] = li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE];
|
|
|
|
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
|
|
// fill in the shadow information
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[li->self];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_CONTINUE(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t atlas_size = shadow_atlas->size;
|
|
uint32_t quadrant_size = atlas_size >> 1;
|
|
|
|
uint32_t x = (quadrant & 1) * quadrant_size;
|
|
uint32_t y = (quadrant >> 1) * quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
uint32_t width = shadow_size;
|
|
uint32_t height = shadow_size;
|
|
|
|
Rect2 rect(float(x) / atlas_size, float(y) / atlas_size, float(width) / atlas_size, float(height) / atlas_size);
|
|
|
|
ubo_data.light_params[3] = 1.0; //means it has shadow
|
|
ubo_data.light_clamp[0] = rect.position.x;
|
|
ubo_data.light_clamp[1] = rect.position.y;
|
|
ubo_data.light_clamp[2] = rect.size.x;
|
|
ubo_data.light_clamp[3] = rect.size.y;
|
|
|
|
Transform modelview = (p_camera_inverse_transform * li->transform).inverse();
|
|
|
|
CameraMatrix bias;
|
|
bias.set_light_bias();
|
|
CameraMatrix rectm;
|
|
rectm.set_light_atlas_rect(rect);
|
|
|
|
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[0].camera * modelview;
|
|
|
|
store_camera(shadow_mtx, ubo_data.shadow.matrix1);
|
|
}
|
|
|
|
li->light_index = state.spot_light_count;
|
|
copymem(&state.spot_array_tmp[li->light_index * state.ubo_light_size], &ubo_data, state.ubo_light_size);
|
|
state.spot_light_count++;
|
|
} break;
|
|
}
|
|
|
|
li->last_pass = render_pass;
|
|
|
|
//update UBO for forward rendering, blit to texture for clustered
|
|
}
|
|
|
|
if (state.omni_light_count) {
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.omni_light_count * state.ubo_light_size, state.omni_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
}
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 4, state.omni_array_ubo);
|
|
|
|
if (state.spot_light_count) {
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.spot_light_count * state.ubo_light_size, state.spot_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
}
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 5, state.spot_array_ubo);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix &p_camera_projection, RID p_reflection_atlas, Environment *p_env) {
|
|
|
|
state.reflection_probe_count = 0;
|
|
|
|
for (int i = 0; i < p_reflection_probe_cull_count; i++) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
|
|
ERR_CONTINUE(!rpi);
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
ERR_CONTINUE(!reflection_atlas);
|
|
|
|
ERR_CONTINUE(rpi->reflection_atlas_index < 0);
|
|
|
|
if (state.reflection_probe_count >= state.max_ubo_reflections)
|
|
break;
|
|
|
|
rpi->last_pass = render_pass;
|
|
|
|
ReflectionProbeDataUBO reflection_ubo;
|
|
|
|
reflection_ubo.box_extents[0] = rpi->probe_ptr->extents.x;
|
|
reflection_ubo.box_extents[1] = rpi->probe_ptr->extents.y;
|
|
reflection_ubo.box_extents[2] = rpi->probe_ptr->extents.z;
|
|
reflection_ubo.box_extents[3] = 0;
|
|
|
|
reflection_ubo.box_ofs[0] = rpi->probe_ptr->origin_offset.x;
|
|
reflection_ubo.box_ofs[1] = rpi->probe_ptr->origin_offset.y;
|
|
reflection_ubo.box_ofs[2] = rpi->probe_ptr->origin_offset.z;
|
|
reflection_ubo.box_ofs[3] = 0;
|
|
|
|
reflection_ubo.params[0] = rpi->probe_ptr->intensity;
|
|
reflection_ubo.params[1] = 0;
|
|
reflection_ubo.params[2] = rpi->probe_ptr->interior ? 1.0 : 0.0;
|
|
reflection_ubo.params[3] = rpi->probe_ptr->box_projection ? 1.0 : 0.0;
|
|
|
|
if (rpi->probe_ptr->interior) {
|
|
Color ambient_linear = rpi->probe_ptr->interior_ambient.to_linear();
|
|
reflection_ubo.ambient[0] = ambient_linear.r * rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[1] = ambient_linear.g * rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[2] = ambient_linear.b * rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[3] = rpi->probe_ptr->interior_ambient_probe_contrib;
|
|
} else {
|
|
Color ambient_linear;
|
|
if (p_env) {
|
|
ambient_linear = p_env->ambient_color.to_linear();
|
|
ambient_linear.r *= p_env->ambient_energy;
|
|
ambient_linear.g *= p_env->ambient_energy;
|
|
ambient_linear.b *= p_env->ambient_energy;
|
|
}
|
|
|
|
reflection_ubo.ambient[0] = ambient_linear.r;
|
|
reflection_ubo.ambient[1] = ambient_linear.g;
|
|
reflection_ubo.ambient[2] = ambient_linear.b;
|
|
reflection_ubo.ambient[3] = 0; //not used in exterior mode, since it just blends with regular ambient light
|
|
}
|
|
|
|
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
|
|
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
|
|
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
|
|
int width = cell_size;
|
|
int height = cell_size;
|
|
|
|
reflection_ubo.atlas_clamp[0] = float(x) / reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[1] = float(y) / reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[2] = float(width) / reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[3] = float(height) / reflection_atlas->size;
|
|
|
|
Transform proj = (p_camera_inverse_transform * rpi->transform).inverse();
|
|
store_transform(proj, reflection_ubo.local_matrix);
|
|
|
|
rpi->reflection_index = state.reflection_probe_count;
|
|
copymem(&state.reflection_array_tmp[rpi->reflection_index * sizeof(ReflectionProbeDataUBO)], &reflection_ubo, sizeof(ReflectionProbeDataUBO));
|
|
state.reflection_probe_count++;
|
|
}
|
|
|
|
if (state.reflection_probe_count) {
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.reflection_probe_count * sizeof(ReflectionProbeDataUBO), state.reflection_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
}
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER, 6, state.reflection_array_ubo);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_copy_screen(bool p_invalidate_color, bool p_invalidate_depth) {
|
|
|
|
#ifndef GLES_OVER_GL
|
|
if (p_invalidate_color) {
|
|
|
|
GLenum attachments[2] = {
|
|
GL_COLOR_ATTACHMENT0,
|
|
GL_DEPTH_ATTACHMENT
|
|
};
|
|
|
|
glInvalidateFramebuffer(GL_FRAMEBUFFER, p_invalidate_depth ? 2 : 1, attachments);
|
|
}
|
|
#endif
|
|
|
|
glBindVertexArray(storage->resources.quadie_array);
|
|
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
|
|
glBindVertexArray(0);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_copy_texture_to_front_buffer(GLuint p_texture) {
|
|
|
|
//copy to front buffer
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1, 1, 1, 1);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, p_texture);
|
|
|
|
glViewport(0, 0, storage->frame.current_rt->width * 0.5, storage->frame.current_rt->height * 0.5);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true);
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen();
|
|
|
|
//turn off everything used
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_fill_render_list(InstanceBase **p_cull_result, int p_cull_count, bool p_depth_pass, bool p_shadow_pass) {
|
|
|
|
current_geometry_index = 0;
|
|
current_material_index = 0;
|
|
state.used_sss = false;
|
|
state.used_screen_texture = false;
|
|
state.used_depth_texture = false;
|
|
|
|
//fill list
|
|
|
|
for (int i = 0; i < p_cull_count; i++) {
|
|
|
|
InstanceBase *inst = p_cull_result[i];
|
|
switch (inst->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!mesh);
|
|
|
|
int ssize = mesh->surfaces.size();
|
|
|
|
for (int j = 0; j < ssize; j++) {
|
|
|
|
int mat_idx = inst->materials[j].is_valid() ? j : -1;
|
|
RasterizerStorageGLES3::Surface *s = mesh->surfaces[j];
|
|
_add_geometry(s, inst, NULL, mat_idx, p_depth_pass, p_shadow_pass);
|
|
}
|
|
|
|
//mesh->last_pass=frame;
|
|
|
|
} break;
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!multi_mesh);
|
|
|
|
if (multi_mesh->size == 0 || multi_mesh->visible_instances == 0)
|
|
continue;
|
|
|
|
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
|
|
if (!mesh)
|
|
continue; //mesh not assigned
|
|
|
|
int ssize = mesh->surfaces.size();
|
|
|
|
for (int j = 0; j < ssize; j++) {
|
|
|
|
RasterizerStorageGLES3::Surface *s = mesh->surfaces[j];
|
|
_add_geometry(s, inst, multi_mesh, -1, p_depth_pass, p_shadow_pass);
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_IMMEDIATE: {
|
|
|
|
RasterizerStorageGLES3::Immediate *immediate = storage->immediate_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!immediate);
|
|
|
|
_add_geometry(immediate, inst, NULL, -1, p_depth_pass, p_shadow_pass);
|
|
|
|
} break;
|
|
case VS::INSTANCE_PARTICLES: {
|
|
|
|
RasterizerStorageGLES3::Particles *particles = storage->particles_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!particles);
|
|
|
|
for (int j = 0; j < particles->draw_passes.size(); j++) {
|
|
|
|
RID pmesh = particles->draw_passes[j];
|
|
if (!pmesh.is_valid())
|
|
continue;
|
|
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.get(pmesh);
|
|
if (!mesh)
|
|
continue; //mesh not assigned
|
|
|
|
int ssize = mesh->surfaces.size();
|
|
|
|
for (int k = 0; k < ssize; k++) {
|
|
|
|
RasterizerStorageGLES3::Surface *s = mesh->surfaces[k];
|
|
_add_geometry(s, inst, particles, -1, p_depth_pass, p_shadow_pass);
|
|
}
|
|
}
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_blur_effect_buffer() {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
for (int i = 0; i < storage->frame.current_rt->effects.mip_maps[1].sizes.size(); i++) {
|
|
|
|
int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width;
|
|
int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height;
|
|
glViewport(0, 0, vp_w, vp_h);
|
|
//horizontal pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i));
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo);
|
|
_copy_screen(true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL, false);
|
|
|
|
//vertical pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i));
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger
|
|
_copy_screen(true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL, false);
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_prepare_depth_texture() {
|
|
if (!state.prepared_depth_texture) {
|
|
//resolve depth buffer
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
state.prepared_depth_texture = true;
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_bind_depth_texture() {
|
|
if (!state.bound_depth_texture) {
|
|
ERR_FAIL_COND(!state.prepared_depth_texture);
|
|
//bind depth for read
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 8);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
state.bound_depth_texture = true;
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_render_mrts(Environment *env, const CameraMatrix &p_cam_projection) {
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
|
|
_prepare_depth_texture();
|
|
|
|
if (env->ssao_enabled || env->ssr_enabled) {
|
|
|
|
//copy normal and roughness to effect buffer
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT2);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->buffers.effect_fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
|
|
}
|
|
|
|
if (env->ssao_enabled) {
|
|
//copy diffuse to front buffer
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
|
|
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
|
|
//copy from depth, convert to linear
|
|
GLint ss[2];
|
|
ss[0] = storage->frame.current_rt->width;
|
|
ss[1] = storage->frame.current_rt->height;
|
|
|
|
for (int i = 0; i < storage->frame.current_rt->effects.ssao.depth_mipmap_fbos.size(); i++) {
|
|
|
|
state.ssao_minify_shader.set_conditional(SsaoMinifyShaderGLES3::MINIFY_START, i == 0);
|
|
state.ssao_minify_shader.set_conditional(SsaoMinifyShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
state.ssao_minify_shader.bind();
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::SOURCE_MIPMAP, MAX(0, i - 1));
|
|
glUniform2iv(state.ssao_minify_shader.get_uniform(SsaoMinifyShaderGLES3::FROM_SIZE), 1, ss);
|
|
ss[0] >>= 1;
|
|
ss[1] >>= 1;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
if (i == 0) {
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.linear_depth);
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.depth_mipmap_fbos[i]); //copy to front first
|
|
glViewport(0, 0, ss[0], ss[1]);
|
|
|
|
_copy_screen(true);
|
|
}
|
|
ss[0] = storage->frame.current_rt->width;
|
|
ss[1] = storage->frame.current_rt->height;
|
|
|
|
glViewport(0, 0, ss[0], ss[1]);
|
|
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDepthFunc(GL_GREATER);
|
|
// do SSAO!
