a69cc9f13d
Since Embree v3.13.0 supports AARCH64, switch back to the
official repo instead of using Embree-aarch64.
`thirdparty/embree/patches/godot-changes.patch` should now contain
an accurate diff of the changes done to the library.
(cherry picked from commit 767e374dce
)
255 lines
12 KiB
C++
255 lines
12 KiB
C++
// Copyright 2009-2021 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
#pragma once
|
|
|
|
#include "vec3.h"
|
|
#include "vec4.h"
|
|
|
|
#include "transcendental.h"
|
|
|
|
namespace embree
|
|
{
|
|
////////////////////////////////////////////////////////////////
|
|
// Quaternion Struct
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T>
|
|
struct QuaternionT
|
|
{
|
|
typedef Vec3<T> Vector;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Construction
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__forceinline QuaternionT () { }
|
|
__forceinline QuaternionT ( const QuaternionT& other ) { r = other.r; i = other.i; j = other.j; k = other.k; }
|
|
__forceinline QuaternionT& operator=( const QuaternionT& other ) { r = other.r; i = other.i; j = other.j; k = other.k; return *this; }
|
|
|
|
__forceinline QuaternionT( const T& r ) : r(r), i(zero), j(zero), k(zero) {}
|
|
__forceinline explicit QuaternionT( const Vec3<T>& v ) : r(zero), i(v.x), j(v.y), k(v.z) {}
|
|
__forceinline explicit QuaternionT( const Vec4<T>& v ) : r(v.x), i(v.y), j(v.z), k(v.w) {}
|
|
__forceinline QuaternionT( const T& r, const T& i, const T& j, const T& k ) : r(r), i(i), j(j), k(k) {}
|
|
__forceinline QuaternionT( const T& r, const Vec3<T>& v ) : r(r), i(v.x), j(v.y), k(v.z) {}
|
|
|
|
__inline QuaternionT( const Vec3<T>& vx, const Vec3<T>& vy, const Vec3<T>& vz );
|
|
__inline QuaternionT( const T& yaw, const T& pitch, const T& roll );
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Constants
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
__forceinline QuaternionT( ZeroTy ) : r(zero), i(zero), j(zero), k(zero) {}
|
|
__forceinline QuaternionT( OneTy ) : r( one), i(zero), j(zero), k(zero) {}
|
|
|
|
/*! return quaternion for rotation around arbitrary axis */
|
|
static __forceinline QuaternionT rotate(const Vec3<T>& u, const T& r) {
|
|
return QuaternionT<T>(cos(T(0.5)*r),sin(T(0.5)*r)*normalize(u));
|
|
}
|
|
|
|
/*! returns the rotation axis of the quaternion as a vector */
|
|
__forceinline Vec3<T> v( ) const { return Vec3<T>(i, j, k); }
|
|
|
|
public:
|
|
T r, i, j, k;
|
|
};
|
|
|
|
template<typename T> __forceinline QuaternionT<T> operator *( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a * b.r, a * b.i, a * b.j, a * b.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator *( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r * b, a.i * b, a.j * b, a.k * b); }
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Unary Operators
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a ) { return QuaternionT<T>(+a.r, +a.i, +a.j, +a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a ) { return QuaternionT<T>(-a.r, -a.i, -a.j, -a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> conj ( const QuaternionT<T>& a ) { return QuaternionT<T>(a.r, -a.i, -a.j, -a.k); }
|
|
template<typename T> __forceinline T abs ( const QuaternionT<T>& a ) { return sqrt(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> rcp ( const QuaternionT<T>& a ) { return conj(a)*rcp(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> normalize ( const QuaternionT<T>& a ) { return a*rsqrt(a.r*a.r + a.i*a.i + a.j*a.j + a.k*a.k); }
|
|
|
|
// evaluates a*q-r
|
|
template<typename T> __forceinline QuaternionT<T>
|
|
msub(const T& a, const QuaternionT<T>& q, const QuaternionT<T>& p)
|
|
{
|
|
return QuaternionT<T>(msub(a, q.r, p.r),
|
|
msub(a, q.i, p.i),
|
|
msub(a, q.j, p.j),
|
|
msub(a, q.k, p.k));
|
|
}
|
|
// evaluates a*q-r
|
|
