godot/scene/resources/shader_graph.cpp

2614 lines
98 KiB
C++

/*************************************************************************/
/* shader_graph.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "shader_graph.h"
#include "scene/scene_string_names.h"
Array ShaderGraph::_get_node_list(ShaderType p_type) const {
List<int> nodes;
get_node_list(p_type, &nodes);
Array arr(true);
for (List<int>::Element *E = nodes.front(); E; E = E->next())
arr.push_back(E->get());
return arr;
}
Array ShaderGraph::_get_connections(ShaderType p_type) const {
List<Connection> connections;
get_node_connections(p_type, &connections);
Array arr(true);
for (List<Connection>::Element *E = connections.front(); E; E = E->next()) {
Dictionary d(true);
d["src_id"] = E->get().src_id;
d["src_slot"] = E->get().src_slot;
d["dst_id"] = E->get().dst_id;
d["dst_slot"] = E->get().dst_slot;
arr.push_back(d);
}
return arr;
}
void ShaderGraph::_set_data(const Dictionary &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("shaders"));
Array sh = d["shaders"];
ERR_FAIL_COND(sh.size() != 3);
for (int t = 0; t < 3; t++) {
Array data = sh[t];
ERR_FAIL_COND((data.size() % 6) != 0);
shader[t].node_map.clear();
for (int i = 0; i < data.size(); i += 6) {
Node n;
n.id = data[i + 0];
n.type = NodeType(int(data[i + 1]));
n.pos = data[i + 2];
n.param1 = data[i + 3];
n.param2 = data[i + 4];
Array conns = data[i + 5];
ERR_FAIL_COND((conns.size() % 3) != 0);
for (int j = 0; j < conns.size(); j += 3) {
SourceSlot ss;
int ls = conns[j + 0];
if (ls == SLOT_DEFAULT_VALUE) {
n.defaults[conns[j + 1]] = conns[j + 2];
} else {
ss.id = conns[j + 1];
ss.slot = conns[j + 2];
n.connections[ls] = ss;
}
}
shader[t].node_map[n.id] = n;
}
}
_pending_update_shader = true;
_update_shader();
}
Dictionary ShaderGraph::_get_data() const {
Array sh;
for (int i = 0; i < 3; i++) {
Array data;
int ec = shader[i].node_map.size();
data.resize(ec * 6);
int idx = 0;
for (Map<int, Node>::Element *E = shader[i].node_map.front(); E; E = E->next()) {
data[idx + 0] = E->key();
data[idx + 1] = E->get().type;
data[idx + 2] = E->get().pos;
data[idx + 3] = E->get().param1;
data[idx + 4] = E->get().param2;
Array conns;
conns.resize(E->get().connections.size() * 3 + E->get().defaults.size() * 3);
int idx2 = 0;
for (Map<int, SourceSlot>::Element *F = E->get().connections.front(); F; F = F->next()) {
conns[idx2 + 0] = F->key();
conns[idx2 + 1] = F->get().id;
conns[idx2 + 2] = F->get().slot;
idx2 += 3;
}
for (Map<int, Variant>::Element *F = E->get().defaults.front(); F; F = F->next()) {
conns[idx2 + 0] = SLOT_DEFAULT_VALUE;
conns[idx2 + 1] = F->key();
conns[idx2 + 2] = F->get();
idx2 += 3;
}
data[idx + 5] = conns;
idx += 6;
}
sh.push_back(data);
}
Dictionary data;
data["shaders"] = sh;
return data;
}
ShaderGraph::GraphError ShaderGraph::get_graph_error(ShaderType p_type) const {
ERR_FAIL_INDEX_V(p_type, 3, GRAPH_OK);
return shader[p_type].error;
}
int ShaderGraph::node_count(ShaderType p_which, int p_type) {
int count = 0;
for (Map<int, Node>::Element *E = shader[p_which].node_map.front(); E; E = E->next())
if (E->get().type == p_type)
count++;
return count;
}
void ShaderGraph::_bind_methods() {
ObjectTypeDB::bind_method(_MD("_update_shader"), &ShaderGraph::_update_shader);
ObjectTypeDB::bind_method(_MD("node_add", "shader_type", "node_type", "id"), &ShaderGraph::node_add);
ObjectTypeDB::bind_method(_MD("node_remove", "shader_type", "id"), &ShaderGraph::node_remove);
ObjectTypeDB::bind_method(_MD("node_set_pos", "shader_type", "id", "pos"), &ShaderGraph::node_set_pos);
ObjectTypeDB::bind_method(_MD("node_get_pos", "shader_type", "id"), &ShaderGraph::node_get_pos);
ObjectTypeDB::bind_method(_MD("node_get_type", "shader_type", "id"), &ShaderGraph::node_get_type);
ObjectTypeDB::bind_method(_MD("get_node_list", "shader_type"), &ShaderGraph::_get_node_list);
ObjectTypeDB::bind_method(_MD("default_set_value", "shader_type", "id", "param_id", "value"), &ShaderGraph::default_set_value);
ObjectTypeDB::bind_method(_MD("default_get_value", "shader_type", "id", "param_id"), &ShaderGraph::default_get_value);
