godot/drivers/gles3/shaders/scene.glsl
2016-12-04 12:45:30 -03:00

1261 lines
31 KiB
GLSL

[vertex]
/*
from VisualServer:
ARRAY_VERTEX=0,
ARRAY_NORMAL=1,
ARRAY_TANGENT=2,
ARRAY_COLOR=3,
ARRAY_TEX_UV=4,
ARRAY_TEX_UV2=5,
ARRAY_BONES=6,
ARRAY_WEIGHTS=7,
ARRAY_INDEX=8,
*/
//hack to use uv if no uv present so it works with lightmap
/* INPUT ATTRIBS */
layout(location=0) in highp vec4 vertex_attrib;
layout(location=1) in vec3 normal_attrib;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
layout(location=2) in vec4 tangent_attrib;
#endif
#if defined(ENABLE_COLOR_INTERP)
layout(location=3) in vec4 color_attrib;
#endif
#if defined(ENABLE_UV_INTERP)
layout(location=4) in vec2 uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP)
layout(location=5) in vec2 uv2_attrib;
#endif
uniform float normal_mult;
#ifdef USE_SKELETON
layout(location=6) in ivec4 bone_indices; // attrib:6
layout(location=7) in vec4 bone_weights; // attrib:7
#endif
#ifdef USE_INSTANCING
layout(location=8) in highp vec4 instance_xform0;
layout(location=9) in highp vec4 instance_xform1;
layout(location=10) in highp vec4 instance_xform2;
layout(location=11) in lowp vec4 instance_color;
#endif
layout(std140) uniform SceneData { //ubo:0
highp mat4 projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
highp vec4 time;
highp vec4 ambient_light_color;
highp vec4 bg_color;
float ambient_energy;
float bg_energy;
float shadow_z_offset;
float shadow_z_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
vec2 shadow_atlas_pixel_size;
vec2 directional_shadow_pixel_size;
float reflection_multiplier;
float subsurface_scatter_width;
float ambient_occlusion_affect_light;
};
uniform highp mat4 world_transform;
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData { //ubo:3
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
#endif
/* Varyings */
out highp vec3 vertex_interp;
out vec3 normal_interp;
#if defined(ENABLE_COLOR_INTERP)
out vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
out vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
out vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
out vec3 tangent_interp;
out vec3 binormal_interp;
#endif
#if !defined(USE_DEPTH_SHADOWS) && defined(USE_SHADOW_PASS)
varying vec4 position_interp;
#endif
VERTEX_SHADER_GLOBALS
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData { //ubo:1
MATERIAL_UNIFORMS
};
#endif
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
out highp float dp_clip;
#endif
#ifdef USE_SKELETON
layout(std140) uniform SkeletonData { //ubo:7
mat3x4 skeleton[MAX_SKELETON_BONES];
};
#endif
void main() {
highp vec4 vertex = vertex_attrib; // vec4(vertex_attrib.xyz * data_attrib.x,1.0);
highp mat4 modelview = camera_inverse_matrix * world_transform;
vec3 normal = normal_attrib * normal_mult;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 tangent = tangent_attrib.xyz;
tangent*=normal_mult;
float binormalf = tangent_attrib.a;
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#endif
#ifdef USE_SKELETON
{
//skeleton transform
highp mat3x4 m=skeleton[bone_indices.x]*bone_weights.x;
m+=skeleton[bone_indices.y]*bone_weights.y;
m+=skeleton[bone_indices.z]*bone_weights.z;
m+=skeleton[bone_indices.w]*bone_weights.w;
vertex.xyz = vertex * m;
normal = vec4(normal,0.0) * m;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent.xyz = vec4(tangent.xyz,0.0) * mn;