|
|
state.ssao_shader.set_conditional(SsaoShaderGLES3::ENABLE_RADIUS2, env->ssao_radius2 > 0.001);
|
|
state.ssao_shader.set_conditional(SsaoShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
state.ssao_shader.set_conditional(SsaoShaderGLES3::SSAO_QUALITY_LOW, env->ssao_quality == VS::ENV_SSAO_QUALITY_LOW);
|
|
state.ssao_shader.set_conditional(SsaoShaderGLES3::SSAO_QUALITY_HIGH, env->ssao_quality == VS::ENV_SSAO_QUALITY_HIGH);
|
|
state.ssao_shader.bind();
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
glUniform2iv(state.ssao_shader.get_uniform(SsaoShaderGLES3::SCREEN_SIZE), 1, ss);
|
|
float radius = env->ssao_radius;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS, radius);
|
|
float intensity = env->ssao_intensity;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R6, intensity / pow(radius, 6.0f));
|
|
|
|
if (env->ssao_radius2 > 0.001) {
|
|
|
|
float radius2 = env->ssao_radius2;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS2, radius2);
|
|
float intensity2 = env->ssao_intensity2;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R62, intensity2 / pow(radius2, 6.0f));
|
|
}
|
|
|
|
float proj_info[4] = {
|
|
-2.0f / (ss[0] * p_cam_projection.matrix[0][0]),
|
|
-2.0f / (ss[1] * p_cam_projection.matrix[1][1]),
|
|
(1.0f - p_cam_projection.matrix[0][2]) / p_cam_projection.matrix[0][0],
|
|
(1.0f + p_cam_projection.matrix[1][2]) / p_cam_projection.matrix[1][1]
|
|
};
|
|
|
|
glUniform4fv(state.ssao_shader.get_uniform(SsaoShaderGLES3::PROJ_INFO), 1, proj_info);
|
|
float pixels_per_meter = float(p_cam_projection.get_pixels_per_meter(ss[0]));
|
|
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::PROJ_SCALE, pixels_per_meter);
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::BIAS, env->ssao_bias);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.linear_depth);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[0]); //copy to front first
|
|
Color white(1, 1, 1, 1);
|
|
glClearBufferfv(GL_COLOR, 0, white.components); // specular
|
|
|
|
_copy_screen(true);
|
|
|
|
//do the batm, i mean blur
|
|
|
|
state.ssao_blur_shader.bind();
|
|
|
|
if (env->ssao_filter) {
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::EDGE_SHARPNESS, env->ssao_bilateral_sharpness);
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::FILTER_SCALE, int(env->ssao_filter));
|
|
|
|
GLint axis[2] = { i, 1 - i };
|
|
glUniform2iv(state.ssao_blur_shader.get_uniform(SsaoBlurShaderGLES3::AXIS), 1, axis);
|
|
glUniform2iv(state.ssao_blur_shader.get_uniform(SsaoBlurShaderGLES3::SCREEN_SIZE), 1, ss);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[i]);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[1 - i]);
|
|
if (i == 0) {
|
|
glClearBufferfv(GL_COLOR, 0, white.components); // specular
|
|
}
|
|
_copy_screen(true);
|
|
}
|
|
}
|
|
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDepthFunc(GL_LEQUAL);
|
|
|
|
// just copy diffuse while applying SSAO
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::SSAO_COLOR, env->ssao_color);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color); //previous level, since mipmaps[0] starts one level bigger
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[0]); //previous level, since mipmaps[0] starts one level bigger
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen(true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE, false);
|
|
|
|
} else {
|
|
|
|
//copy diffuse to effect buffer
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
|
|
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
}
|
|
|
|
if (state.used_sss) { //sss enabled
|
|
//copy diffuse while performing sss
|
|
|
|
Plane p = p_cam_projection.xform4(Plane(1, 0, -1, 1));
|
|
p.normal /= p.d;
|
|
float unit_size = p.normal.x;
|
|
|
|
//copy normal and roughness to effect buffer
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT3);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.ssao.blur_fbo[0]);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_LINEAR);
|
|
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_11_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_LOW);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_17_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_MEDIUM);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_25_SAMPLES, subsurface_scatter_quality == SSS_QUALITY_HIGH);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::ENABLE_FOLLOW_SURFACE, subsurface_scatter_follow_surface);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::ENABLE_STRENGTH_WEIGHTING, subsurface_scatter_weight_samples);
|
|
state.sss_shader.bind();
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::MAX_RADIUS, subsurface_scatter_size);
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::UNIT_SIZE, unit_size);
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR, Vector2(1, 0));
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //disable filter (fixes bugs on AMD)
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.ssao.blur_red[0]);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen(true);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR, Vector2(0, 1));
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen(true);
|
|
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //restore filter
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
}
|
|
|
|
if (env->ssr_enabled) {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
_blur_effect_buffer();
|
|
|
|
//perform SSR
|
|
|
|
state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::REFLECT_ROUGHNESS, env->ssr_roughness);
|
|
state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
|
|
state.ssr_shader.bind();
|
|
|
|
int ssr_w = storage->frame.current_rt->effects.mip_maps[1].sizes[0].width;
|
|
int ssr_h = storage->frame.current_rt->effects.mip_maps[1].sizes[0].height;
|
|
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PIXEL_SIZE, Vector2(1.0 / (ssr_w * 0.5), 1.0 / (ssr_h * 0.5)));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PROJECTION, p_cam_projection);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::INVERSE_PROJECTION, p_cam_projection.inverse());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::VIEWPORT_SIZE, Size2(ssr_w, ssr_h));
|
|
//state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FRAME_INDEX,int(render_pass));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FILTER_MIPMAP_LEVELS, float(storage->frame.current_rt->effects.mip_maps[0].sizes.size()));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::NUM_STEPS, env->ssr_max_steps);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DEPTH_TOLERANCE, env->ssr_depth_tolerance);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DISTANCE_FADE, env->ssr_fade_out);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CURVE_FADE_IN, env->ssr_fade_in);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.effect);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[0].fbo);
|
|
glViewport(0, 0, ssr_w, ssr_h);
|
|
|
|
_copy_screen(true);
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
}
|
|
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT1);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
//glDrawBuffer(GL_COLOR_ATTACHMENT0);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
|
|
//copy reflection over diffuse, resolving SSR if needed
|
|
state.resolve_shader.set_conditional(ResolveShaderGLES3::USE_SSR, env->ssr_enabled);
|
|
state.resolve_shader.bind();
|
|
state.resolve_shader.set_uniform(ResolveShaderGLES3::PIXEL_SIZE, Vector2(1.0 / storage->frame.current_rt->width, 1.0 / storage->frame.current_rt->height));
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
|
|
if (env->ssr_enabled) {
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color);
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glEnable(GL_BLEND);
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(GL_ONE, GL_ONE); //use additive to accumulate one over the other
|
|
|
|
_copy_screen(true);
|
|
|
|
glDisable(GL_BLEND); //end additive
|
|
|
|
if (state.used_screen_texture) {
|
|
_blur_effect_buffer();
|
|
//restored framebuffer
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
}
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(0));
|
|
|
|
{
|
|
GLuint db = GL_COLOR_ATTACHMENT0;
|
|
glDrawBuffers(1, &db);
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
|
|
_copy_screen(true);
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY, false);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_post_process(Environment *env, const CameraMatrix &p_cam_projection) {
|
|
|
|
//copy to front buffer
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1, 1, 1, 1);
|
|
|
|
//turn off everything used
|
|
|
|
//copy specular to front buffer
|
|
//copy diffuse to effect buffer
|
|
|
|
if (storage->frame.current_rt->buffers.active) {
|
|
//transfer to effect buffer if using buffers, also resolve MSAA
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT, GL_NEAREST);
|
|
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
}
|
|
|
|
if ((!env || storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] || storage->frame.current_rt->width < 4 || storage->frame.current_rt->height < 4) && !storage->frame.current_rt->use_fxaa && !storage->frame.current_rt->use_debanding) { //no post process on small render targets
|
|
//no environment or transparent render, simply return and convert to SRGB
|
|
if (storage->frame.current_rt->external.fbo != 0) {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->external.fbo);
|
|
} else {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
}
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::V_FLIP, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]);
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen(true);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false); //compute luminance
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::V_FLIP, false);
|
|
|
|
return;
|
|
}
|
|
|
|
//order of operation
|
|
//1) DOF Blur (first blur, then copy to buffer applying the blur)
|
|
//2) FXAA
|
|
//3) Bloom (Glow)
|
|
//4) Tonemap
|
|
//5) Adjustments
|
|
|
|
GLuint composite_from = storage->frame.current_rt->effects.mip_maps[0].color;
|
|
|
|
if (env && env->dof_blur_far_enabled) {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
int vp_h = storage->frame.current_rt->height;
|
|
int vp_w = storage->frame.current_rt->width;
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR, true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_LOW);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, env->dof_blur_far_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH);
|
|
|
|
state.effect_blur_shader.bind();
|
|
int qsteps[3] = { 4, 10, 20 };
|
|
|
|
float radius = (env->dof_blur_far_amount * env->dof_blur_far_amount) / qsteps[env->dof_blur_far_quality];
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_far_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_far_distance + env->dof_blur_far_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(1, 0));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, composite_from);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen(true);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(0, 1));
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen();
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, false);
|
|
|
|
composite_from = storage->frame.current_rt->effects.mip_maps[0].color;
|
|
}
|
|
|
|
if (env && env->dof_blur_near_enabled) {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
int vp_h = storage->frame.current_rt->height;
|
|
int vp_w = storage->frame.current_rt->width;
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, p_cam_projection.is_orthogonal());