ObjectTypeDB::bind_method(_MD("scalar_const_node_set_value", "shader_type", "id", "value"), &ShaderGraph::scalar_const_node_set_value);
ObjectTypeDB::bind_method(_MD("scalar_const_node_get_value", "shader_type", "id"), &ShaderGraph::scalar_const_node_get_value);
ObjectTypeDB::bind_method(_MD("vec_const_node_set_value", "shader_type", "id", "value"), &ShaderGraph::vec_const_node_set_value);
ObjectTypeDB::bind_method(_MD("vec_const_node_get_value", "shader_type", "id"), &ShaderGraph::vec_const_node_get_value);
ObjectTypeDB::bind_method(_MD("rgb_const_node_set_value", "shader_type", "id", "value"), &ShaderGraph::rgb_const_node_set_value);
ObjectTypeDB::bind_method(_MD("rgb_const_node_get_value", "shader_type", "id"), &ShaderGraph::rgb_const_node_get_value);
ObjectTypeDB::bind_method(_MD("xform_const_node_set_value", "shader_type", "id", "value"), &ShaderGraph::xform_const_node_set_value);
ObjectTypeDB::bind_method(_MD("xform_const_node_get_value", "shader_type", "id"), &ShaderGraph::xform_const_node_get_value);
// void get_node_list(ShaderType p_which,List<int> *p_node_list) const;
ObjectTypeDB::bind_method(_MD("texture_node_set_filter_size", "shader_type", "id", "filter_size"), &ShaderGraph::texture_node_set_filter_size);
ObjectTypeDB::bind_method(_MD("texture_node_get_filter_size", "shader_type", "id"), &ShaderGraph::texture_node_get_filter_size);
ObjectTypeDB::bind_method(_MD("texture_node_set_filter_strength", "shader_type", "id", "filter_strength"), &ShaderGraph::texture_node_set_filter_strength);
ObjectTypeDB::bind_method(_MD("texture_node_get_filter_strength", "shader_type", "id"), &ShaderGraph::texture_node_get_filter_strength);
ObjectTypeDB::bind_method(_MD("scalar_op_node_set_op", "shader_type", "id", "op"), &ShaderGraph::scalar_op_node_set_op);
ObjectTypeDB::bind_method(_MD("scalar_op_node_get_op", "shader_type", "id"), &ShaderGraph::scalar_op_node_get_op);
ObjectTypeDB::bind_method(_MD("vec_op_node_set_op", "shader_type", "id", "op"), &ShaderGraph::vec_op_node_set_op);
ObjectTypeDB::bind_method(_MD("vec_op_node_get_op", "shader_type", "id"), &ShaderGraph::vec_op_node_get_op);
ObjectTypeDB::bind_method(_MD("vec_scalar_op_node_set_op", "shader_type", "id", "op"), &ShaderGraph::vec_scalar_op_node_set_op);
ObjectTypeDB::bind_method(_MD("vec_scalar_op_node_get_op", "shader_type", "id"), &ShaderGraph::vec_scalar_op_node_get_op);
ObjectTypeDB::bind_method(_MD("rgb_op_node_set_op", "shader_type", "id", "op"), &ShaderGraph::rgb_op_node_set_op);
ObjectTypeDB::bind_method(_MD("rgb_op_node_get_op", "shader_type", "id"), &ShaderGraph::rgb_op_node_get_op);
ObjectTypeDB::bind_method(_MD("xform_vec_mult_node_set_no_translation", "shader_type", "id", "disable"), &ShaderGraph::xform_vec_mult_node_set_no_translation);
ObjectTypeDB::bind_method(_MD("xform_vec_mult_node_get_no_translation", "shader_type", "id"), &ShaderGraph::xform_vec_mult_node_get_no_translation);
ObjectTypeDB::bind_method(_MD("scalar_func_node_set_function", "shader_type", "id", "func"), &ShaderGraph::scalar_func_node_set_function);
ObjectTypeDB::bind_method(_MD("scalar_func_node_get_function", "shader_type", "id"), &ShaderGraph::scalar_func_node_get_function);
ObjectTypeDB::bind_method(_MD("vec_func_node_set_function", "shader_type", "id", "func"), &ShaderGraph::vec_func_node_set_function);
ObjectTypeDB::bind_method(_MD("vec_func_node_get_function", "shader_type", "id"), &ShaderGraph::vec_func_node_get_function);
ObjectTypeDB::bind_method(_MD("input_node_set_name", "shader_type", "id", "name"), &ShaderGraph::input_node_set_name);
ObjectTypeDB::bind_method(_MD("input_node_get_name", "shader_type", "id"), &ShaderGraph::input_node_get_name);
ObjectTypeDB::bind_method(_MD("scalar_input_node_set_value", "shader_type", "id", "value"), &ShaderGraph::scalar_input_node_set_value);
ObjectTypeDB::bind_method(_MD("scalar_input_node_get_value", "shader_type", "id"), &ShaderGraph::scalar_input_node_get_value);
ObjectTypeDB::bind_method(_MD("vec_input_node_set_value", "shader_type", "id", "value"), &ShaderGraph::vec_input_node_set_value);
