497 lines
21 KiB
C++
497 lines
21 KiB
C++
//
|
|
// Copyright (C) 2018 Google, Inc.
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions
|
|
// are met:
|
|
//
|
|
// Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
//
|
|
// Neither the name of 3Dlabs Inc. Ltd. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
// Post-processing for SPIR-V IR, in internal form, not standard binary form.
|
|
//
|
|
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <algorithm>
|
|
|
|
#include "SpvBuilder.h"
|
|
#include "spirv.hpp"
|
|
|
|
namespace spv {
|
|
#include "GLSL.std.450.h"
|
|
#include "GLSL.ext.KHR.h"
|
|
#include "GLSL.ext.EXT.h"
|
|
#include "GLSL.ext.AMD.h"
|
|
#include "GLSL.ext.NV.h"
|
|
#include "GLSL.ext.ARM.h"
|
|
#include "GLSL.ext.QCOM.h"
|
|
}
|
|
|
|
namespace spv {
|
|
|
|
// Hook to visit each operand type and result type of an instruction.
|
|
// Will be called multiple times for one instruction, once for each typed
|
|
// operand and the result.
|
|
void Builder::postProcessType(const Instruction& inst, Id typeId)
|
|
{
|
|
// Characterize the type being questioned
|
|
Id basicTypeOp = getMostBasicTypeClass(typeId);
|
|
int width = 0;
|
|
if (basicTypeOp == OpTypeFloat || basicTypeOp == OpTypeInt)
|
|
width = getScalarTypeWidth(typeId);
|
|
|
|
// Do opcode-specific checks
|
|
switch (inst.getOpCode()) {
|
|
case OpLoad:
|
|
case OpStore:
|
|
if (basicTypeOp == OpTypeStruct) {
|
|
if (containsType(typeId, OpTypeInt, 8))
|
|
addCapability(CapabilityInt8);
|
|
if (containsType(typeId, OpTypeInt, 16))
|
|
addCapability(CapabilityInt16);
|
|
if (containsType(typeId, OpTypeFloat, 16))
|
|
addCapability(CapabilityFloat16);
|
|
} else {
|
|
StorageClass storageClass = getStorageClass(inst.getIdOperand(0));
|
|
if (width == 8) {
|
|
switch (storageClass) {
|
|
case StorageClassPhysicalStorageBufferEXT:
|
|
case StorageClassUniform:
|
|
case StorageClassStorageBuffer:
|
|
case StorageClassPushConstant:
|
|
break;
|
|
default:
|
|
addCapability(CapabilityInt8);
|
|
break;
|
|
}
|
|
} else if (width == 16) {
|
|
switch (storageClass) {
|
|
case StorageClassPhysicalStorageBufferEXT:
|
|
case StorageClassUniform:
|
|
case StorageClassStorageBuffer:
|
|
case StorageClassPushConstant:
|
|
case StorageClassInput:
|
|
case StorageClassOutput:
|
|
break;
|
|
default:
|
|
if (basicTypeOp == OpTypeInt)
|
|
addCapability(CapabilityInt16);
|
|
if (basicTypeOp == OpTypeFloat)
|
|
addCapability(CapabilityFloat16);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case OpCopyObject:
|
|
break;
|
|
case OpFConvert:
|
|
case OpSConvert:
|
|
case OpUConvert:
|
|
// Look for any 8/16-bit storage capabilities. If there are none, assume that
|
|
// the convert instruction requires the Float16/Int8/16 capability.