#endif
}
#endif // USE_SKELETON1
#ifdef USE_INSTANCING
{
highp mat3x4 m=mat3x4(instance_xform0,instance_xform1,instance_xform2);
vertex.xyz = vertex * m;
normal = vec4(normal,0.0) * m;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent.xyz = vec4(tangent.xyz,0.0) * mn;
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp*=instance_color;
#endif
}
#endif //USE_INSTANCING
#if !defined(SKIP_TRANSFORM_USED)
vertex = modelview * vertex;
normal = normalize((modelview * vec4(normal,0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
# if !defined(SKIP_TRANSFORM_USED)
tangent=normalize((modelview * vec4(tangent,0.0)).xyz);
# endif
vec3 binormal = normalize( cross(normal,tangent) * binormalf );
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP)
uv2_interp = uv2_attrib;
#endif
{
VERTEX_SHADER_CODE
}
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_SHADOW
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
vertex_interp.z*= shadow_dual_paraboloid_render_side;
normal_interp.z*= shadow_dual_paraboloid_render_side;
dp_clip=vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp+normalize(vertex_interp)*shadow_z_offset;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy/=1.0-vtx.z;
vtx.z=(distance/shadow_dual_paraboloid_render_zfar);
vtx.z=vtx.z * 2.0 - 1.0;
vertex.xyz=vtx;
vertex.w=1.0;
#else
float z_ofs = shadow_z_offset;
z_ofs += (1.0-abs(normal_interp.z))*shadow_z_slope_scale;
vertex_interp.z-=z_ofs;
#endif //RENDER_SHADOW_DUAL_PARABOLOID
#endif //RENDER_SHADOW
#if !defined(SKIP_TRANSFORM_USED) && !defined(RENDER_SHADOW_DUAL_PARABOLOID)
gl_Position = projection_matrix * vec4(vertex_interp,1.0);
#else
gl_Position = vertex;
#endif
}
[fragment]
#define M_PI 3.14159265359
/* Varyings */
#if defined(ENABLE_COLOR_INTERP)
in vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
in vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
in vec2 uv2_interp;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
in vec3 tangent_interp;
in vec3 binormal_interp;
#endif
in highp vec3 vertex_interp;
in vec3 normal_interp;
/* PBR CHANNELS */
//used on forward mainly
uniform bool no_ambient_light;
uniform sampler2D brdf_texture; //texunit:-1
#ifdef USE_RADIANCE_MAP
uniform sampler2D radiance_map; //texunit:-2
layout(std140) uniform Radiance { //ubo:2
mat4 radiance_inverse_xform;
vec3 radiance_box_min;
vec3 radiance_box_max;
float radiance_ambient_contribution;
};
#endif
/* Material Uniforms */
FRAGMENT_SHADER_GLOBALS
#if defined(USE_MATERIAL)
layout(std140) uniform UniformData {
MATERIAL_UNIFORMS
};
#endif
layout(std140) uniform SceneData {
highp mat4 projection_matrix;
highp mat4 camera_inverse_matrix;
highp mat4 camera_matrix;
highp vec4 time;
highp vec4 ambient_light_color;
highp vec4 bg_color;
float ambient_energy;
float bg_energy;
float shadow_z_offset;
float shadow_z_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
vec2 shadow_atlas_pixel_size;
vec2 directional_shadow_pixel_size;
float reflection_multiplier;
float subsurface_scatter_width;
float ambient_occlusion_affect_light;
};
//directional light data
#ifdef USE_LIGHT_DIRECTIONAL
layout(std140) uniform DirectionalLightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color;
highp mat4 shadow_matrix1;
highp mat4 shadow_matrix2;
highp mat4 shadow_matrix3;