ObjectTypeDB::bind_method(_MD("vec_input_node_get_value", "shader_type", "id"), &ShaderGraph::vec_input_node_get_value);
ObjectTypeDB::bind_method(_MD("rgb_input_node_set_value", "shader_type", "id", "value"), &ShaderGraph::rgb_input_node_set_value);
ObjectTypeDB::bind_method(_MD("rgb_input_node_get_value", "shader_type", "id"), &ShaderGraph::rgb_input_node_get_value);
ObjectTypeDB::bind_method(_MD("xform_input_node_set_value", "shader_type", "id", "value"), &ShaderGraph::xform_input_node_set_value);
ObjectTypeDB::bind_method(_MD("xform_input_node_get_value", "shader_type", "id"), &ShaderGraph::xform_input_node_get_value);
ObjectTypeDB::bind_method(_MD("texture_input_node_set_value", "shader_type", "id", "value:Texture"), &ShaderGraph::texture_input_node_set_value);
ObjectTypeDB::bind_method(_MD("texture_input_node_get_value:Texture", "shader_type", "id"), &ShaderGraph::texture_input_node_get_value);
ObjectTypeDB::bind_method(_MD("cubemap_input_node_set_value", "shader_type", "id", "value:CubeMap"), &ShaderGraph::cubemap_input_node_set_value);
ObjectTypeDB::bind_method(_MD("cubemap_input_node_get_value:CubeMap", "shader_type", "id"), &ShaderGraph::cubemap_input_node_get_value);
ObjectTypeDB::bind_method(_MD("comment_node_set_text", "shader_type", "id", "text"), &ShaderGraph::comment_node_set_text);
ObjectTypeDB::bind_method(_MD("comment_node_get_text", "shader_type", "id"), &ShaderGraph::comment_node_get_text);
ObjectTypeDB::bind_method(_MD("color_ramp_node_set_ramp", "shader_type", "id", "colors", "offsets"), &ShaderGraph::color_ramp_node_set_ramp);
ObjectTypeDB::bind_method(_MD("color_ramp_node_get_colors", "shader_type", "id"), &ShaderGraph::color_ramp_node_get_colors);
ObjectTypeDB::bind_method(_MD("color_ramp_node_get_offsets", "shader_type", "id"), &ShaderGraph::color_ramp_node_get_offsets);
ObjectTypeDB::bind_method(_MD("curve_map_node_set_points", "shader_type", "id", "points"), &ShaderGraph::curve_map_node_set_points);
ObjectTypeDB::bind_method(_MD("curve_map_node_get_points", "shader_type", "id"), &ShaderGraph::curve_map_node_get_points);
ObjectTypeDB::bind_method(_MD("connect_node:Error", "shader_type", "src_id", "src_slot", "dst_id", "dst_slot"), &ShaderGraph::connect_node);
ObjectTypeDB::bind_method(_MD("is_node_connected", "shader_type", "src_id", "src_slot", "dst_id", "dst_slot"), &ShaderGraph::is_node_connected);
ObjectTypeDB::bind_method(_MD("disconnect_node", "shader_type", "src_id", "src_slot", "dst_id", "dst_slot"), &ShaderGraph::disconnect_node);
ObjectTypeDB::bind_method(_MD("get_node_connections", "shader_type"), &ShaderGraph::_get_connections);
ObjectTypeDB::bind_method(_MD("clear", "shader_type"), &ShaderGraph::clear);
ObjectTypeDB::bind_method(_MD("node_set_state", "shader_type", "id", "state"), &ShaderGraph::node_set_state);
ObjectTypeDB::bind_method(_MD("node_get_state:Variant", "shader_type", "id"), &ShaderGraph::node_get_state);
ObjectTypeDB::bind_method(_MD("_set_data"), &ShaderGraph::_set_data);
ObjectTypeDB::bind_method(_MD("_get_data"), &ShaderGraph::_get_data);
ADD_PROPERTY(PropertyInfo(Variant::DICTIONARY, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"), _SCS("_get_data"));
//void get_connections(ShaderType p_which,List<Connection> *p_connections) const;
BIND_CONSTANT(NODE_INPUT); // all inputs (shader type dependent)
BIND_CONSTANT(NODE_SCALAR_CONST); //scalar constant
BIND_CONSTANT(NODE_VEC_CONST); //vec3 constant
BIND_CONSTANT(NODE_RGB_CONST); //rgb constant (shows a color picker instead)
BIND_CONSTANT(NODE_XFORM_CONST); // 4x4 matrix constant
BIND_CONSTANT(NODE_TIME); // time in seconds
BIND_CONSTANT(NODE_SCREEN_TEX); // screen texture sampler (takes UV) (only usable in fragment shader)
BIND_CONSTANT(NODE_SCALAR_OP); // scalar vs scalar op (mul ); add ); div ); etc)
BIND_CONSTANT(NODE_VEC_OP); // vec3 vs vec3 op (mul );ad );div );crossprod );etc)
BIND_CONSTANT(NODE_VEC_SCALAR_OP); // vec3 vs scalar op (mul ); add ); div ); etc)
BIND_CONSTANT(NODE_RGB_OP); // vec3 vs vec3 rgb op (with scalar amount) ); like brighten ); darken ); burn ); dodge ); multiply ); etc.