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR, true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, true);
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_LOW);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, env->dof_blur_near_quality == VS::ENV_DOF_BLUR_QUALITY_HIGH);
|
|
|
|
state.effect_blur_shader.bind();
|
|
int qsteps[3] = { 4, 10, 20 };
|
|
|
|
float radius = (env->dof_blur_near_amount * env->dof_blur_near_amount) / qsteps[env->dof_blur_near_quality];
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_near_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(1, 0));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->depth);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, composite_from);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen();
|
|
//manually do the blend if this is the first operation resolving from the diffuse buffer
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE, composite_from == storage->frame.current_rt->buffers.diffuse);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, false);
|
|
state.effect_blur_shader.bind();
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN, env->dof_blur_near_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END, env->dof_blur_near_distance - env->dof_blur_near_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR, Vector2(0, 1));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS, radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR, p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR, p_cam_projection.get_z_far());
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
|
|
if (composite_from != storage->frame.current_rt->buffers.diffuse) {
|
|
|
|
glEnable(GL_BLEND);
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
|
|
} else {
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->buffers.diffuse);
|
|
}
|
|
|
|
_copy_screen(true);
|
|
|
|
if (composite_from != storage->frame.current_rt->buffers.diffuse) {
|
|
|
|
glDisable(GL_BLEND);
|
|
}
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::USE_ORTHOGONAL_PROJECTION, false);
|
|
|
|
composite_from = storage->frame.current_rt->effects.mip_maps[0].color;
|
|
}
|
|
|
|
if (env && (env->dof_blur_near_enabled || env->dof_blur_far_enabled)) {
|
|
//these needed to disable filtering, reenamble
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
}
|
|
|
|
if (env && env->auto_exposure) {
|
|
|
|
//compute auto exposure
|
|
//first step, copy from image to luminance buffer
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN, true);
|
|
state.exposure_shader.bind();
|
|
int ss[2] = {
|
|
storage->frame.current_rt->width,
|
|
storage->frame.current_rt->height,
|
|
};
|
|
int ds[2] = {
|
|
exposure_shrink_size,
|
|
exposure_shrink_size,
|
|
};
|
|
|
|
glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::SOURCE_RENDER_SIZE), 1, ss);
|
|
glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::TARGET_SIZE), 1, ds);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, composite_from);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[0].fbo);
|
|
glViewport(0, 0, exposure_shrink_size, exposure_shrink_size);
|
|
|
|
_copy_screen(true);
|
|
|
|
//second step, shrink to 2x2 pixels
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN, false);
|
|
state.exposure_shader.bind();
|
|
//shrink from second to previous to last level
|
|
|
|
int s_size = exposure_shrink_size / 3;
|
|
for (int i = 1; i < exposure_shrink.size() - 1; i++) {
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[i].fbo);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, exposure_shrink[i - 1].color);
|
|
|
|
_copy_screen();
|
|
|
|
glViewport(0, 0, s_size, s_size);
|
|
|
|
s_size /= 3;
|
|
}
|
|
//third step, shrink to 1x1 pixel taking in consideration the previous exposure
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END, true);
|
|
|
|
uint64_t tick = OS::get_singleton()->get_ticks_usec();
|
|
uint64_t tick_diff = storage->frame.current_rt->last_exposure_tick == 0 ? 0 : tick - storage->frame.current_rt->last_exposure_tick;
|
|
storage->frame.current_rt->last_exposure_tick = tick;
|
|
|
|
if (tick_diff == 0 || tick_diff > 1000000) {
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET, true);
|
|
}
|
|
|
|
state.exposure_shader.bind();
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, exposure_shrink[exposure_shrink.size() - 1].fbo);
|
|
glViewport(0, 0, 1, 1);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, exposure_shrink[exposure_shrink.size() - 2].color);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color); //read from previous
|
|
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::EXPOSURE_ADJUST, env->auto_exposure_speed * (tick_diff / 1000000.0));
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::MAX_LUMINANCE, env->auto_exposure_max);
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::MIN_LUMINANCE, env->auto_exposure_min);
|
|
|
|
_copy_screen(true);
|
|
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET, false);
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END, false);
|
|
|
|
//last step, swap with the framebuffer exposure, so the right exposure is kept int he framebuffer
|
|
SWAP(exposure_shrink.write[exposure_shrink.size() - 1].fbo, storage->frame.current_rt->exposure.fbo);
|
|
SWAP(exposure_shrink.write[exposure_shrink.size() - 1].color, storage->frame.current_rt->exposure.color);
|
|
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
|
|
VisualServerRaster::redraw_request(); //if using auto exposure, redraw must happen
|
|
}
|
|
|
|
int max_glow_level = -1;
|
|
int glow_mask = 0;
|
|
|
|
if (env && env->glow_enabled) {
|
|
|
|
for (int i = 0; i < VS::MAX_GLOW_LEVELS; i++) {
|
|
if (env->glow_levels & (1 << i)) {
|
|
|
|
if (i >= storage->frame.current_rt->effects.mip_maps[1].sizes.size()) {
|
|
max_glow_level = storage->frame.current_rt->effects.mip_maps[1].sizes.size() - 1;
|
|
glow_mask |= 1 << max_glow_level;
|
|
|
|
} else {
|
|
max_glow_level = i;
|
|
glow_mask |= (1 << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
for (int i = 0; i < (max_glow_level + 1); i++) {
|
|
|
|
int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width;
|
|
int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height;
|
|
glViewport(0, 0, vp_w, vp_h);
|
|
//horizontal pass
|
|
if (i == 0) {
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS, true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE, env->auto_exposure);
|
|
}
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH, env->glow_strength);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LUMINANCE_CAP, env->glow_hdr_luminance_cap);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
if (i == 0) {
|
|
glBindTexture(GL_TEXTURE_2D, composite_from);
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::EXPOSURE, env->tone_mapper_exposure);
|
|
if (env->auto_exposure) {
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::AUTO_EXPOSURE_GREY, env->auto_exposure_grey);
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color);
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_BLOOM, env->glow_bloom);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_THRESHOLD, env->glow_hdr_bleed_threshold);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_SCALE, env->glow_hdr_bleed_scale);
|
|
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger
|
|
}
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo);
|
|
_copy_screen(true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS, false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE, false);
|
|
|
|
//vertical pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL, true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE, Vector2(1.0 / vp_w, 1.0 / vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD, float(i));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH, env->glow_strength);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[1].color);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[i + 1].fbo); //next level, since mipmaps[0] starts one level bigger
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL, false);
|
|
}
|
|
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
}
|
|
|
|
if (storage->frame.current_rt->external.fbo != 0) {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->external.fbo);
|
|
} else {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->fbo);
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, composite_from);
|
|
if (env) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_FILMIC);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_ACES);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINHARD_TONEMAPPER, env->tone_mapper == VS::ENV_TONE_MAPPER_REINHARD);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE, env->auto_exposure);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC, env->glow_bicubic_upscale);
|
|
}
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::KEEP_3D_LINEAR, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_KEEP_3D_LINEAR]);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FXAA, storage->frame.current_rt->use_fxaa);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_DEBANDING, storage->frame.current_rt->use_debanding);
|
|
|
|
if (env && max_glow_level >= 0) {
|
|
|
|
for (int i = 0; i < (max_glow_level + 1); i++) {
|
|
|
|
if (glow_mask & (1 << i)) {
|
|
if (i == 0) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1, true);
|
|
}
|
|
if (i == 1) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2, true);
|
|
}
|
|
if (i == 2) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3, true);
|
|
}
|
|
if (i == 3) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4, true);
|
|
}
|
|
if (i == 4) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5, true);
|
|
}
|
|
if (i == 5) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6, true);
|
|
}
|
|
if (i == 6) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SCREEN);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT, env->glow_blend_mode == VS::GLOW_BLEND_MODE_SOFTLIGHT);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE, env->glow_blend_mode == VS::GLOW_BLEND_MODE_REPLACE);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
}
|
|
|
|
if (env && env->adjustments_enabled) {
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_BCS, true);
|
|
RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(env->color_correction);
|
|
if (tex) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_COLOR_CORRECTION, true);
|
|
glActiveTexture(GL_TEXTURE3);
|
|
glBindTexture(tex->target, tex->tex_id);
|
|
}
|
|
}
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::V_FLIP, storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]);
|
|
state.tonemap_shader.bind();
|
|
|
|
if (env) {
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::EXPOSURE, env->tone_mapper_exposure);
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::WHITE, env->tone_mapper_exposure_white);
|
|
|
|
if (max_glow_level >= 0) {
|
|
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::GLOW_INTENSITY, env->glow_intensity);
|
|
int ss[2] = {
|
|
storage->frame.current_rt->width,
|
|
storage->frame.current_rt->height,
|
|
};
|
|
glUniform2iv(state.tonemap_shader.get_uniform(TonemapShaderGLES3::GLOW_TEXTURE_SIZE), 1, ss);
|
|
}
|
|
|
|
if (env->auto_exposure) {
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->exposure.color);
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::AUTO_EXPOSURE_GREY, env->auto_exposure_grey);
|
|
}
|
|
|
|
if (env->adjustments_enabled) {
|
|
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::BCS, Vector3(env->adjustments_brightness, env->adjustments_contrast, env->adjustments_saturation));
|
|
}
|
|
} else {
|
|
// No environment, so no exposure.