highp mat4 shadow_matrix4;
mediump vec4 shadow_split_offsets;
};
uniform highp sampler2DShadow directional_shadow; //texunit:-4
#endif
//omni and spot
struct LightData {
highp vec4 light_pos_inv_radius;
mediump vec4 light_direction_attenuation;
mediump vec4 light_color_energy;
mediump vec4 light_params; //cone attenuation, angle, specular, shadow enabled,
mediump vec4 light_clamp;
mediump vec4 shadow_color;
highp mat4 shadow_matrix;
};
layout(std140) uniform OmniLightData { //ubo:4
LightData omni_lights[MAX_LIGHT_DATA_STRUCTS];
};
layout(std140) uniform SpotLightData { //ubo:5
LightData spot_lights[MAX_LIGHT_DATA_STRUCTS];
};
uniform highp sampler2DShadow shadow_atlas; //texunit:-3
struct ReflectionData {
mediump vec4 box_extents;
mediump vec4 box_offset;
mediump vec4 params; // intensity, 0, interior , boxproject
mediump vec4 ambient; //ambient color, energy
mediump vec4 atlas_clamp;
highp mat4 local_matrix; //up to here for spot and omni, rest is for directional
//notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(std140) uniform ReflectionProbeData { //ubo:6
ReflectionData reflections[MAX_REFLECTION_DATA_STRUCTS];
};
uniform mediump sampler2D reflection_atlas; //texunit:-5
#ifdef USE_FORWARD_LIGHTING
uniform int omni_light_indices[MAX_FORWARD_LIGHTS];
uniform int omni_light_count;
uniform int spot_light_indices[MAX_FORWARD_LIGHTS];
uniform int spot_light_count;
uniform int reflection_indices[MAX_FORWARD_LIGHTS];
uniform int reflection_count;
#endif
#ifdef USE_MULTIPLE_RENDER_TARGETS
layout(location=0) out vec4 diffuse_buffer;
layout(location=1) out vec4 specular_buffer;
layout(location=2) out vec4 normal_mr_buffer;
#if defined (ENABLE_SSS_MOTION)
layout(location=3) out uint motion_ssr_buffer;
#endif
#else
layout(location=0) out vec4 frag_color;
#endif
// GGX Specular
// Source: http://www.filmicworlds.com/images/ggx-opt/optimized-ggx.hlsl
float G1V(float dotNV, float k)
{
return 1.0 / (dotNV * (1.0 - k) + k);
}
float SchlickFresnel(float u)
{
float m = 1.0-u;
float m2 = m*m;
return m2*m2*m; // pow(m,5)
}
float GTR1(float NdotH, float a)
{
if (a >= 1.0) return 1.0/M_PI;
float a2 = a*a;
float t = 1.0 + (a2-1.0)*NdotH*NdotH;
return (a2-1.0) / (M_PI*log(a2)*t);
}
void light_compute(vec3 N, vec3 L,vec3 V,vec3 B, vec3 T,vec3 light_color,vec3 diffuse_color, vec3 specular_color, float specular_blob_intensity, float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse, inout vec3 specular) {
float dotNL = max(dot(N,L), 0.0 );
float dotNV = max(dot(N,V), 0.0 );
#if defined(LIGHT_USE_RIM)
float rim_light = pow(1.0-dotNV,(1.0-roughness)*16.0);
diffuse += rim_light * rim * mix(vec3(1.0),diffuse_color,rim_tint) * light_color;
#endif
diffuse += dotNL * light_color * diffuse_color;
if (roughness > 0.0) {
float alpha = roughness * roughness;
vec3 H = normalize(V + L);
float dotNH = max(dot(N,H), 0.0 );
float dotLH = max(dot(L,H), 0.0 );
// D
#if defined(LIGHT_USE_ANISOTROPY)
float aspect = sqrt(1.0-anisotropy*0.9);
float rx = roughness/aspect;
float ry = roughness*aspect;
float ax = rx*rx;
float ay = ry*ry;
float dotXH = dot( T, H );
float dotYH = dot( B, H );
float pi = M_PI;
float denom = dotXH*dotXH / (ax*ax) + dotYH*dotYH / (ay*ay) + dotNH*dotNH;
float D = 1.0 / ( pi * ax*ay * denom*denom );
#else
float alphaSqr = alpha * alpha;
float pi = M_PI;