BIND_CONSTANT(NODE_XFORM_MULT); // mat4 x mat4
BIND_CONSTANT(NODE_XFORM_VEC_MULT); // mat4 x vec3 mult (with no-translation option)
BIND_CONSTANT(NODE_XFORM_VEC_INV_MULT); // mat4 x vec3 inverse mult (with no-translation option)
BIND_CONSTANT(NODE_SCALAR_FUNC); // scalar function (sin ); cos ); etc)
BIND_CONSTANT(NODE_VEC_FUNC); // vector function (normalize ); negate ); reciprocal ); rgb2hsv ); hsv2rgb ); etc ); etc)
BIND_CONSTANT(NODE_VEC_LEN); // vec3 length
BIND_CONSTANT(NODE_DOT_PROD); // vec3 . vec3 (dot product -> scalar output)
BIND_CONSTANT(NODE_VEC_TO_SCALAR); // 1 vec3 input ); 3 scalar outputs
BIND_CONSTANT(NODE_SCALAR_TO_VEC); // 3 scalar input ); 1 vec3 output
BIND_CONSTANT(NODE_VEC_TO_XFORM); // 3 vec input ); 1 xform output
BIND_CONSTANT(NODE_XFORM_TO_VEC); // 3 vec input ); 1 xform output
BIND_CONSTANT(NODE_SCALAR_INTERP); // scalar interpolation (with optional curve)
BIND_CONSTANT(NODE_VEC_INTERP); // vec3 interpolation (with optional curve)
BIND_CONSTANT(NODE_COLOR_RAMP);
BIND_CONSTANT(NODE_CURVE_MAP);
BIND_CONSTANT(NODE_SCALAR_INPUT); // scalar uniform (assignable in material)
BIND_CONSTANT(NODE_VEC_INPUT); // vec3 uniform (assignable in material)
BIND_CONSTANT(NODE_RGB_INPUT); // color uniform (assignable in material)
BIND_CONSTANT(NODE_XFORM_INPUT); // mat4 uniform (assignable in material)
BIND_CONSTANT(NODE_TEXTURE_INPUT); // texture input (assignable in material)
BIND_CONSTANT(NODE_CUBEMAP_INPUT); // cubemap input (assignable in material)
BIND_CONSTANT(NODE_DEFAULT_TEXTURE);
BIND_CONSTANT(NODE_OUTPUT); // output (shader type dependent)
BIND_CONSTANT(NODE_COMMENT); // comment
BIND_CONSTANT(NODE_TYPE_MAX);
BIND_CONSTANT(SLOT_TYPE_SCALAR);
BIND_CONSTANT(SLOT_TYPE_VEC);
BIND_CONSTANT(SLOT_TYPE_XFORM);
BIND_CONSTANT(SLOT_TYPE_TEXTURE);
BIND_CONSTANT(SLOT_MAX);
BIND_CONSTANT(SHADER_TYPE_VERTEX);
BIND_CONSTANT(SHADER_TYPE_FRAGMENT);
BIND_CONSTANT(SHADER_TYPE_LIGHT);
BIND_CONSTANT(SHADER_TYPE_MAX);
BIND_CONSTANT(SLOT_IN);
BIND_CONSTANT(SLOT_OUT);
BIND_CONSTANT(GRAPH_OK);
BIND_CONSTANT(GRAPH_ERROR_CYCLIC);
BIND_CONSTANT(GRAPH_ERROR_MISSING_CONNECTIONS);
BIND_CONSTANT(SCALAR_OP_ADD);
BIND_CONSTANT(SCALAR_OP_SUB);
BIND_CONSTANT(SCALAR_OP_MUL);
BIND_CONSTANT(SCALAR_OP_DIV);
BIND_CONSTANT(SCALAR_OP_MOD);
BIND_CONSTANT(SCALAR_OP_POW);
BIND_CONSTANT(SCALAR_OP_MAX);
BIND_CONSTANT(SCALAR_OP_MIN);
BIND_CONSTANT(SCALAR_OP_ATAN2);
BIND_CONSTANT(SCALAR_MAX_OP);
BIND_CONSTANT(VEC_OP_ADD);
BIND_CONSTANT(VEC_OP_SUB);
BIND_CONSTANT(VEC_OP_MUL);
BIND_CONSTANT(VEC_OP_DIV);
BIND_CONSTANT(VEC_OP_MOD);
BIND_CONSTANT(VEC_OP_POW);
BIND_CONSTANT(VEC_OP_MAX);
BIND_CONSTANT(VEC_OP_MIN);
BIND_CONSTANT(VEC_OP_CROSS);
BIND_CONSTANT(VEC_MAX_OP);
BIND_CONSTANT(VEC_SCALAR_OP_MUL);
BIND_CONSTANT(VEC_SCALAR_OP_DIV);
BIND_CONSTANT(VEC_SCALAR_OP_POW);
BIND_CONSTANT(VEC_SCALAR_MAX_OP);
BIND_CONSTANT(RGB_OP_SCREEN);
BIND_CONSTANT(RGB_OP_DIFFERENCE);
BIND_CONSTANT(RGB_OP_DARKEN);
BIND_CONSTANT(RGB_OP_LIGHTEN);
BIND_CONSTANT(RGB_OP_OVERLAY);
BIND_CONSTANT(RGB_OP_DODGE);
BIND_CONSTANT(RGB_OP_BURN);
BIND_CONSTANT(RGB_OP_SOFT_LIGHT);
BIND_CONSTANT(RGB_OP_HARD_LIGHT);
BIND_CONSTANT(RGB_MAX_OP);
BIND_CONSTANT(SCALAR_FUNC_SIN);