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::EXPOSURE, 1.0);
|
|
}
|
|
|
|
if (storage->frame.current_rt->use_fxaa) {
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::PIXEL_SIZE, Vector2(1.0 / storage->frame.current_rt->width, 1.0 / storage->frame.current_rt->height));
|
|
}
|
|
|
|
_copy_screen(true, true);
|
|
|
|
//turn off everything used
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FXAA, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_DEBANDING, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINHARD_TONEMAPPER, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_BCS, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_COLOR_CORRECTION, false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::V_FLIP, false);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::render_scene(const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID p_environment, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
|
|
|
|
//first of all, make a new render pass
|
|
render_pass++;
|
|
|
|
//fill up ubo
|
|
|
|
storage->info.render.object_count += p_cull_count;
|
|
|
|
Environment *env = environment_owner.getornull(p_environment);
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
|
|
bool use_shadows = shadow_atlas && shadow_atlas->size;
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SHADOW, use_shadows);
|
|
|
|
if (use_shadows) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 5);
|
|
glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
|
|
state.ubo_data.shadow_atlas_pixel_size[0] = 1.0 / shadow_atlas->size;
|
|
state.ubo_data.shadow_atlas_pixel_size[1] = 1.0 / shadow_atlas->size;
|
|
}
|
|
|
|
if (reflection_atlas && reflection_atlas->size) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 3);
|
|
glBindTexture(GL_TEXTURE_2D, reflection_atlas->color);
|
|
}
|
|
|
|
if (p_reflection_probe.is_valid()) {
|
|
state.ubo_data.reflection_multiplier = 0.0;
|
|
} else {
|
|
state.ubo_data.reflection_multiplier = 1.0;
|
|
}
|
|
|
|
state.ubo_data.subsurface_scatter_width = subsurface_scatter_size;
|
|
|
|
state.ubo_data.z_offset = 0;
|
|
state.ubo_data.z_slope_scale = 0;
|
|
state.ubo_data.shadow_dual_paraboloid_render_side = 0;
|
|
state.ubo_data.shadow_dual_paraboloid_render_zfar = 0;
|
|
state.ubo_data.opaque_prepass_threshold = 0.99;
|
|
|
|
if (storage->frame.current_rt) {
|
|
int viewport_width_pixels = storage->frame.current_rt->width;
|
|
int viewport_height_pixels = storage->frame.current_rt->height;
|
|
|
|
state.ubo_data.viewport_size[0] = viewport_width_pixels;
|
|
state.ubo_data.viewport_size[1] = viewport_height_pixels;
|
|
|
|
state.ubo_data.screen_pixel_size[0] = 1.0 / viewport_width_pixels;
|
|
state.ubo_data.screen_pixel_size[1] = 1.0 / viewport_height_pixels;
|
|
}
|
|
|
|
_setup_environment(env, p_cam_projection, p_cam_transform, p_reflection_probe.is_valid());
|
|
|
|
bool fb_cleared = false;
|
|
|
|
glDepthFunc(GL_LEQUAL);
|
|
|
|
state.used_contact_shadows = false;
|
|
state.prepared_depth_texture = false;
|
|
state.bound_depth_texture = false;
|
|
|
|
for (int i = 0; i < p_light_cull_count; i++) {
|
|
|
|
ERR_BREAK(i >= render_list.max_lights);
|
|
|
|
LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]);
|
|
if (li->light_ptr->param[VS::LIGHT_PARAM_CONTACT_SHADOW_SIZE] > CMP_EPSILON) {
|
|
state.used_contact_shadows = true;
|
|
}
|
|
}
|
|
|
|
// Do depth prepass if it's explicitly enabled
|
|
bool use_depth_prepass = storage->config.use_depth_prepass;
|
|
|
|
// If contact shadows are used then we need to do depth prepass even if it's otherwise disabled
|
|
use_depth_prepass = use_depth_prepass || state.used_contact_shadows;
|
|
|
|
// Never do depth prepass if effects are disabled or if we render overdraws
|
|
use_depth_prepass = use_depth_prepass && storage->frame.current_rt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS];
|
|
use_depth_prepass = use_depth_prepass && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
|
|
|
|
if (use_depth_prepass) {
|
|
//pre z pass
|
|
|
|
glDisable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glDrawBuffers(0, NULL);
|
|
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
|
|
glColorMask(0, 0, 0, 0);
|
|
glClearDepth(1.0f);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
|
|
render_list.clear();
|
|
_fill_render_list(p_cull_result, p_cull_count, true, false);
|
|
render_list.sort_by_key(false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true);
|
|
_render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, NULL, false, false, true, false, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false);
|
|
|
|
glColorMask(1, 1, 1, 1);
|
|
|
|
if (state.used_contact_shadows) {
|
|
|
|
_prepare_depth_texture();
|
|
_bind_depth_texture();
|
|
}
|
|
|
|
fb_cleared = true;
|
|
render_pass++;
|
|
state.used_depth_prepass = true;
|
|
} else {
|
|
state.used_depth_prepass = false;
|
|
}
|
|
|
|
_setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_shadow_atlas);
|
|
_setup_reflections(p_reflection_probe_cull_result, p_reflection_probe_cull_count, p_cam_transform.affine_inverse(), p_cam_projection, p_reflection_atlas, env);
|
|
|
|
bool use_mrt = false;
|
|
|
|
render_list.clear();
|
|
_fill_render_list(p_cull_result, p_cull_count, false, false);
|
|
//
|
|
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
//rendering to a probe cubemap side
|
|
ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
|
|
GLuint current_fbo;
|
|
|
|
if (probe) {
|
|
|
|
ReflectionAtlas *ref_atlas = reflection_atlas_owner.getptr(probe->atlas);
|
|
ERR_FAIL_COND(!ref_atlas);
|
|
|
|
int target_size = ref_atlas->size / ref_atlas->subdiv;
|
|
|
|
int cubemap_index = reflection_cubemaps.size() - 1;
|
|
|
|
for (int i = reflection_cubemaps.size() - 1; i >= 0; i--) {
|
|
//find appropriate cubemap to render to
|
|
if (reflection_cubemaps[i].size > target_size * 2)
|
|
break;
|
|
|
|
cubemap_index = i;
|
|
}
|
|
|
|
current_fbo = reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass];
|
|
use_mrt = false;
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false);
|
|
|
|
glViewport(0, 0, reflection_cubemaps[cubemap_index].size, reflection_cubemaps[cubemap_index].size);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, current_fbo);
|
|
|
|
} else {
|
|
|
|
use_mrt = env && (state.used_sss || env->ssao_enabled || env->ssr_enabled || env->dof_blur_far_enabled || env->dof_blur_near_enabled); //only enable MRT rendering if any of these is enabled
|
|
//effects disabled and transparency also prevent using MRTs
|
|
use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT];
|
|
use_mrt = use_mrt && !storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_NO_3D_EFFECTS];
|
|
use_mrt = use_mrt && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW;
|
|
use_mrt = use_mrt && (env->bg_mode != VS::ENV_BG_KEEP && env->bg_mode != VS::ENV_BG_CANVAS);
|
|
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
|
|
if (use_mrt) {
|
|
|
|
current_fbo = storage->frame.current_rt->buffers.fbo;
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, true);
|
|
|
|
Vector<GLenum> draw_buffers;
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT0);
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT1);
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT2);
|
|
if (state.used_sss) {
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT3);
|
|
}
|
|
glDrawBuffers(draw_buffers.size(), draw_buffers.ptr());
|
|
|
|
Color black(0, 0, 0, 0);
|
|
glClearBufferfv(GL_COLOR, 1, black.components); // specular
|
|
glClearBufferfv(GL_COLOR, 2, black.components); // normal metal rough
|
|
if (state.used_sss) {
|
|
glClearBufferfv(GL_COLOR, 3, black.components); // normal metal rough
|
|
}
|
|
|
|
} else {
|
|
|
|
if (storage->frame.current_rt->buffers.active) {
|
|
current_fbo = storage->frame.current_rt->buffers.fbo;
|
|
} else {
|
|
if (storage->frame.current_rt->effects.mip_maps[0].sizes.size() == 0) {
|
|
ERR_PRINT_ONCE("Can't use canvas background mode in a render target configured without sampling");
|
|
return;
|
|
}
|
|
current_fbo = storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo;
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, current_fbo);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false);
|
|
|
|
Vector<GLenum> draw_buffers;
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT0);
|
|
glDrawBuffers(draw_buffers.size(), draw_buffers.ptr());
|
|
}
|
|
}
|
|
|
|
if (!fb_cleared) {
|
|
glClearDepth(1.0f);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
}
|
|
|
|
Color clear_color(0, 0, 0, 0);
|
|
|
|
RasterizerStorageGLES3::Sky *sky = NULL;
|
|
Ref<CameraFeed> feed;
|
|
|
|
if (state.debug_draw == VS::VIEWPORT_DEBUG_DRAW_OVERDRAW) {
|
|
clear_color = Color(0, 0, 0, 0);