template<typename T> __forceinline QuaternionT<T>
|
|
madd (const T& a, const QuaternionT<T>& q, const QuaternionT<T>& p)
|
|
{
|
|
return QuaternionT<T>(madd(a, q.r, p.r),
|
|
madd(a, q.i, p.i),
|
|
madd(a, q.j, p.j),
|
|
madd(a, q.k, p.k));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// Binary Operators
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T> __forceinline QuaternionT<T> operator +( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a + b.r, b.i, b.j, b.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r + b, a.i, a.j, a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator +( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return QuaternionT<T>(a.r + b.r, a.i + b.i, a.j + b.j, a.k + b.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator -( const T & a, const QuaternionT<T>& b ) { return QuaternionT<T>(a - b.r, -b.i, -b.j, -b.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a, const T & b ) { return QuaternionT<T>(a.r - b, a.i, a.j, a.k); }
|
|
template<typename T> __forceinline QuaternionT<T> operator -( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return QuaternionT<T>(a.r - b.r, a.i - b.i, a.j - b.j, a.k - b.k); }
|
|
|
|
template<typename T> __forceinline Vec3<T> operator *( const QuaternionT<T>& a, const Vec3<T> & b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); }
|
|
template<typename T> __forceinline QuaternionT<T> operator *( const QuaternionT<T>& a, const QuaternionT<T>& b ) {
|
|
return QuaternionT<T>(a.r*b.r - a.i*b.i - a.j*b.j - a.k*b.k,
|
|
a.r*b.i + a.i*b.r + a.j*b.k - a.k*b.j,
|
|
a.r*b.j - a.i*b.k + a.j*b.r + a.k*b.i,
|
|
a.r*b.k + a.i*b.j - a.j*b.i + a.k*b.r);
|
|
}
|
|
template<typename T> __forceinline QuaternionT<T> operator /( const T & a, const QuaternionT<T>& b ) { return a*rcp(b); }
|
|
template<typename T> __forceinline QuaternionT<T> operator /( const QuaternionT<T>& a, const T & b ) { return a*rcp(b); }
|
|
template<typename T> __forceinline QuaternionT<T> operator /( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a*rcp(b); }
|
|
|
|
template<typename T> __forceinline QuaternionT<T>& operator +=( QuaternionT<T>& a, const T & b ) { return a = a+b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator +=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a+b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator -=( QuaternionT<T>& a, const T & b ) { return a = a-b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator -=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a-b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator *=( QuaternionT<T>& a, const T & b ) { return a = a*b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator *=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a*b; }
|
|
template<typename T> __forceinline QuaternionT<T>& operator /=( QuaternionT<T>& a, const T & b ) { return a = a*rcp(b); }
|
|
template<typename T> __forceinline QuaternionT<T>& operator /=( QuaternionT<T>& a, const QuaternionT<T>& b ) { return a = a*rcp(b); }
|
|
|
|
template<typename T, typename M> __forceinline QuaternionT<T>
|
|
select(const M& m, const QuaternionT<T>& q, const QuaternionT<T>& p)
|
|
{
|
|
return QuaternionT<T>(select(m, q.r, p.r),
|
|
select(m, q.i, p.i),
|
|
select(m, q.j, p.j),
|
|
select(m, q.k, p.k));
|
|
}
|
|
|
|
|
|
template<typename T> __forceinline Vec3<T> xfmPoint ( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); }
|
|
template<typename T> __forceinline Vec3<T> xfmVector( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); }
|
|
template<typename T> __forceinline Vec3<T> xfmNormal( const QuaternionT<T>& a, const Vec3<T>& b ) { return (a*QuaternionT<T>(b)*conj(a)).v(); }
|
|
|
|
template<typename T> __forceinline T dot(const QuaternionT<T>& a, const QuaternionT<T>& b) { return a.r*b.r + a.i*b.i + a.j*b.j + a.k*b.k; }