BIND_CONSTANT(SCALAR_FUNC_COS);
BIND_CONSTANT(SCALAR_FUNC_TAN);
BIND_CONSTANT(SCALAR_FUNC_ASIN);
BIND_CONSTANT(SCALAR_FUNC_ACOS);
BIND_CONSTANT(SCALAR_FUNC_ATAN);
BIND_CONSTANT(SCALAR_FUNC_SINH);
BIND_CONSTANT(SCALAR_FUNC_COSH);
BIND_CONSTANT(SCALAR_FUNC_TANH);
BIND_CONSTANT(SCALAR_FUNC_LOG);
BIND_CONSTANT(SCALAR_FUNC_EXP);
BIND_CONSTANT(SCALAR_FUNC_SQRT);
BIND_CONSTANT(SCALAR_FUNC_ABS);
BIND_CONSTANT(SCALAR_FUNC_SIGN);
BIND_CONSTANT(SCALAR_FUNC_FLOOR);
BIND_CONSTANT(SCALAR_FUNC_ROUND);
BIND_CONSTANT(SCALAR_FUNC_CEIL);
BIND_CONSTANT(SCALAR_FUNC_FRAC);
BIND_CONSTANT(SCALAR_FUNC_SATURATE);
BIND_CONSTANT(SCALAR_FUNC_NEGATE);
BIND_CONSTANT(SCALAR_MAX_FUNC);
BIND_CONSTANT(VEC_FUNC_NORMALIZE);
BIND_CONSTANT(VEC_FUNC_SATURATE);
BIND_CONSTANT(VEC_FUNC_NEGATE);
BIND_CONSTANT(VEC_FUNC_RECIPROCAL);
BIND_CONSTANT(VEC_FUNC_RGB2HSV);
BIND_CONSTANT(VEC_FUNC_HSV2RGB);
BIND_CONSTANT(VEC_MAX_FUNC);
ADD_SIGNAL(MethodInfo("updated"));
#if 0
ObjectTypeDB::bind_method(_MD("node_add"),&ShaderGraph::node_add );
ObjectTypeDB::bind_method(_MD("node_remove"),&ShaderGraph::node_remove );
ObjectTypeDB::bind_method(_MD("node_set_param"),&ShaderGraph::node_set_param );
ObjectTypeDB::bind_method(_MD("node_set_pos"),&ShaderGraph::node_set_pos );
ObjectTypeDB::bind_method(_MD("node_get_pos"),&ShaderGraph::node_get_pos );
ObjectTypeDB::bind_method(_MD("node_get_param"),&ShaderGraph::node_get_param);
ObjectTypeDB::bind_method(_MD("node_get_type"),&ShaderGraph::node_get_type);
ObjectTypeDB::bind_method(_MD("connect"),&ShaderGraph::connect );
ObjectTypeDB::bind_method(_MD("disconnect"),&ShaderGraph::disconnect );
ObjectTypeDB::bind_method(_MD("get_connections"),&ShaderGraph::_get_connections_helper );
ObjectTypeDB::bind_method(_MD("clear"),&ShaderGraph::clear );
BIND_CONSTANT( NODE_IN ); ///< param 0: name
BIND_CONSTANT( NODE_OUT ); ///< param 0: name
BIND_CONSTANT( NODE_CONSTANT ); ///< param 0: value
BIND_CONSTANT( NODE_PARAMETER ); ///< param 0: name
BIND_CONSTANT( NODE_ADD );
BIND_CONSTANT( NODE_SUB );
BIND_CONSTANT( NODE_MUL );
BIND_CONSTANT( NODE_DIV );
BIND_CONSTANT( NODE_MOD );
BIND_CONSTANT( NODE_SIN );
BIND_CONSTANT( NODE_COS );
BIND_CONSTANT( NODE_TAN );
BIND_CONSTANT( NODE_ARCSIN );
BIND_CONSTANT( NODE_ARCCOS );
BIND_CONSTANT( NODE_ARCTAN );
BIND_CONSTANT( NODE_POW );
BIND_CONSTANT( NODE_LOG );
BIND_CONSTANT( NODE_MAX );
BIND_CONSTANT( NODE_MIN );
BIND_CONSTANT( NODE_COMPARE );
BIND_CONSTANT( NODE_TEXTURE ); ///< param 0: texture
BIND_CONSTANT( NODE_TIME ); ///< param 0: interval length
BIND_CONSTANT( NODE_NOISE );
BIND_CONSTANT( NODE_PASS );
BIND_CONSTANT( NODE_VEC_IN ); ///< param 0: name
BIND_CONSTANT( NODE_VEC_OUT ); ///< param 0: name
BIND_CONSTANT( NODE_VEC_CONSTANT ); ///< param 0: value
BIND_CONSTANT( NODE_VEC_PARAMETER ); ///< param 0: name
BIND_CONSTANT( NODE_VEC_ADD );
BIND_CONSTANT( NODE_VEC_SUB );
BIND_CONSTANT( NODE_VEC_MUL );
BIND_CONSTANT( NODE_VEC_DIV );
BIND_CONSTANT( NODE_VEC_MOD );
BIND_CONSTANT( NODE_VEC_CROSS );
BIND_CONSTANT( NODE_VEC_DOT );
BIND_CONSTANT( NODE_VEC_POW );
BIND_CONSTANT( NODE_VEC_NORMALIZE );
BIND_CONSTANT( NODE_VEC_TRANSFORM3 );
BIND_CONSTANT( NODE_VEC_TRANSFORM4 );