|
|
storage->frame.clear_request = false;
|
|
} else if (!probe && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
clear_color = Color(0, 0, 0, 0);
|
|
storage->frame.clear_request = false;
|
|
|
|
} else if (!env || env->bg_mode == VS::ENV_BG_CLEAR_COLOR) {
|
|
|
|
if (storage->frame.clear_request) {
|
|
|
|
clear_color = storage->frame.clear_request_color.to_linear();
|
|
storage->frame.clear_request = false;
|
|
}
|
|
|
|
} else if (env->bg_mode == VS::ENV_BG_CANVAS) {
|
|
|
|
clear_color = env->bg_color.to_linear();
|
|
storage->frame.clear_request = false;
|
|
} else if (env->bg_mode == VS::ENV_BG_COLOR) {
|
|
|
|
clear_color = env->bg_color.to_linear();
|
|
storage->frame.clear_request = false;
|
|
} else if (env->bg_mode == VS::ENV_BG_SKY) {
|
|
|
|
storage->frame.clear_request = false;
|
|
|
|
} else if (env->bg_mode == VS::ENV_BG_COLOR_SKY) {
|
|
|
|
clear_color = env->bg_color.to_linear();
|
|
storage->frame.clear_request = false;
|
|
|
|
} else if (env->bg_mode == VS::ENV_BG_CAMERA_FEED) {
|
|
feed = CameraServer::get_singleton()->get_feed_by_id(env->camera_feed_id);
|
|
storage->frame.clear_request = false;
|
|
} else {
|
|
storage->frame.clear_request = false;
|
|
}
|
|
|
|
if (!env || env->bg_mode != VS::ENV_BG_KEEP) {
|
|
glClearBufferfv(GL_COLOR, 0, clear_color.components); // specular
|
|
}
|
|
|
|
VS::EnvironmentBG bg_mode = (!env || (probe && env->bg_mode == VS::ENV_BG_CANVAS)) ? VS::ENV_BG_CLEAR_COLOR : env->bg_mode; //if no environment, or canvas while rendering a probe (invalid use case), use color.
|
|
|
|
if (env) {
|
|
switch (bg_mode) {
|
|
case VS::ENV_BG_COLOR_SKY:
|
|
case VS::ENV_BG_SKY:
|
|
|
|
sky = storage->sky_owner.getornull(env->sky);
|
|
|
|
break;
|
|
case VS::ENV_BG_CANVAS:
|
|
//copy canvas to 3d buffer and convert it to linear
|
|
|
|
glDisable(GL_BLEND);
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->color);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true);
|
|
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen(true, true);
|
|
|
|
//turn off everything used
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false);
|
|
|
|
//restore
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glEnable(GL_CULL_FACE);
|
|
break;
|
|
case VS::ENV_BG_CAMERA_FEED:
|
|
if (feed.is_valid() && (feed->get_base_width() > 0) && (feed->get_base_height() > 0)) {
|
|
// copy our camera feed to our background
|
|
|
|
glDisable(GL_BLEND);
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, true);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, true);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, true);
|
|
|
|
if (feed->get_datatype() == CameraFeed::FEED_RGB) {
|
|
RID camera_RGBA = feed->get_texture(CameraServer::FEED_RGBA_IMAGE);
|
|
|
|
VS::get_singleton()->texture_bind(camera_RGBA, 0);
|
|
} else if (feed->get_datatype() == CameraFeed::FEED_YCBCR) {
|
|
RID camera_YCbCr = feed->get_texture(CameraServer::FEED_YCBCR_IMAGE);
|
|
|
|
VS::get_singleton()->texture_bind(camera_YCbCr, 0);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true);
|
|
|
|
} else if (feed->get_datatype() == CameraFeed::FEED_YCBCR_SEP) {
|
|
RID camera_Y = feed->get_texture(CameraServer::FEED_Y_IMAGE);
|
|
RID camera_CbCr = feed->get_texture(CameraServer::FEED_CBCR_IMAGE);
|
|
|
|
VS::get_singleton()->texture_bind(camera_Y, 0);
|
|
VS::get_singleton()->texture_bind(camera_CbCr, 1);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, true);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, true);
|
|
};
|
|
|
|
storage->shaders.copy.bind();
|
|
storage->shaders.copy.set_uniform(CopyShaderGLES3::DISPLAY_TRANSFORM, feed->get_transform());
|
|
|
|
_copy_screen(true, true);
|
|
|
|
//turn off everything used
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_DISPLAY_TRANSFORM, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SRGB_TO_LINEAR, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::SEP_CBCR_TEXTURE, false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::YCBCR_TO_SRGB, false);
|
|
|
|
//restore
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glEnable(GL_CULL_FACE);
|
|
} else {
|
|
// don't have a feed, just show greenscreen :)
|
|
clear_color = Color(0.0, 1.0, 0.0, 1.0);
|
|
}
|
|
break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
|
|
if (probe && probe->probe_ptr->interior) {
|
|
sky = NULL; //for rendering probe interiors, radiance must not be used.
|
|
}
|
|
|
|
state.texscreen_copied = false;
|
|
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
glEnable(GL_BLEND);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
glDisable(GL_BLEND);
|
|
}
|
|
|
|
render_list.sort_by_key(false);
|
|
|
|
if (state.directional_light_count == 0) {
|
|
directional_light = NULL;
|
|
_render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, sky, false, false, false, false, use_shadows);
|
|
} else {
|
|
for (int i = 0; i < state.directional_light_count; i++) {
|
|
directional_light = directional_lights[i];
|
|
if (i > 0) {
|
|
glEnable(GL_BLEND);
|
|
}
|
|
_setup_directional_light(i, p_cam_transform.affine_inverse(), use_shadows);
|
|
_render_list(render_list.elements, render_list.element_count, p_cam_transform, p_cam_projection, sky, false, false, false, i > 0, use_shadows);
|
|
}
|
|
}
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS, false);
|
|
|
|
if (use_mrt) {
|
|
GLenum gldb = GL_COLOR_ATTACHMENT0;
|
|
glDrawBuffers(1, &gldb);
|
|
}
|
|
|
|
if (env && env->bg_mode == VS::ENV_BG_SKY && (!storage->frame.current_rt || (!storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT] && state.debug_draw != VS::VIEWPORT_DEBUG_DRAW_OVERDRAW))) {
|
|
|
|
/*
|
|
if (use_mrt) {
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo); //switch to alpha fbo for sky, only diffuse/ambient matters
|
|
*/
|
|
|
|
if (sky && sky->panorama.is_valid())
|
|
_draw_sky(sky, p_cam_projection, p_cam_transform, false, env->sky_custom_fov, env->bg_energy, env->sky_orientation);
|
|
}
|
|
|
|
//_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true);
|
|
//glColorMask(1,1,1,1);
|
|
|
|
//state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false);
|
|
|
|
if (use_mrt) {
|
|
|
|
_render_mrts(env, p_cam_projection);
|
|
} else {
|
|
// Here we have to do the blits/resolves that otherwise are done in the MRT rendering, in particular
|
|
// - prepare screen texture for any geometry that uses a shader with screen texture
|
|
// - prepare depth texture for any geometry that uses a shader with depth texture
|
|
|
|
bool framebuffer_dirty = false;
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_screen_texture) {
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glReadBuffer(GL_COLOR_ATTACHMENT0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glBlitFramebuffer(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, 0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height, GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, GL_NEAREST);
|
|
glBindFramebuffer(GL_READ_FRAMEBUFFER, 0);
|
|
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0);
|
|
_blur_effect_buffer();
|
|
framebuffer_dirty = true;
|
|
}
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->buffers.active && state.used_depth_texture) {
|
|
_prepare_depth_texture();
|
|
framebuffer_dirty = true;
|
|
}
|
|
|
|
if (framebuffer_dirty) {
|
|
// Restore framebuffer
|
|
glBindFramebuffer(GL_FRAMEBUFFER, storage->frame.current_rt->buffers.fbo);
|
|
glViewport(0, 0, storage->frame.current_rt->width, storage->frame.current_rt->height);
|
|
}
|
|
}
|
|
|
|
if (storage->frame.current_rt && state.used_depth_texture && storage->frame.current_rt->buffers.active) {
|
|
_bind_depth_texture();
|
|
}
|
|
|
|
if (storage->frame.current_rt && state.used_screen_texture && storage->frame.current_rt->buffers.active) {
|
|
glActiveTexture(GL_TEXTURE0 + storage->config.max_texture_image_units - 7);
|
|
glBindTexture(GL_TEXTURE_2D, storage->frame.current_rt->effects.mip_maps[0].color);
|
|
}
|
|
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
render_list.sort_by_reverse_depth_and_priority(true);
|
|
|
|
if (state.directional_light_count == 0) {
|
|
directional_light = NULL;
|
|
_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, sky, false, true, false, false, use_shadows);
|
|
} else {
|
|
for (int i = 0; i < state.directional_light_count; i++) {
|
|
directional_light = directional_lights[i];
|
|
_setup_directional_light(i, p_cam_transform.affine_inverse(), use_shadows);
|
|
_render_list(&render_list.elements[render_list.max_elements - render_list.alpha_element_count], render_list.alpha_element_count, p_cam_transform, p_cam_projection, sky, false, true, false, i > 0, use_shadows);
|
|
}
|
|
}
|
|
|
|
if (probe) {
|
|
//rendering a probe, do no more!