|
|
if (containsType(typeId, OpTypeFloat, 16) || containsType(typeId, OpTypeInt, 16)) {
|
|
bool foundStorage = false;
|
|
for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
|
|
spv::Capability cap = *it;
|
|
if (cap == spv::CapabilityStorageInputOutput16 ||
|
|
cap == spv::CapabilityStoragePushConstant16 ||
|
|
cap == spv::CapabilityStorageUniformBufferBlock16 ||
|
|
cap == spv::CapabilityStorageUniform16) {
|
|
foundStorage = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!foundStorage) {
|
|
if (containsType(typeId, OpTypeFloat, 16))
|
|
addCapability(CapabilityFloat16);
|
|
if (containsType(typeId, OpTypeInt, 16))
|
|
addCapability(CapabilityInt16);
|
|
}
|
|
}
|
|
if (containsType(typeId, OpTypeInt, 8)) {
|
|
bool foundStorage = false;
|
|
for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
|
|
spv::Capability cap = *it;
|
|
if (cap == spv::CapabilityStoragePushConstant8 ||
|
|
cap == spv::CapabilityUniformAndStorageBuffer8BitAccess ||
|
|
cap == spv::CapabilityStorageBuffer8BitAccess) {
|
|
foundStorage = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!foundStorage) {
|
|
addCapability(CapabilityInt8);
|
|
}
|
|
}
|
|
break;
|
|
case OpExtInst:
|
|
switch (inst.getImmediateOperand(1)) {
|
|
case GLSLstd450Frexp:
|
|
case GLSLstd450FrexpStruct:
|
|
if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeInt, 16))
|
|
addExtension(spv::E_SPV_AMD_gpu_shader_int16);
|
|
break;
|
|
case GLSLstd450InterpolateAtCentroid:
|
|
case GLSLstd450InterpolateAtSample:
|
|
case GLSLstd450InterpolateAtOffset:
|
|
if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeFloat, 16))
|
|
addExtension(spv::E_SPV_AMD_gpu_shader_half_float);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case OpAccessChain:
|
|
case OpPtrAccessChain:
|
|
if (isPointerType(typeId))
|
|
break;
|
|
if (basicTypeOp == OpTypeInt) {
|
|
if (width == 16)
|
|
addCapability(CapabilityInt16);
|
|
else if (width == 8)
|
|
addCapability(CapabilityInt8);
|
|
}
|
|
break;
|
|
default:
|
|
if (basicTypeOp == OpTypeInt) {
|
|
if (width == 16)
|
|
addCapability(CapabilityInt16);
|
|
else if (width == 8)
|
|
addCapability(CapabilityInt8);
|
|
else if (width == 64)
|
|
addCapability(CapabilityInt64);
|
|
} else if (basicTypeOp == OpTypeFloat) {
|
|
if (width == 16)
|
|
addCapability(CapabilityFloat16);
|
|
else if (width == 64)
|
|
addCapability(CapabilityFloat64);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Called for each instruction that resides in a block.
|
|
void Builder::postProcess(Instruction& inst)
|
|
{
|
|
// Add capabilities based simply on the opcode.
|
|
switch (inst.getOpCode()) {
|
|
case OpExtInst:
|
|
switch (inst.getImmediateOperand(1)) {
|
|
case GLSLstd450InterpolateAtCentroid:
|
|
case GLSLstd450InterpolateAtSample:
|
|
case GLSLstd450InterpolateAtOffset:
|
|
addCapability(CapabilityInterpolationFunction);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case OpDPdxFine:
|
|
case OpDPdyFine:
|
|
case OpFwidthFine:
|
|
case OpDPdxCoarse:
|
|
case OpDPdyCoarse:
|
|
case OpFwidthCoarse:
|
|
addCapability(CapabilityDerivativeControl);
|
|
break;
|
|
|
|
case OpImageQueryLod:
|
|
case OpImageQuerySize:
|
|
case OpImageQuerySizeLod:
|
|
case OpImageQuerySamples:
|
|
case OpImageQueryLevels:
|
|
addCapability(CapabilityImageQuery);
|
|
break;
|
|
|
|
case OpGroupNonUniformPartitionNV:
|
|
addExtension(E_SPV_NV_shader_subgroup_partitioned);
|
|
addCapability(CapabilityGroupNonUniformPartitionedNV);
|
|
break;
|
|
|
|
case OpLoad:
|
|
case OpStore:
|
|
{
|
|
// For any load/store to a PhysicalStorageBufferEXT, walk the accesschain
|
|
// index list to compute the misalignment. The pre-existing alignment value
|
|
// (set via Builder::AccessChain::alignment) only accounts for the base of
|
|
// the reference type and any scalar component selection in the accesschain,
|
|
// and this function computes the rest from the SPIR-V Offset decorations.