float denom = dotNH * dotNH * (alphaSqr - 1.0) + 1.0;
float D = alphaSqr / (pi * denom * denom);
#endif
// F
float F0 = 1.0;
float dotLH5 = SchlickFresnel( dotLH );
float F = F0 + (1.0 - F0) * (dotLH5);
// V
float k = alpha / 2.0f;
float vis = G1V(dotNL, k) * G1V(dotNV, k);
float speci = dotNL * D * F * vis;
specular += speci * light_color * specular_color * specular_blob_intensity;
#if defined(LIGHT_USE_CLEARCOAT)
float Dr = GTR1(dotNH, mix(.1,.001,clearcoat_gloss));
float Fr = mix(.04, 1.0, dotLH5);
float Gr = G1V(dotNL, .25) * G1V(dotNV, .25);
specular += .25*clearcoat*Gr*Fr*Dr;
#endif
}
}
float sample_shadow(highp sampler2DShadow shadow, vec2 shadow_pixel_size, vec2 pos, float depth, vec4 clamp_rect) {
#ifdef SHADOW_MODE_PCF_13
float avg=textureProj(shadow,vec4(pos,depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,-shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x*2.0,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x*2.0,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y*2.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y*2.0),depth,1.0));
return avg*(1.0/13.0);
#endif
#ifdef SHADOW_MODE_PCF_5
float avg=textureProj(shadow,vec4(pos,depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(shadow_pixel_size.x,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(-shadow_pixel_size.x,0.0),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,shadow_pixel_size.y),depth,1.0));
avg+=textureProj(shadow,vec4(pos+vec2(0.0,-shadow_pixel_size.y),depth,1.0));
return avg*(1.0/5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) && !defined(SHADOW_MODE_PCF_13)
return textureProj(shadow,vec4(pos,depth,1.0));
#endif
}
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
in highp float dp_clip;
#endif
#if 0
//need to save texture depth for this
vec3 light_transmittance(float translucency,vec3 light_vec, vec3 normal, vec3 pos, float distance) {
float scale = 8.25 * (1.0 - translucency) / subsurface_scatter_width;
float d = scale * distance;
/**
* Armed with the thickness, we can now calculate the color by means of the
* precalculated transmittance profile.
* (It can be precomputed into a texture, for maximum performance):
*/
float dd = -d * d;
vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) +
vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) +
vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) +
vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) +
vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) +
vec3(0.078, 0.0, 0.0) * exp(dd / 7.41);
/**
* Using the profile, we finally approximate the transmitted lighting from
* the back of the object:
*/
return profile * clamp(0.3 + dot(light_vec, normal),0.0,1.0);
}
#endif
void light_process_omni(int idx, vec3 vertex, vec3 eye_vec,vec3 normal,vec3 binormal, vec3 tangent, vec3 albedo, vec3 specular, float roughness, float rim, float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy,inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = omni_lights[idx].light_pos_inv_radius.xyz-vertex;
float normalized_distance = length( light_rel_vec )*omni_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), omni_lights[idx].light_direction_attenuation.w ));
if (omni_lights[idx].light_params.w>0.5) {
//there is a shadowmap
highp vec3 splane=(omni_lights[idx].shadow_matrix * vec4(vertex,1.0)).xyz;