|
|
return;
|
|
}
|
|
|
|
if (env && (env->dof_blur_far_enabled || env->dof_blur_near_enabled) && storage->frame.current_rt && storage->frame.current_rt->buffers.active)
|
|
_prepare_depth_texture();
|
|
_post_process(env, p_cam_projection);
|
|
// Needed only for debugging
|
|
/* if (shadow_atlas && storage->frame.current_rt) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1));
|
|
}
|
|
|
|
if (storage->frame.current_rt) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, exposure_shrink[4].color);
|
|
//glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 16, storage->frame.current_rt->height / 16), Rect2(0, 0, 1, 1));
|
|
}
|
|
|
|
if (reflection_atlas && storage->frame.current_rt) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, reflection_atlas->color);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1));
|
|
}
|
|
|
|
if (directional_shadow.fbo) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1));
|
|
}
|
|
|
|
if ( env_radiance_tex) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, env_radiance_tex);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0, 0, storage->frame.current_rt->width / 2, storage->frame.current_rt->height / 2), Rect2(0, 0, 1, 1));
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
}*/
|
|
//disable all stuff
|
|
}
|
|
|
|
void RasterizerSceneGLES3::render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count) {
|
|
|
|
render_pass++;
|
|
|
|
directional_light = NULL;
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light);
|
|
ERR_FAIL_COND(!light_instance);
|
|
RasterizerStorageGLES3::Light *light = storage->light_owner.getornull(light_instance->light);
|
|
ERR_FAIL_COND(!light);
|
|
|
|
uint32_t x, y, width, height;
|
|
|
|
float dp_direction = 0.0;
|
|
float zfar = 0;
|
|
bool flip_facing = false;
|
|
int custom_vp_size = 0;
|
|
GLuint fbo;
|
|
int current_cubemap = -1;
|
|
float bias = 0;
|
|
float normal_bias = 0;
|
|
|
|
state.used_depth_prepass = false;
|
|
|
|
CameraMatrix light_projection;
|
|
Transform light_transform;
|
|
|
|
if (light->type == VS::LIGHT_DIRECTIONAL) {
|
|
//set pssm stuff
|
|
if (light_instance->last_scene_shadow_pass != scene_pass) {
|
|
//assign rect if unassigned
|
|
light_instance->light_directional_index = directional_shadow.current_light;
|
|
light_instance->last_scene_shadow_pass = scene_pass;
|
|
directional_shadow.current_light++;
|
|
|
|
if (directional_shadow.light_count == 1) {
|
|
light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size);
|
|
} else if (directional_shadow.light_count == 2) {
|
|
light_instance->directional_rect = Rect2(0, 0, directional_shadow.size, directional_shadow.size / 2);
|
|
if (light_instance->light_directional_index == 1) {
|
|
light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
|
|
}
|
|
} else { //3 and 4
|
|
light_instance->directional_rect = Rect2(0, 0, directional_shadow.size / 2, directional_shadow.size / 2);
|
|
if (light_instance->light_directional_index & 1) {
|
|
light_instance->directional_rect.position.x += light_instance->directional_rect.size.x;
|
|
}
|
|
if (light_instance->light_directional_index / 2) {
|
|
light_instance->directional_rect.position.y += light_instance->directional_rect.size.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
light_projection = light_instance->shadow_transform[p_pass].camera;
|
|
light_transform = light_instance->shadow_transform[p_pass].transform;
|
|
|
|
x = light_instance->directional_rect.position.x;
|
|
y = light_instance->directional_rect.position.y;
|
|
width = light_instance->directional_rect.size.x;
|
|
height = light_instance->directional_rect.size.y;
|
|
|
|
if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
|
|
|
|
width /= 2;
|
|
height /= 2;
|
|
|
|
if (p_pass == 1) {
|
|
x += width;
|
|
} else if (p_pass == 2) {
|
|
y += height;
|
|
} else if (p_pass == 3) {
|
|
x += width;
|
|
y += height;
|
|
}
|
|
|
|
} else if (light->directional_shadow_mode == VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
|
|
|
|
height /= 2;
|
|
|
|
if (p_pass == 0) {
|
|
|
|
} else {
|
|
y += height;
|
|
}
|
|
}
|
|
|
|
float bias_mult = Math::lerp(1.0f, light_instance->shadow_transform[p_pass].bias_scale, light->param[VS::LIGHT_PARAM_SHADOW_BIAS_SPLIT_SCALE]);
|
|
zfar = light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS] * bias_mult;
|
|
normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] * bias_mult;
|
|
fbo = directional_shadow.fbo;
|
|
|
|
} else {
|
|
//set from shadow atlas
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
|
|
|
|
fbo = shadow_atlas->fbo;
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[p_light];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t quadrant_size = shadow_atlas->size >> 1;
|
|
|
|
x = (quadrant & 1) * quadrant_size;
|
|
y = (quadrant >> 1) * quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
width = shadow_size;
|
|
height = shadow_size;
|
|
|
|
if (light->type == VS::LIGHT_OMNI) {
|
|
|
|
if (light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE) {
|
|
|
|
int cubemap_index = shadow_cubemaps.size() - 1;
|
|
|
|
for (int i = shadow_cubemaps.size() - 1; i >= 0; i--) {
|
|
//find appropriate cubemap to render to
|
|
if (shadow_cubemaps[i].size > shadow_size * 2)
|
|
break;
|
|
|
|
cubemap_index = i;
|
|
}
|
|
|
|
fbo = shadow_cubemaps[cubemap_index].fbo_id[p_pass];
|
|
light_projection = light_instance->shadow_transform[0].camera;
|
|
light_transform = light_instance->shadow_transform[0].transform;
|
|
custom_vp_size = shadow_cubemaps[cubemap_index].size;
|
|
zfar = light->param[VS::LIGHT_PARAM_RANGE];
|
|
|
|
current_cubemap = cubemap_index;
|
|
|
|
} else {
|
|
|
|
light_projection = light_instance->shadow_transform[0].camera;
|
|
light_transform = light_instance->shadow_transform[0].transform;
|
|
|
|
if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
height /= 2;
|
|
y += p_pass * height;
|
|
} else {
|
|
width /= 2;
|
|
x += p_pass * width;
|
|
}
|
|
|
|
dp_direction = p_pass == 0 ? 1.0 : -1.0;
|
|
flip_facing = (p_pass == 1);
|
|
zfar = light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH_DUAL_PARABOLOID, true);
|
|
}
|
|
|
|
} else if (light->type == VS::LIGHT_SPOT) {
|
|
|
|
light_projection = light_instance->shadow_transform[0].camera;
|
|
light_transform = light_instance->shadow_transform[0].transform;
|
|
|
|
dp_direction = 1.0;
|
|
flip_facing = false;
|
|
zfar = light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias = light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
|
|
normal_bias = light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
|
|
}
|
|
}
|
|
|
|
render_list.clear();
|
|
_fill_render_list(p_cull_result, p_cull_count, true, true);
|
|
|
|
render_list.sort_by_depth(false); //shadow is front to back for performance
|
|
|
|
glDisable(GL_BLEND);
|
|
glDisable(GL_DITHER);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
|
|
glDepthMask(true);
|
|
glColorMask(0, 0, 0, 0);
|
|
|
|
if (custom_vp_size) {
|
|
glViewport(0, 0, custom_vp_size, custom_vp_size);
|
|
glScissor(0, 0, custom_vp_size, custom_vp_size);
|
|
|
|
} else {
|
|
glViewport(x, y, width, height);
|
|
glScissor(x, y, width, height);
|
|
}
|
|
|
|
glEnable(GL_SCISSOR_TEST);
|
|
glClearDepth(1.0f);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
state.ubo_data.z_offset = bias;
|
|
state.ubo_data.z_slope_scale = normal_bias;
|
|
state.ubo_data.shadow_dual_paraboloid_render_side = dp_direction;
|
|
state.ubo_data.shadow_dual_paraboloid_render_zfar = zfar;
|
|
state.ubo_data.opaque_prepass_threshold = 0.1;
|
|
|
|
_setup_environment(NULL, light_projection, light_transform);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, true);
|
|
|
|
if (light->reverse_cull) {
|
|
flip_facing = !flip_facing;
|
|
}
|
|
_render_list(render_list.elements, render_list.element_count, light_transform, light_projection, NULL, flip_facing, false, true, false, false);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH, false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_DEPTH_DUAL_PARABOLOID, false);
|
|
|
|
if (light->type == VS::LIGHT_OMNI && light->omni_shadow_mode == VS::LIGHT_OMNI_SHADOW_CUBE && p_pass == 5) {
|
|
//convert the chosen cubemap to dual paraboloid!