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Comparison Operators
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T> __forceinline bool operator ==( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a.r == b.r && a.i == b.i && a.j == b.j && a.k == b.k; }
|
|
template<typename T> __forceinline bool operator !=( const QuaternionT<T>& a, const QuaternionT<T>& b ) { return a.r != b.r || a.i != b.i || a.j != b.j || a.k != b.k; }
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
/// Orientation Functions
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T> QuaternionT<T>::QuaternionT( const Vec3<T>& vx, const Vec3<T>& vy, const Vec3<T>& vz )
|
|
{
|
|
if ( vx.x + vy.y + vz.z >= T(zero) )
|
|
{
|
|
const T t = T(one) + (vx.x + vy.y + vz.z);
|
|
const T s = rsqrt(t)*T(0.5f);
|
|
r = t*s;
|
|
i = (vy.z - vz.y)*s;
|
|
j = (vz.x - vx.z)*s;
|
|
k = (vx.y - vy.x)*s;
|
|
}
|
|
else if ( vx.x >= max(vy.y, vz.z) )
|
|
{
|
|
const T t = (T(one) + vx.x) - (vy.y + vz.z);
|
|
const T s = rsqrt(t)*T(0.5f);
|
|
r = (vy.z - vz.y)*s;
|
|
i = t*s;
|
|
j = (vx.y + vy.x)*s;
|
|
k = (vz.x + vx.z)*s;
|
|
}
|
|
else if ( vy.y >= vz.z ) // if ( vy.y >= max(vz.z, vx.x) )
|
|
{
|
|
const T t = (T(one) + vy.y) - (vz.z + vx.x);
|
|
const T s = rsqrt(t)*T(0.5f);
|
|
r = (vz.x - vx.z)*s;
|
|
i = (vx.y + vy.x)*s;
|
|
j = t*s;
|
|
k = (vy.z + vz.y)*s;
|
|
}
|
|
else //if ( vz.z >= max(vy.y, vx.x) )
|
|
{
|
|
const T t = (T(one) + vz.z) - (vx.x + vy.y);
|
|
const T s = rsqrt(t)*T(0.5f);
|
|
r = (vx.y - vy.x)*s;
|
|
i = (vz.x + vx.z)*s;
|
|
j = (vy.z + vz.y)*s;
|
|
k = t*s;
|
|
}
|
|
}
|
|
|
|
template<typename T> QuaternionT<T>::QuaternionT( const T& yaw, const T& pitch, const T& roll )
|
|
{
|
|
const T cya = cos(yaw *T(0.5f));
|
|
const T cpi = cos(pitch*T(0.5f));
|
|
const T cro = cos(roll *T(0.5f));
|
|
const T sya = sin(yaw *T(0.5f));
|
|
const T spi = sin(pitch*T(0.5f));
|
|
const T sro = sin(roll *T(0.5f));
|
|
r = cro*cya*cpi + sro*sya*spi;
|
|
i = cro*cya*spi + sro*sya*cpi;
|
|
j = cro*sya*cpi - sro*cya*spi;
|
|
k = sro*cya*cpi - cro*sya*spi;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// Output Operators
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
template<typename T> static embree_ostream operator<<(embree_ostream cout, const QuaternionT<T>& q) {
|
|
return cout << "{ r = " << q.r << ", i = " << q.i << ", j = " << q.j << ", k = " << q.k << " }";
|
|
}
|
|
|
|
/*! default template instantiations */
|
|
typedef QuaternionT<float> Quaternion3f;
|
|
typedef QuaternionT<double> Quaternion3d;
|
|
|
|
template<int N> using Quaternion3vf = QuaternionT<vfloat<N>>;
|
|
typedef QuaternionT<vfloat<4>> Quaternion3vf4;
|
|
typedef QuaternionT<vfloat<8>> Quaternion3vf8;
|
|
typedef QuaternionT<vfloat<16>> Quaternion3vf16;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
/// Interpolation
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__forceinline QuaternionT<T>lerp(const QuaternionT<T>& q0,
|
|
const QuaternionT<T>& q1,
|
|
const T& factor)
|
|
{
|
|
QuaternionT<T> q;
|
|
q.r = lerp(q0.r, q1.r, factor);
|
|
q.i = lerp(q0.i, q1.i, factor);
|
|
q.j = lerp(q0.j, q1.j, factor);
|
|
q.k = lerp(q0.k, q1.k, factor);
|
|
return q;
|
|
}
|
|
|
|
template<typename T>
|
|
__forceinline QuaternionT<T> slerp(const QuaternionT<T>& q0,
|
|
const QuaternionT<T>& q1_,
|
|
const T& t)
|
|
{
|
|
T cosTheta = dot(q0, q1_);
|
|
QuaternionT<T> q1 = select(cosTheta < 0.f, -q1_, q1_);
|
|
cosTheta = select(cosTheta < 0.f, -cosTheta, cosTheta);
|
|
if (unlikely(all(cosTheta > 0.9995f))) {
|
|
return normalize(lerp(q0, q1, t));
|
|
}
|
|
const T phi = t * fastapprox::acos(cosTheta);
|
|
T sinPhi, cosPhi;
|
|
fastapprox::sincos(phi, sinPhi, cosPhi);
|
|
QuaternionT<T> qperp = sinPhi * normalize(msub(cosTheta, q0, q1));
|
|
return msub(cosPhi, q0, qperp);
|
|
}
|
|
}
|