float shadow_len=length(splane);
splane=normalize(splane);
vec4 clamp_rect=omni_lights[idx].light_clamp;
if (splane.z>=0.0) {
splane.z+=1.0;
clamp_rect.y+=clamp_rect.w;
} else {
splane.z=1.0 - splane.z;
//if (clamp_rect.z<clamp_rect.w) {
// clamp_rect.x+=clamp_rect.z;
//} else {
// clamp_rect.y+=clamp_rect.w;
//}
}
splane.xy/=splane.z;
splane.xy=splane.xy * 0.5 + 0.5;
splane.z = shadow_len * omni_lights[idx].light_pos_inv_radius.w;
splane.xy = clamp_rect.xy+splane.xy*clamp_rect.zw;
light_attenuation*=mix(omni_lights[idx].shadow_color.rgb,vec3(1.0),sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,clamp_rect));
}
light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,omni_lights[idx].light_color_energy.rgb*light_attenuation,albedo,specular,omni_lights[idx].light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
void light_process_spot(int idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 binormal, vec3 tangent,vec3 albedo, vec3 specular, float roughness, float rim,float rim_tint, float clearcoat, float clearcoat_gloss,float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) {
vec3 light_rel_vec = spot_lights[idx].light_pos_inv_radius.xyz-vertex;
float normalized_distance = length( light_rel_vec )*spot_lights[idx].light_pos_inv_radius.w;
vec3 light_attenuation = vec3(pow( max(1.0 - normalized_distance, 0.0), spot_lights[idx].light_direction_attenuation.w ));
vec3 spot_dir = spot_lights[idx].light_direction_attenuation.xyz;
float spot_cutoff=spot_lights[idx].light_params.y;
float scos = max(dot(-normalize(light_rel_vec), spot_dir),spot_cutoff);
float spot_rim = (1.0 - scos) / (1.0 - spot_cutoff);
light_attenuation *= 1.0 - pow( spot_rim, spot_lights[idx].light_params.x);
if (spot_lights[idx].light_params.w>0.5) {
//there is a shadowmap
highp vec4 splane=(spot_lights[idx].shadow_matrix * vec4(vertex,1.0));
splane.xyz/=splane.w;
light_attenuation*=mix(spot_lights[idx].shadow_color.rgb,vec3(1.0),sample_shadow(shadow_atlas,shadow_atlas_pixel_size,splane.xy,splane.z,spot_lights[idx].light_clamp));
}
light_compute(normal,normalize(light_rel_vec),eye_vec,binormal,tangent,spot_lights[idx].light_color_energy.rgb*light_attenuation,albedo,specular,spot_lights[idx].light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
void reflection_process(int idx, vec3 vertex, vec3 normal,vec3 binormal, vec3 tangent,float roughness,float anisotropy,vec3 ambient,vec3 skybox,vec2 brdf, inout highp vec4 reflection_accum,inout highp vec4 ambient_accum) {
vec3 ref_vec = normalize(reflect(vertex,normal));
vec3 local_pos = (reflections[idx].local_matrix * vec4(vertex,1.0)).xyz;
vec3 box_extents = reflections[idx].box_extents.xyz;
if (any(greaterThan(abs(local_pos),box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x,max(inner_pos.y,inner_pos.z));
//make blend more rounded
blend=mix(length(inner_pos),blend,blend);
blend*=blend;
blend=1.001-blend;
if (reflections[idx].params.x>0.0){// compute reflection
vec3 local_ref_vec = (reflections[idx].local_matrix * vec4(ref_vec,0.0)).xyz;
if (reflections[idx].params.w > 0.5) { //box project
vec3 nrdir = normalize(local_ref_vec);
vec3 rbmax = (box_extents - local_pos)/nrdir;
vec3 rbmin = (-box_extents - local_pos)/nrdir;
vec3 rbminmax = mix(rbmin,rbmax,greaterThan(nrdir,vec3(0.0,0.0,0.0)));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