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
|
|
state.cube_to_dp_shader.bind();
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP, shadow_cubemaps[current_cubemap].cubemap);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FLIP, i == 1);
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_NEAR, light_projection.get_z_near());
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FAR, light_projection.get_z_far());
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::BIAS, light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
|
|
|
|
uint32_t local_width = width, local_height = height;
|
|
uint32_t local_x = x, local_y = y;
|
|
if (light->omni_shadow_detail == VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
local_height /= 2;
|
|
local_y += i * local_height;
|
|
} else {
|
|
local_width /= 2;
|
|
local_x += i * local_width;
|
|
}
|
|
|
|
glViewport(local_x, local_y, local_width, local_height);
|
|
glScissor(local_x, local_y, local_width, local_height);
|
|
glEnable(GL_SCISSOR_TEST);
|
|
glClearDepth(1.0f);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
//glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_BLEND);
|
|
|
|
_copy_screen();
|
|
}
|
|
}
|
|
|
|
glColorMask(1, 1, 1, 1);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::set_scene_pass(uint64_t p_pass) {
|
|
scene_pass = p_pass;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::free(RID p_rid) {
|
|
|
|
if (light_instance_owner.owns(p_rid)) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getptr(p_rid);
|
|
|
|
//remove from shadow atlases..
|
|
for (Set<RID>::Element *E = light_instance->shadow_atlases.front(); E; E = E->next()) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
|
|
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
|
|
uint32_t key = shadow_atlas->shadow_owners[p_rid];
|
|
uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
|
|
uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
|
|
shadow_atlas->shadow_owners.erase(p_rid);
|
|
}
|
|
|
|
light_instance_owner.free(p_rid);
|
|
memdelete(light_instance);
|
|
|
|
} else if (shadow_atlas_owner.owns(p_rid)) {
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
|
|
shadow_atlas_set_size(p_rid, 0);
|
|
shadow_atlas_owner.free(p_rid);
|
|
memdelete(shadow_atlas);
|
|
} else if (reflection_atlas_owner.owns(p_rid)) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.get(p_rid);
|
|
reflection_atlas_set_size(p_rid, 0);
|
|
reflection_atlas_owner.free(p_rid);
|
|
memdelete(reflection_atlas);
|
|
} else if (reflection_probe_instance_owner.owns(p_rid)) {
|
|
|
|
ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
|
|
|
|
reflection_probe_release_atlas_index(p_rid);
|
|
reflection_probe_instance_owner.free(p_rid);
|
|
memdelete(reflection_instance);
|
|
|
|
} else if (environment_owner.owns(p_rid)) {
|
|
|
|
Environment *environment = environment_owner.get(p_rid);
|
|
|
|
environment_owner.free(p_rid);
|
|
memdelete(environment);
|
|
|
|
} else if (gi_probe_instance_owner.owns(p_rid)) {
|
|
|
|
GIProbeInstance *gi_probe_instance = gi_probe_instance_owner.get(p_rid);
|
|
|
|
gi_probe_instance_owner.free(p_rid);
|
|
memdelete(gi_probe_instance);
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::set_debug_draw_mode(VS::ViewportDebugDraw p_debug_draw) {
|
|
|
|
state.debug_draw = p_debug_draw;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::initialize() {
|
|
|
|
render_pass = 0;
|
|
|
|
state.scene_shader.init();
|
|
|
|
{
|
|
//default material and shader
|
|
|
|
default_shader = storage->shader_create();
|
|
storage->shader_set_code(default_shader, "shader_type spatial;\n");
|
|
default_material = storage->material_create();
|
|
storage->material_set_shader(default_material, default_shader);
|
|
|
|
default_shader_twosided = storage->shader_create();
|
|
default_material_twosided = storage->material_create();
|
|
storage->shader_set_code(default_shader_twosided, "shader_type spatial; render_mode cull_disabled;\n");
|
|
storage->material_set_shader(default_material_twosided, default_shader_twosided);
|
|
|
|
//default for shaders using world coordinates (typical for triplanar)
|
|
|
|
default_worldcoord_shader = storage->shader_create();
|
|
storage->shader_set_code(default_worldcoord_shader, "shader_type spatial; render_mode world_vertex_coords;\n");
|
|
default_worldcoord_material = storage->material_create();
|
|
storage->material_set_shader(default_worldcoord_material, default_worldcoord_shader);
|
|
|
|
default_worldcoord_shader_twosided = storage->shader_create();
|
|
default_worldcoord_material_twosided = storage->material_create();
|
|
storage->shader_set_code(default_worldcoord_shader_twosided, "shader_type spatial; render_mode cull_disabled,world_vertex_coords;\n");
|
|
storage->material_set_shader(default_worldcoord_material_twosided, default_worldcoord_shader_twosided);
|
|
}
|
|
|
|
{
|
|
//default material and shader
|
|
|
|
default_overdraw_shader = storage->shader_create();
|
|
storage->shader_set_code(default_overdraw_shader, "shader_type spatial;\nrender_mode blend_add,unshaded;\n void fragment() { ALBEDO=vec3(0.4,0.8,0.8); ALPHA=0.2; }");
|
|
default_overdraw_material = storage->material_create();
|
|
storage->material_set_shader(default_overdraw_material, default_overdraw_shader);
|
|
}
|
|
|
|
glGenBuffers(1, &state.scene_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::SceneDataUBO), &state.scene_ubo, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.env_radiance_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_ubo, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
render_list.max_elements = GLOBAL_DEF_RST("rendering/limits/rendering/max_renderable_elements", (int)RenderList::DEFAULT_MAX_ELEMENTS);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/rendering/max_renderable_elements", PropertyInfo(Variant::INT, "rendering/limits/rendering/max_renderable_elements", PROPERTY_HINT_RANGE, "1024,65536,1"));
|
|
render_list.max_lights = GLOBAL_DEF("rendering/limits/rendering/max_renderable_lights", (int)RenderList::DEFAULT_MAX_LIGHTS);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/rendering/max_renderable_lights", PropertyInfo(Variant::INT, "rendering/limits/rendering/max_renderable_lights", PROPERTY_HINT_RANGE, "16,4096,1"));
|
|
render_list.max_reflections = GLOBAL_DEF("rendering/limits/rendering/max_renderable_reflections", (int)RenderList::DEFAULT_MAX_REFLECTIONS);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/rendering/max_renderable_reflections", PropertyInfo(Variant::INT, "rendering/limits/rendering/max_renderable_reflections", PROPERTY_HINT_RANGE, "8,1024,1"));
|
|
render_list.max_lights_per_object = GLOBAL_DEF_RST("rendering/limits/rendering/max_lights_per_object", (int)RenderList::DEFAULT_MAX_LIGHTS_PER_OBJECT);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/rendering/max_lights_per_object", PropertyInfo(Variant::INT, "rendering/limits/rendering/max_lights_per_object", PROPERTY_HINT_RANGE, "8,1024,1"));
|
|
|
|
{
|
|
//quad buffers
|
|
|
|
glGenBuffers(1, &state.sky_verts);
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
|
|
glBufferData(GL_ARRAY_BUFFER, sizeof(Vector3) * 8, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
|
|
|
|
glGenVertexArrays(1, &state.sky_array);
|
|
glBindVertexArray(state.sky_array);
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.sky_verts);
|
|
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, 0);
|
|
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV, 3, GL_FLOAT, GL_FALSE, sizeof(Vector3) * 2, CAST_INT_TO_UCHAR_PTR(sizeof(Vector3)));
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
glBindVertexArray(0);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
|
|
}
|
|
render_list.init();
|
|
state.cube_to_dp_shader.init();
|
|
|
|
shadow_atlas_realloc_tolerance_msec = 500;
|
|
|
|
int max_shadow_cubemap_sampler_size = 512;
|
|
|
|
int cube_size = max_shadow_cubemap_sampler_size;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
|
|
while (cube_size >= 32) {
|
|
|
|
ShadowCubeMap cube;
|
|
cube.size = cube_size;
|
|
|
|
glGenTextures(1, &cube.cubemap);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
|
|
//gen cubemap first
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT24, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
}
|
|
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
// Remove artifact on the edges of the shadowmap
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
|
|
//gen renderbuffers second, because it needs a complete cubemap
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
glGenFramebuffers(1, &cube.fbo_id[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, _cube_side_enum[i], cube.cubemap, 0);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
|
|
}
|
|
|
|
shadow_cubemaps.push_back(cube);
|
|
|
|
cube_size >>= 1;
|
|
}
|
|
|
|
{
|
|
//directional light shadow
|
|
directional_shadow.light_count = 0;
|
|
directional_shadow.size = next_power_of_2(GLOBAL_GET("rendering/quality/directional_shadow/size"));
|