|
|
Instruction *accessChain = module.getInstruction(inst.getIdOperand(0));
|
|
if (accessChain->getOpCode() == OpAccessChain) {
|
|
Instruction *base = module.getInstruction(accessChain->getIdOperand(0));
|
|
// Get the type of the base of the access chain. It must be a pointer type.
|
|
Id typeId = base->getTypeId();
|
|
Instruction *type = module.getInstruction(typeId);
|
|
assert(type->getOpCode() == OpTypePointer);
|
|
if (type->getImmediateOperand(0) != StorageClassPhysicalStorageBufferEXT) {
|
|
break;
|
|
}
|
|
// Get the pointee type.
|
|
typeId = type->getIdOperand(1);
|
|
type = module.getInstruction(typeId);
|
|
// Walk the index list for the access chain. For each index, find any
|
|
// misalignment that can apply when accessing the member/element via
|
|
// Offset/ArrayStride/MatrixStride decorations, and bitwise OR them all
|
|
// together.
|
|
int alignment = 0;
|
|
for (int i = 1; i < accessChain->getNumOperands(); ++i) {
|
|
Instruction *idx = module.getInstruction(accessChain->getIdOperand(i));
|
|
if (type->getOpCode() == OpTypeStruct) {
|
|
assert(idx->getOpCode() == OpConstant);
|
|
unsigned int c = idx->getImmediateOperand(0);
|
|
|
|
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
|
|
if (decoration.get()->getOpCode() == OpMemberDecorate &&
|
|
decoration.get()->getIdOperand(0) == typeId &&
|
|
decoration.get()->getImmediateOperand(1) == c &&
|
|
(decoration.get()->getImmediateOperand(2) == DecorationOffset ||
|
|
decoration.get()->getImmediateOperand(2) == DecorationMatrixStride)) {
|
|
alignment |= decoration.get()->getImmediateOperand(3);
|
|
}
|
|
};
|
|
std::for_each(decorations.begin(), decorations.end(), function);
|
|
// get the next member type
|
|
typeId = type->getIdOperand(c);
|
|
type = module.getInstruction(typeId);
|
|
} else if (type->getOpCode() == OpTypeArray ||
|
|
type->getOpCode() == OpTypeRuntimeArray) {
|
|
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
|
|
if (decoration.get()->getOpCode() == OpDecorate &&
|
|
decoration.get()->getIdOperand(0) == typeId &&
|
|
decoration.get()->getImmediateOperand(1) == DecorationArrayStride) {
|
|
alignment |= decoration.get()->getImmediateOperand(2);
|
|
}
|
|
};
|
|
std::for_each(decorations.begin(), decorations.end(), function);
|
|
// Get the element type
|
|
typeId = type->getIdOperand(0);
|
|
type = module.getInstruction(typeId);
|
|
} else {
|
|
// Once we get to any non-aggregate type, we're done.
|
|
break;
|
|
}
|
|
}
|
|
assert(inst.getNumOperands() >= 3);
|
|
unsigned int memoryAccess = inst.getImmediateOperand((inst.getOpCode() == OpStore) ? 2 : 1);
|
|
assert(memoryAccess & MemoryAccessAlignedMask);
|
|
static_cast<void>(memoryAccess);
|
|
// Compute the index of the alignment operand.
|
|
int alignmentIdx = 2;
|
|
if (inst.getOpCode() == OpStore)
|
|
alignmentIdx++;
|
|
// Merge new and old (mis)alignment
|
|
alignment |= inst.getImmediateOperand(alignmentIdx);
|
|
// Pick the LSB
|
|
alignment = alignment & ~(alignment & (alignment-1));
|
|
// update the Aligned operand
|
|
inst.setImmediateOperand(alignmentIdx, alignment);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Checks based on type
|
|
if (inst.getTypeId() != NoType)
|
|
postProcessType(inst, inst.getTypeId());
|
|
for (int op = 0; op < inst.getNumOperands(); ++op) {
|
|
if (inst.isIdOperand(op)) {
|
|
// In blocks, these are always result ids, but we are relying on
|
|
// getTypeId() to return NoType for things like OpLabel.