BIND_CONSTANT( NODE_VEC_COMPARE );
BIND_CONSTANT( NODE_VEC_TEXTURE_2D );
BIND_CONSTANT( NODE_VEC_TEXTURE_CUBE );
BIND_CONSTANT( NODE_VEC_NOISE );
BIND_CONSTANT( NODE_VEC_0 );
BIND_CONSTANT( NODE_VEC_1 );
BIND_CONSTANT( NODE_VEC_2 );
BIND_CONSTANT( NODE_VEC_BUILD );
BIND_CONSTANT( NODE_VEC_PASS );
BIND_CONSTANT( NODE_COLOR_CONSTANT );
BIND_CONSTANT( NODE_COLOR_PARAMETER );
BIND_CONSTANT( NODE_TEXTURE_PARAMETER );
BIND_CONSTANT( NODE_TEXTURE_2D_PARAMETER );
BIND_CONSTANT( NODE_TEXTURE_CUBE_PARAMETER );
BIND_CONSTANT( NODE_TYPE_MAX );
#endif
}
String ShaderGraph::_find_unique_name(const String &p_base) {
int idx = 1;
while (true) {
String tocmp = p_base;
if (idx > 1) {
tocmp += "_" + itos(idx);
}
bool valid = true;
for (int i = 0; i < 3; i++) {
if (!valid)
break;
for (Map<int, Node>::Element *E = shader[i].node_map.front(); E; E = E->next()) {
if (E->get().type != NODE_SCALAR_INPUT && E->get().type != NODE_VEC_INPUT && E->get().type == NODE_RGB_INPUT && E->get().type == NODE_XFORM_INPUT && E->get().type == NODE_TEXTURE_INPUT && E->get().type == NODE_CUBEMAP_INPUT)
continue;
String name = E->get().param1;
if (name == tocmp) {
valid = false;
break;
}
}
}
if (!valid) {
idx++;
continue;
}
return tocmp;
}
return String();
}
void ShaderGraph::node_add(ShaderType p_type, NodeType p_node_type, int p_id) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(p_id == 0);
ERR_FAIL_COND(p_node_type == NODE_OUTPUT); //can't create output
ERR_FAIL_COND(shader[p_type].node_map.has(p_id));
ERR_FAIL_INDEX(p_node_type, NODE_TYPE_MAX);
Node node;
if (p_node_type == NODE_INPUT) {
//see if it already exists
for (Map<int, Node>::Element *E = shader[p_type].node_map.front(); E; E = E->next()) {
if (E->get().type == NODE_INPUT) {
ERR_EXPLAIN("Only one input node can be added to the graph.");
ERR_FAIL_COND(E->get().type == NODE_INPUT);
}
}
}
node.type = p_node_type;
node.id = p_id;
switch (p_node_type) {
case NODE_INPUT: {
} break; // all inputs (shader type dependent)
case NODE_SCALAR_CONST: {
node.param1 = 0;
} break; //scalar constant
case NODE_VEC_CONST: {
node.param1 = Vector3();
} break; //vec3 constant
case NODE_RGB_CONST: {
node.param1 = Color();
} break; //rgb constant (shows a color picker instead)
case NODE_XFORM_CONST: {
node.param1 = Transform();
} break; // 4x4 matrix constant
case NODE_TIME: {
} break; // time in seconds
case NODE_SCREEN_TEX: {
Array arr;
arr.push_back(0);
arr.push_back(0);
node.param2 = arr;
} break; // screen texture sampler (takes UV) (only usable in fragment shader)
case NODE_SCALAR_OP: {
node.param1 = SCALAR_OP_ADD;
} break; // scalar vs scalar op (mul: {} break; add: {} break; div: {} break; etc)
case NODE_VEC_OP: {
node.param1 = VEC_OP_ADD;
} break; // vec3 vs vec3 op (mul: {} break;ad: {} break;div: {} break;crossprod: {} break;etc)
case NODE_VEC_SCALAR_OP: {
node.param1 = VEC_SCALAR_OP_MUL;
} break; // vec3 vs scalar op (mul: {} break; add: {} break; div: {} break; etc)
case NODE_RGB_OP: {
node.param1 = RGB_OP_SCREEN;
} break; // vec3 vs vec3 rgb op (with scalar amount): {} break; like brighten: {} break; darken: {} break; burn: {} break; dodge: {} break; multiply: {} break; etc.