|
glGenFramebuffers(1, &directional_shadow.fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, directional_shadow.fbo);
|
|
glGenTextures(1, &directional_shadow.depth);
|
|
glBindTexture(GL_TEXTURE_2D, directional_shadow.depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, directional_shadow.depth, 0);
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
if (status != GL_FRAMEBUFFER_COMPLETE) {
|
|
ERR_PRINT("Directional shadow framebuffer status invalid");
|
|
}
|
|
}
|
|
|
|
{
|
|
//spot and omni ubos
|
|
|
|
int max_ubo_size;
|
|
glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE, &max_ubo_size);
|
|
const int ubo_light_size = 160;
|
|
state.ubo_light_size = ubo_light_size;
|
|
state.max_ubo_lights = MIN(render_list.max_lights, max_ubo_size / ubo_light_size);
|
|
|
|
state.spot_array_tmp = (uint8_t *)memalloc(ubo_light_size * state.max_ubo_lights);
|
|
state.omni_array_tmp = (uint8_t *)memalloc(ubo_light_size * state.max_ubo_lights);
|
|
|
|
glGenBuffers(1, &state.spot_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size * state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.omni_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size * state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.directional_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(LightDataUBO), NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
state.max_forward_lights_per_object = MIN(state.max_ubo_lights, render_list.max_lights_per_object);
|
|
|
|
state.scene_shader.add_custom_define("#define MAX_LIGHT_DATA_STRUCTS " + itos(state.max_ubo_lights) + "\n");
|
|
state.scene_shader.add_custom_define("#define MAX_FORWARD_LIGHTS " + itos(state.max_forward_lights_per_object) + "\n");
|
|
|
|
state.max_ubo_reflections = MIN(render_list.max_reflections, max_ubo_size / (int)sizeof(ReflectionProbeDataUBO));
|
|
|
|
state.reflection_array_tmp = (uint8_t *)memalloc(sizeof(ReflectionProbeDataUBO) * state.max_ubo_reflections);
|
|
|
|
glGenBuffers(1, &state.reflection_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeDataUBO) * state.max_ubo_reflections, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
state.scene_shader.add_custom_define("#define MAX_REFLECTION_DATA_STRUCTS " + itos(state.max_ubo_reflections) + "\n");
|
|
|
|
state.max_skeleton_bones = MIN(2048, max_ubo_size / (12 * sizeof(float)));
|
|
state.scene_shader.add_custom_define("#define MAX_SKELETON_BONES " + itos(state.max_skeleton_bones) + "\n");
|
|
}
|
|
|
|
shadow_filter_mode = SHADOW_FILTER_NEAREST;
|
|
|
|
{ //reflection cubemaps
|
|
int max_reflection_cubemap_sampler_size = 512;
|
|
|
|
int rcube_size = max_reflection_cubemap_sampler_size;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
|
|
bool use_float = true;
|
|
|
|
GLenum internal_format = use_float ? GL_RGBA16F : GL_RGB10_A2;
|
|
GLenum format = GL_RGBA;
|
|
GLenum type = use_float ? GL_HALF_FLOAT : GL_UNSIGNED_INT_2_10_10_10_REV;
|
|
|
|
while (rcube_size >= 32) {
|
|
|
|
ReflectionCubeMap cube;
|
|
cube.size = rcube_size;
|
|
|
|
glGenTextures(1, &cube.depth);
|
|
glBindTexture(GL_TEXTURE_2D, cube.depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT24, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glGenTextures(1, &cube.cubemap);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP, cube.cubemap);
|
|
//gen cubemap first
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
glTexImage2D(_cube_side_enum[i], 0, internal_format, cube.size, cube.size, 0, format, type, NULL);
|
|
}
|
|
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
// Remove artifact on the edges of the reflectionmap
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
|
|
//gen renderbuffers second, because it needs a complete cubemap
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
glGenFramebuffers(1, &cube.fbo_id[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, _cube_side_enum[i], cube.cubemap, 0);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, cube.depth, 0);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
|
|
}
|
|
|
|
reflection_cubemaps.push_back(cube);
|
|
|
|
rcube_size >>= 1;
|
|
}
|
|
}
|
|
|
|
{
|
|
|
|
uint32_t immediate_buffer_size = GLOBAL_DEF("rendering/limits/buffers/immediate_buffer_size_kb", 2048);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/limits/buffers/immediate_buffer_size_kb", PropertyInfo(Variant::INT, "rendering/limits/buffers/immediate_buffer_size_kb", PROPERTY_HINT_RANGE, "0,8192,1,or_greater"));
|
|
|
|
glGenBuffers(1, &state.immediate_buffer);
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
|
|
glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size * 1024, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
glGenVertexArrays(1, &state.immediate_array);
|
|
}
|
|
|
|
#ifdef GLES_OVER_GL
|
|
//"desktop" opengl needs this.
|
|
glEnable(GL_PROGRAM_POINT_SIZE);
|
|
|
|
#endif
|
|
|
|
state.resolve_shader.init();
|
|
state.ssr_shader.init();
|
|
state.effect_blur_shader.init();
|
|
state.sss_shader.init();
|
|
state.ssao_minify_shader.init();
|
|
state.ssao_shader.init();
|
|
state.ssao_blur_shader.init();
|
|
state.exposure_shader.init();
|
|
state.tonemap_shader.init();
|
|
|
|
{
|
|
GLOBAL_DEF("rendering/quality/subsurface_scattering/quality", 1);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/quality/subsurface_scattering/quality", PropertyInfo(Variant::INT, "rendering/quality/subsurface_scattering/quality", PROPERTY_HINT_ENUM, "Low,Medium,High"));
|
|
GLOBAL_DEF("rendering/quality/subsurface_scattering/scale", 1.0);
|
|
ProjectSettings::get_singleton()->set_custom_property_info("rendering/quality/subsurface_scattering/scale", PropertyInfo(Variant::INT, "rendering/quality/subsurface_scattering/scale", PROPERTY_HINT_RANGE, "0.01,8,0.01"));
|
|
GLOBAL_DEF("rendering/quality/subsurface_scattering/follow_surface", false);
|
|
GLOBAL_DEF("rendering/quality/subsurface_scattering/weight_samples", true);
|
|
|
|
GLOBAL_DEF("rendering/quality/voxel_cone_tracing/high_quality", false);
|
|
}
|
|
|
|
exposure_shrink_size = 243;
|
|
int max_exposure_shrink_size = exposure_shrink_size;
|
|
|
|
while (max_exposure_shrink_size > 0) {
|
|
|
|
RasterizerStorageGLES3::RenderTarget::Exposure e;
|
|
|
|
glGenFramebuffers(1, &e.fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, e.fbo);
|
|
|
|
glGenTextures(1, &e.color);
|
|
glBindTexture(GL_TEXTURE_2D, e.color);
|
|
|
|
if (storage->config.framebuffer_float_supported) {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_FLOAT, NULL);
|
|
} else if (storage->config.framebuffer_half_float_supported) {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_R16F, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_HALF_FLOAT, NULL);
|
|
} else {
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB10_A2, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_UNSIGNED_INT_2_10_10_10_REV, NULL);
|
|
}
|
|
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, e.color, 0);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
exposure_shrink.push_back(e);
|
|
max_exposure_shrink_size /= 3;
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE);
|
|
}
|
|
|
|
state.debug_draw = VS::VIEWPORT_DEBUG_DRAW_DISABLED;
|
|
|
|
glFrontFace(GL_CW);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::iteration() {
|
|
|
|
shadow_filter_mode = ShadowFilterMode(int(GLOBAL_GET("rendering/quality/shadows/filter_mode")));
|
|
subsurface_scatter_follow_surface = GLOBAL_GET("rendering/quality/subsurface_scattering/follow_surface");
|
|
subsurface_scatter_weight_samples = GLOBAL_GET("rendering/quality/subsurface_scattering/weight_samples");
|
|
subsurface_scatter_quality = SubSurfaceScatterQuality(int(GLOBAL_GET("rendering/quality/subsurface_scattering/quality")));
|
|
subsurface_scatter_size = GLOBAL_GET("rendering/quality/subsurface_scattering/scale");
|
|
|
|
storage->config.use_lightmap_filter_bicubic = GLOBAL_GET("rendering/quality/lightmapping/use_bicubic_sampling");
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHTMAP_FILTER_BICUBIC, storage->config.use_lightmap_filter_bicubic);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::VCT_QUALITY_HIGH, GLOBAL_GET("rendering/quality/voxel_cone_tracing/high_quality"));
|
|
}
|
|
|
|
void RasterizerSceneGLES3::finalize() {
|
|
}
|
|
|
|
RasterizerSceneGLES3::RasterizerSceneGLES3() {
|
|
}
|
|
|
|
RasterizerSceneGLES3::~RasterizerSceneGLES3() {
|
|
|
|
memdelete(default_material.get_data());
|
|
memdelete(default_material_twosided.get_data());
|
|
memdelete(default_shader.get_data());
|
|
memdelete(default_shader_twosided.get_data());
|
|
|
|
memdelete(default_worldcoord_material.get_data());
|
|
memdelete(default_worldcoord_material_twosided.get_data());
|
|
memdelete(default_worldcoord_shader.get_data());
|
|
memdelete(default_worldcoord_shader_twosided.get_data());
|
|
|
|
memdelete(default_overdraw_material.get_data());
|
|
memdelete(default_overdraw_shader.get_data());
|
|
|
|
memfree(state.spot_array_tmp);
|
|
memfree(state.omni_array_tmp);
|
|
memfree(state.reflection_array_tmp);
|
|
}
|