|
|
if (getTypeId(inst.getIdOperand(op)) != NoType)
|
|
postProcessType(inst, getTypeId(inst.getIdOperand(op)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// comment in header
|
|
void Builder::postProcessCFG()
|
|
{
|
|
// reachableBlocks is the set of blockss reached via control flow, or which are
|
|
// unreachable continue targert or unreachable merge.
|
|
std::unordered_set<const Block*> reachableBlocks;
|
|
std::unordered_map<Block*, Block*> headerForUnreachableContinue;
|
|
std::unordered_set<Block*> unreachableMerges;
|
|
std::unordered_set<Id> unreachableDefinitions;
|
|
// Collect IDs defined in unreachable blocks. For each function, label the
|
|
// reachable blocks first. Then for each unreachable block, collect the
|
|
// result IDs of the instructions in it.
|
|
for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
|
|
Function* f = *fi;
|
|
Block* entry = f->getEntryBlock();
|
|
inReadableOrder(entry,
|
|
[&reachableBlocks, &unreachableMerges, &headerForUnreachableContinue]
|
|
(Block* b, ReachReason why, Block* header) {
|
|
reachableBlocks.insert(b);
|
|
if (why == ReachDeadContinue) headerForUnreachableContinue[b] = header;
|
|
if (why == ReachDeadMerge) unreachableMerges.insert(b);
|
|
});
|
|
for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
|
|
Block* b = *bi;
|
|
if (unreachableMerges.count(b) != 0 || headerForUnreachableContinue.count(b) != 0) {
|
|
auto ii = b->getInstructions().cbegin();
|
|
++ii; // Keep potential decorations on the label.
|
|
for (; ii != b->getInstructions().cend(); ++ii)
|
|
unreachableDefinitions.insert(ii->get()->getResultId());
|
|
} else if (reachableBlocks.count(b) == 0) {
|
|
// The normal case for unreachable code. All definitions are considered dead.
|
|
for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ++ii)
|
|
unreachableDefinitions.insert(ii->get()->getResultId());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Modify unreachable merge blocks and unreachable continue targets.
|
|
// Delete their contents.
|
|
for (auto mergeIter = unreachableMerges.begin(); mergeIter != unreachableMerges.end(); ++mergeIter) {
|
|
(*mergeIter)->rewriteAsCanonicalUnreachableMerge();
|
|
}
|
|
for (auto continueIter = headerForUnreachableContinue.begin();
|
|
continueIter != headerForUnreachableContinue.end();
|
|
++continueIter) {
|
|
Block* continue_target = continueIter->first;
|
|
Block* header = continueIter->second;
|
|
continue_target->rewriteAsCanonicalUnreachableContinue(header);
|
|
}
|
|
|
|
// Remove unneeded decorations, for unreachable instructions
|
|
decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
|
|
[&unreachableDefinitions](std::unique_ptr<Instruction>& I) -> bool {
|
|
Id decoration_id = I.get()->getIdOperand(0);
|
|
return unreachableDefinitions.count(decoration_id) != 0;
|
|
}),
|
|
decorations.end());
|
|
}
|
|
|
|
// comment in header
|
|
void Builder::postProcessFeatures() {
|
|
// Add per-instruction capabilities, extensions, etc.,
|
|
|
|
// Look for any 8/16 bit type in physical storage buffer class, and set the
|
|
// appropriate capability. This happens in createSpvVariable for other storage
|
|
// classes, but there isn't always a variable for physical storage buffer.