case NODE_XFORM_MULT: {
} break; // mat4 x mat4
case NODE_XFORM_VEC_MULT: {
} break; // mat4 x vec3 mult (with no-translation option)
case NODE_XFORM_VEC_INV_MULT: {
} break; // mat4 x vec3 inverse mult (with no-translation option)
case NODE_SCALAR_FUNC: {
node.param1 = SCALAR_FUNC_SIN;
} break; // scalar function (sin: {} break; cos: {} break; etc)
case NODE_VEC_FUNC: {
node.param1 = VEC_FUNC_NORMALIZE;
} break; // vector function (normalize: {} break; negate: {} break; reciprocal: {} break; rgb2hsv: {} break; hsv2rgb: {} break; etc: {} break; etc)
case NODE_VEC_LEN: {
} break; // vec3 length
case NODE_DOT_PROD: {
} break; // vec3 . vec3 (dot product -> scalar output)
case NODE_VEC_TO_SCALAR: {
} break; // 1 vec3 input: {} break; 3 scalar outputs
case NODE_SCALAR_TO_VEC: {
} break; // 3 scalar input: {} break; 1 vec3 output
case NODE_VEC_TO_XFORM: {
} break; // 3 scalar input: {} break; 1 vec3 output
case NODE_XFORM_TO_VEC: {
} break; // 3 scalar input: {} break; 1 vec3 output
case NODE_SCALAR_INTERP: {
} break; // scalar interpolation (with optional curve)
case NODE_VEC_INTERP: {
} break; // vec3 interpolation (with optional curve)
case NODE_COLOR_RAMP: {
node.param1 = DVector<Color>();
node.param2 = DVector<real_t>();
} break; // vec3 interpolation (with optional curve)
case NODE_CURVE_MAP: {
node.param1 = DVector<Vector2>();
} break; // vec3 interpolation (with optional curve)
case NODE_SCALAR_INPUT: {
node.param1 = _find_unique_name("Scalar");
node.param2 = 0;
} break; // scalar uniform (assignable in material)
case NODE_VEC_INPUT: {
node.param1 = _find_unique_name("Vec3");
node.param2 = Vector3();
} break; // vec3 uniform (assignable in material)
case NODE_RGB_INPUT: {
node.param1 = _find_unique_name("Color");
node.param2 = Color();
} break; // color uniform (assignable in material)
case NODE_XFORM_INPUT: {
node.param1 = _find_unique_name("XForm");
node.param2 = Transform();
} break; // mat4 uniform (assignable in material)
case NODE_TEXTURE_INPUT: {
node.param1 = _find_unique_name("Tex");
} break; // texture input (assignable in material)
case NODE_CUBEMAP_INPUT: {
node.param1 = _find_unique_name("Cube");
} break; // cubemap input (assignable in material)
case NODE_DEFAULT_TEXTURE: {
}; break;
case NODE_OUTPUT: {
} break; // output (shader type dependent)
case NODE_COMMENT: {
} break; // comment
case NODE_TYPE_MAX: {
};
}
shader[p_type].node_map[p_id] = node;
_request_update();
}
void ShaderGraph::node_set_pos(ShaderType p_type, int p_id, const Vector2 &p_pos) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
shader[p_type].node_map[p_id].pos = p_pos;
_request_update();
}
Vector2 ShaderGraph::node_get_pos(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Vector2());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Vector2());
return shader[p_type].node_map[p_id].pos;
}
void ShaderGraph::node_remove(ShaderType p_type, int p_id) {
ERR_FAIL_COND(p_id == 0);
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
//erase connections associated with node
for (Map<int, Node>::Element *E = shader[p_type].node_map.front(); E; E = E->next()) {
if (E->key() == p_id)
continue; //no self
for (Map<int, SourceSlot>::Element *F = E->get().connections.front(); F;) {
Map<int, SourceSlot>::Element *N = F->next();
if (F->get().id == p_id) {
E->get().connections.erase(F);
}
F = N;
}
}
shader[p_type].node_map.erase(p_id);
_request_update();
}
void ShaderGraph::get_node_list(ShaderType p_type, List<int> *p_node_list) const {
ERR_FAIL_INDEX(p_type, 3);
Map<int, Node>::Element *E = shader[p_type].node_map.front();
while (E) {
p_node_list->push_back(E->key());
E = E->next();
}
}
ShaderGraph::NodeType ShaderGraph::node_get_type(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, NODE_TYPE_MAX);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), NODE_TYPE_MAX);
return shader[p_type].node_map[p_id].type;
}
Error ShaderGraph::connect_node(ShaderType p_type, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) {
ERR_FAIL_INDEX_V(p_type, 3, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_id == p_dst_id, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_src_id), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_dst_id), ERR_INVALID_PARAMETER);
NodeType type_src = shader[p_type].node_map[p_src_id].type;
NodeType type_dst = shader[p_type].node_map[p_dst_id].type;
ERR_FAIL_INDEX_V(p_src_slot, get_node_output_slot_count(get_mode(), p_type, type_src), ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_dst_slot, get_node_input_slot_count(get_mode(), p_type, type_dst), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(get_node_output_slot_type(get_mode(), p_type, type_src, p_src_slot) != get_node_input_slot_type(get_mode(), p_type, type_dst, p_dst_slot), ERR_INVALID_PARAMETER);
SourceSlot ts;
ts.id = p_src_id;
ts.slot = p_src_slot;
shader[p_type].node_map[p_dst_id].connections[p_dst_slot] = ts;