local_ref_vec = posonbox - reflections[idx].box_offset.xyz;
}
vec3 splane=normalize(local_ref_vec);
vec4 clamp_rect=reflections[idx].atlas_clamp;
splane.z*=-1.0;
if (splane.z>=0.0) {
splane.z+=1.0;
clamp_rect.y+=clamp_rect.w;
} else {
splane.z=1.0 - splane.z;
splane.y=-splane.y;
}
splane.xy/=splane.z;
splane.xy=splane.xy * 0.5 + 0.5;
splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
highp vec4 reflection;
reflection.rgb = textureLod(reflection_atlas,splane.xy,roughness*5.0).rgb * ( brdf.x + brdf.y);
if (reflections[idx].params.z < 0.5) {
reflection.rgb = mix(skybox,reflection.rgb,blend);
}
reflection.rgb*=reflections[idx].params.x;
reflection.a = blend;
reflection.rgb*=reflection.a;
reflection_accum+=reflection;
}
if (reflections[idx].ambient.a>0.0) { //compute ambient using skybox
vec3 local_amb_vec = (reflections[idx].local_matrix * vec4(normal,0.0)).xyz;
vec3 splane=normalize(local_amb_vec);
vec4 clamp_rect=reflections[idx].atlas_clamp;
splane.z*=-1.0;
if (splane.z>=0.0) {
splane.z+=1.0;
clamp_rect.y+=clamp_rect.w;
} else {
splane.z=1.0 - splane.z;
splane.y=-splane.y;
}
splane.xy/=splane.z;
splane.xy=splane.xy * 0.5 + 0.5;
splane.xy = splane.xy * clamp_rect.zw + clamp_rect.xy;
splane.xy = clamp(splane.xy,clamp_rect.xy,clamp_rect.xy+clamp_rect.zw);
highp vec4 ambient_out;
ambient_out.a=blend;
ambient_out.rgb = textureLod(reflection_atlas,splane.xy,5.0).rgb;
ambient_out.rgb=mix(reflections[idx].ambient.rgb,ambient_out.rgb,reflections[idx].ambient.a);
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum+=ambient_out;
} else {
highp vec4 ambient_out;
ambient_out.a=blend;
ambient_out.rgb=reflections[idx].ambient.rgb;
if (reflections[idx].params.z < 0.5) {
ambient_out.rgb = mix(ambient,ambient_out.rgb,blend);
}
ambient_out.rgb *= ambient_out.a;
ambient_accum+=ambient_out;
}
}
void main() {
#ifdef RENDER_SHADOW_DUAL_PARABOLOID
if (dp_clip>0.0)
discard;
#endif
//lay out everything, whathever is unused is optimized away anyway
highp vec3 vertex = vertex_interp;
vec3 albedo = vec3(0.8,0.8,0.8);
vec3 specular = vec3(0.2,0.2,0.2);
vec3 emission = vec3(0.0,0.0,0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat=0.0;
float clearcoat_gloss=0.0;
float anisotropy = 1.0;
vec2 anisotropy_flow = vec2(1.0,0.0);
#if defined(ENABLE_AO)
float ao=1.0;
#endif
float alpha = 1.0;
#ifdef METERIAL_DOUBLESIDED
float side=float(gl_FrontFacing)*2.0-1.0;
#else
float side=1.0;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) || defined(LIGHT_USE_ANISOTROPY)
vec3 binormal = normalize(binormal_interp)*side;
vec3 tangent = normalize(tangent_interp)*side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp)*side;
#if defined(ENABLE_UV_INTERP)
vec2 uv = uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP)
vec2 uv2 = uv2_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
vec4 color = color_interp;
#endif
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.0);
#endif
float normaldepth=1.0;
#if defined(ENABLE_DISCARD)
bool discard_=false;
#endif
#if defined (ENABLE_SSS_MOTION)
float sss_strength=0.0;
#endif
{
FRAGMENT_SHADER_CODE
}
#if defined(ENABLE_NORMALMAP)
normalmap.xy=normalmap.xy*2.0-1.0;
normalmap.z=sqrt(1.0-dot(normalmap.xy,normalmap.xy)); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc.