|
|
for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
|
|
Instruction* type = groupedTypes[OpTypePointer][t];
|
|
if (type->getImmediateOperand(0) == (unsigned)StorageClassPhysicalStorageBufferEXT) {
|
|
if (containsType(type->getIdOperand(1), OpTypeInt, 8)) {
|
|
addIncorporatedExtension(spv::E_SPV_KHR_8bit_storage, spv::Spv_1_5);
|
|
addCapability(spv::CapabilityStorageBuffer8BitAccess);
|
|
}
|
|
if (containsType(type->getIdOperand(1), OpTypeInt, 16) ||
|
|
containsType(type->getIdOperand(1), OpTypeFloat, 16)) {
|
|
addIncorporatedExtension(spv::E_SPV_KHR_16bit_storage, spv::Spv_1_3);
|
|
addCapability(spv::CapabilityStorageBuffer16BitAccess);
|
|
}
|
|
}
|
|
}
|
|
|
|
// process all block-contained instructions
|
|
for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
|
|
Function* f = *fi;
|
|
for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
|
|
Block* b = *bi;
|
|
for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
|
|
postProcess(*ii->get());
|
|
|
|
// For all local variables that contain pointers to PhysicalStorageBufferEXT, check whether
|
|
// there is an existing restrict/aliased decoration. If we don't find one, add Aliased as the
|
|
// default.
|
|
for (auto vi = b->getLocalVariables().cbegin(); vi != b->getLocalVariables().cend(); vi++) {
|
|
const Instruction& inst = *vi->get();
|
|
Id resultId = inst.getResultId();
|
|
if (containsPhysicalStorageBufferOrArray(getDerefTypeId(resultId))) {
|
|
bool foundDecoration = false;
|
|
const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
|
|
if (decoration.get()->getIdOperand(0) == resultId &&
|
|
decoration.get()->getOpCode() == OpDecorate &&
|
|
(decoration.get()->getImmediateOperand(1) == spv::DecorationAliasedPointerEXT ||
|
|
decoration.get()->getImmediateOperand(1) == spv::DecorationRestrictPointerEXT)) {
|
|
foundDecoration = true;
|
|
}
|
|
};
|
|
std::for_each(decorations.begin(), decorations.end(), function);
|
|
if (!foundDecoration) {
|
|
addDecoration(resultId, spv::DecorationAliasedPointerEXT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If any Vulkan memory model-specific functionality is used, update the
|
|
// OpMemoryModel to match.
|
|
if (capabilities.find(spv::CapabilityVulkanMemoryModelKHR) != capabilities.end()) {
|
|
memoryModel = spv::MemoryModelVulkanKHR;
|
|
addIncorporatedExtension(spv::E_SPV_KHR_vulkan_memory_model, spv::Spv_1_5);
|
|
}
|
|
|
|
// Add Aliased decoration if there's more than one Workgroup Block variable.
|
|
if (capabilities.find(spv::CapabilityWorkgroupMemoryExplicitLayoutKHR) != capabilities.end()) {
|
|
assert(entryPoints.size() == 1);
|
|
auto &ep = entryPoints[0];
|
|
|
|
std::vector<Id> workgroup_variables;
|
|
for (int i = 0; i < (int)ep->getNumOperands(); i++) {
|
|
if (!ep->isIdOperand(i))
|
|
continue;
|
|
|
|
const Id id = ep->getIdOperand(i);
|
|
const Instruction *instr = module.getInstruction(id);
|
|
if (instr->getOpCode() != spv::OpVariable)
|
|
continue;
|
|
|
|
if (instr->getImmediateOperand(0) == spv::StorageClassWorkgroup)
|
|
workgroup_variables.push_back(id);
|
|
}
|
|
|
|
if (workgroup_variables.size() > 1) {
|
|
for (size_t i = 0; i < workgroup_variables.size(); i++)
|
|
addDecoration(workgroup_variables[i], spv::DecorationAliased);
|
|
}
|
|
}
|
|
}
|
|
|
|
// comment in header
|
|
void Builder::postProcess(bool compileOnly)
|
|
{
|
|
// postProcessCFG needs an entrypoint to determine what is reachable, but if we are not creating an "executable" shader, we don't have an entrypoint
|
|
if (!compileOnly)
|
|
postProcessCFG();
|
|
|
|
postProcessFeatures();
|
|
}
|
|
|
|
}; // end spv namespace
|