normal = normalize( mix(normal_interp,tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z,normaldepth) ) * side;
#endif
#if defined(LIGHT_USE_ANISOTROPY)
if (anisotropy>0.01) {
//rotation matrix
mat3 rot = mat3( tangent, binormal, normal );
//make local to space
tangent = normalize(rot * vec3(anisotropy_flow.x,anisotropy_flow.y,0.0));
binormal = normalize(rot * vec3(-anisotropy_flow.y,anisotropy_flow.x,0.0));
}
#endif
#if defined(ENABLE_DISCARD)
if (discard_) {
//easy to eliminate dead code
discard;
}
#endif
#ifdef ENABLE_CLIP_ALPHA
if (diffuse.a<0.99) {
//used for doublepass and shadowmapping
discard;
}
#endif
/////////////////////// LIGHTING //////////////////////////////
//apply energy conservation
vec3 diffuse=mix(albedo,vec3(0.0),specular);
specular = max(vec3(0.04),specular);
vec3 specular_light = vec3(0.0,0.0,0.0);
vec3 ambient_light;
vec3 diffuse_light = vec3(0.0,0.0,0.0);
vec3 eye_vec = -normalize( vertex_interp );
#ifndef RENDER_SHADOW
float ndotv = clamp(dot(normal,eye_vec),0.0,1.0);
vec2 brdf = texture(brdf_texture, vec2(roughness, ndotv)).xy;
#endif
#ifdef USE_RADIANCE_MAP
if (no_ambient_light) {
ambient_light=vec3(0.0,0.0,0.0);
} else {
{
float lod = roughness * 5.0;
{ //read radiance from dual paraboloid
vec3 ref_vec = reflect(-eye_vec,normal); //2.0 * ndotv * normal - view; // reflect(v, n);
ref_vec=normalize((radiance_inverse_xform * vec4(ref_vec,0.0)).xyz);
vec3 norm = normalize(ref_vec);
float y_ofs=0.0;
if (norm.z>=0.0) {
norm.z+=1.0;
y_ofs+=0.5;
} else {
norm.z=1.0 - norm.z;
norm.y=-norm.y;
}
norm.xy/=norm.z;
norm.xy=norm.xy * vec2(0.5,0.25) + vec2(0.5,0.25+y_ofs);
specular_light = textureLod(radiance_map, norm.xy, lod).xyz * ( brdf.x + brdf.y);
}
//no longer a cubemap
//vec3 radiance = textureLod(radiance_cube, r, lod).xyz * ( brdf.x + brdf.y);
}
{
/*vec3 ambient_dir=normalize((radiance_inverse_xform * vec4(normal,0.0)).xyz);
vec3 env_ambient=textureLod(radiance_cube, ambient_dir, 5.0).xyz;
ambient_light=mix(ambient_light_color.rgb,env_ambient,radiance_ambient_contribution);*/
ambient_light=vec3(0.0,0.0,0.0);
}
}
#else
if (no_ambient_light){
ambient_light=vec3(0.0,0.0,0.0);
} else {
ambient_light=ambient_light_color.rgb;
}
#endif
#ifdef USE_LIGHT_DIRECTIONAL
vec3 light_attenuation=vec3(1.0);
#ifdef LIGHT_DIRECTIONAL_SHADOW
if (gl_FragCoord.w > shadow_split_offsets.w) {
vec3 pssm_coord;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
vec3 pssm_coord2;
bool use_blend=true;
vec3 light_pssm_split_inv = 1.0/shadow_split_offsets.xyz;
float w_inv = 1.0/gl_FragCoord.w;
#endif
#ifdef LIGHT_USE_PSSM4
if (gl_FragCoord.w > shadow_split_offsets.y) {
if (gl_FragCoord.w > shadow_split_offsets.x) {
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix3 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(light_pssm_split_inv.x,light_pssm_split_inv.y,w_inv);
#endif
}
} else {
if (gl_FragCoord.w > shadow_split_offsets.z) {
highp vec4 splane=(shadow_matrix3 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix4 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(light_pssm_split_inv.y,light_pssm_split_inv.z,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix4 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
diffuse_light*=vec3(1.0,0.4,1.0);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend=false;
#endif
}
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (gl_FragCoord.w > shadow_split_offsets.x) {
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord2=splane.xyz/splane.w;
pssm_blend=smoothstep(0.0,light_pssm_split_inv.x,w_inv);
#endif
} else {
highp vec4 splane=(shadow_matrix2 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend=false;
#endif
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{ //regular orthogonal
highp vec4 splane=(shadow_matrix1 * vec4(vertex,1.0));
pssm_coord=splane.xyz/splane.w;
}
#endif
//one one sample
light_attenuation=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord.xy,pssm_coord.z,light_clamp));
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
vec3 light_attenuation2=mix(shadow_color.rgb,vec3(1.0),sample_shadow(directional_shadow,directional_shadow_pixel_size,pssm_coord2.xy,pssm_coord2.z,light_clamp));
light_attenuation=mix(light_attenuation,light_attenuation2,pssm_blend);
}
#endif
}
#endif //LIGHT_DIRECTIONAL_SHADOW
light_compute(normal,-light_direction_attenuation.xyz,eye_vec,binormal,tangent,light_color_energy.rgb*light_attenuation,diffuse,specular,light_params.z,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
#endif //#USE_LIGHT_DIRECTIONAL
#ifdef USE_FORWARD_LIGHTING
highp vec4 reflection_accum = vec4(0.0,0.0,0.0,0.0);
highp vec4 ambient_accum = vec4(0.0,0.0,0.0,0.0);
for(int i=0;i<reflection_count;i++) {
reflection_process(reflection_indices[i],vertex,normal,binormal,tangent,roughness,anisotropy,ambient_light,specular_light,brdf,reflection_accum,ambient_accum);
}
if (reflection_accum.a>0.0) {
specular_light=reflection_accum.rgb/reflection_accum.a;
}
if (ambient_accum.a>0.0) {
ambient_light=ambient_accum.rgb/ambient_accum.a;
}
for(int i=0;i<omni_light_count;i++) {
light_process_omni(omni_light_indices[i],vertex,eye_vec,normal,binormal,tangent,diffuse,specular,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
for(int i=0;i<spot_light_count;i++) {
light_process_spot(spot_light_indices[i],vertex,eye_vec,normal,binormal,tangent,diffuse,specular,roughness,rim,rim_tint,clearcoat,clearcoat_gloss,anisotropy,diffuse_light,specular_light);
}
#endif
#if defined(USE_LIGHT_SHADER_CODE)
//light is written by the light shader
{
LIGHT_SHADER_CODE
}
#endif
#ifdef RENDER_SHADOW
//nothing happens, so a tree-ssa optimizer will result in no fragment shader :)
#else
specular_light*=reflection_multiplier;
specular_light*=specular;
ambient_light*=albedo; //ambient must be multiplied by albedo at the end
#if defined(ENABLE_AO)
ambient_light*=ao;
#endif
#ifdef USE_MULTIPLE_RENDER_TARGETS
#if defined(ENABLE_AO)
float ambient_scale=0.0; // AO is supplied by material
#else
//approximate ambient scale for SSAO, since we will lack full ambient
float max_emission=max(emission.r,max(emission.g,emission.b));
float max_ambient=max(ambient_light.r,max(ambient_light.g,ambient_light.b));
float max_diffuse=max(diffuse_light.r,max(diffuse_light.g,diffuse_light.b));
float total_ambient = max_ambient+max_diffuse+max_emission;
float ambient_scale = (total_ambient>0.0) ? (max_ambient+ambient_occlusion_affect_light*max_diffuse)/total_ambient : 0.0;
#endif //ENABLE_AO
diffuse_buffer=vec4(emission+diffuse_light+ambient_light,ambient_scale);
specular_buffer=vec4(specular_light,max(specular.r,max(specular.g,specular.b)));
normal_mr_buffer=vec4(normalize(normal)*0.5+0.5,roughness);
#if defined (ENABLE_SSS_MOTION)
motion_ssr_buffer = uint(clamp(sqrt(sss_strength)*255.0,0.0,255))<<24;
#endif
#else
#ifdef SHADELESS
frag_color=vec4(albedo,alpha);
#else
frag_color=vec4(emission+ambient_light+diffuse_light+specular_light,alpha);
#endif //SHADELESS
#endif //USE_MULTIPLE_RENDER_TARGETS
#endif //RENDER_SHADOW
}