_request_update();
return OK;
}
bool ShaderGraph::is_node_connected(ShaderType p_type, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) const {
ERR_FAIL_INDEX_V(p_type, 3, false);
SourceSlot ts;
ts.id = p_src_id;
ts.slot = p_src_slot;
return shader[p_type].node_map.has(p_dst_id) && shader[p_type].node_map[p_dst_id].connections.has(p_dst_slot) &&
shader[p_type].node_map[p_dst_id].connections[p_dst_slot] == ts;
}
void ShaderGraph::disconnect_node(ShaderType p_type, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) {
ERR_FAIL_INDEX(p_type, 3);
SourceSlot ts;
ts.id = p_src_id;
ts.slot = p_src_slot;
if (shader[p_type].node_map.has(p_dst_id) && shader[p_type].node_map[p_dst_id].connections.has(p_dst_slot) &&
shader[p_type].node_map[p_dst_id].connections[p_dst_slot] == ts) {
shader[p_type].node_map[p_dst_id].connections.erase(p_dst_slot);
}
_request_update();
}
void ShaderGraph::get_node_connections(ShaderType p_type, List<Connection> *p_connections) const {
ERR_FAIL_INDEX(p_type, 3);
for (const Map<int, Node>::Element *E = shader[p_type].node_map.front(); E; E = E->next()) {
for (const Map<int, SourceSlot>::Element *F = E->get().connections.front(); F; F = F->next()) {
Connection c;
c.dst_id = E->key();
c.dst_slot = F->key();
c.src_id = F->get().id;
c.src_slot = F->get().slot;
p_connections->push_back(c);
}
}
}
bool ShaderGraph::is_slot_connected(ShaderGraph::ShaderType p_type, int p_dst_id, int slot_id) {
for (const Map<int, Node>::Element *E = shader[p_type].node_map.front(); E; E = E->next()) {
for (const Map<int, SourceSlot>::Element *F = E->get().connections.front(); F; F = F->next()) {
if (p_dst_id == E->key() && slot_id == F->key())
return true;
}
}
return false;
}
void ShaderGraph::clear(ShaderType p_type) {
ERR_FAIL_INDEX(p_type, 3);
shader[p_type].node_map.clear();
Node out;
out.pos = Vector2(300, 300);
out.type = NODE_OUTPUT;
shader[p_type].node_map.insert(0, out);
_request_update();
}
void ShaderGraph::scalar_const_node_set_value(ShaderType p_type, int p_id, float p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_SCALAR_CONST);
n.param1 = p_value;
_request_update();
}
float ShaderGraph::scalar_const_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, 0);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), 0);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_SCALAR_CONST, 0);
return n.param1;
}
void ShaderGraph::vec_const_node_set_value(ShaderType p_type, int p_id, const Vector3 &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_VEC_CONST);
n.param1 = p_value;
_request_update();
}
Vector3 ShaderGraph::vec_const_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Vector3());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Vector3());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_VEC_CONST, Vector3());
return n.param1;
}
void ShaderGraph::rgb_const_node_set_value(ShaderType p_type, int p_id, const Color &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_RGB_CONST);
n.param1 = p_value;
_request_update();
}
Color ShaderGraph::rgb_const_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Color());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Color());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_RGB_CONST, Color());
return n.param1;
}
void ShaderGraph::xform_const_node_set_value(ShaderType p_type, int p_id, const Transform &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_XFORM_CONST);
n.param1 = p_value;
_request_update();
}
Transform ShaderGraph::xform_const_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Transform());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Transform());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_XFORM_CONST, Transform());
return n.param1;
}
void ShaderGraph::texture_node_set_filter_size(ShaderType p_type, int p_id, int p_size) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_TEXTURE_INPUT && n.type != NODE_SCREEN_TEX);
Array arr = n.param2;
arr[0] = p_size;
n.param2 = arr;
_request_update();
}
int ShaderGraph::texture_node_get_filter_size(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, 0);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), 0);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_TEXTURE_INPUT && n.type != NODE_SCREEN_TEX, 0);
Array arr = n.param2;
return arr[0];
}
void ShaderGraph::texture_node_set_filter_strength(ShaderType p_type, float p_id, float p_strength) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_TEXTURE_INPUT && n.type != NODE_SCREEN_TEX);
Array arr = n.param2;
arr[1] = p_strength;
n.param2 = arr;
_request_update();
}
float ShaderGraph::texture_node_get_filter_strength(ShaderType p_type, float p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, 0);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), 0);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_TEXTURE_INPUT && n.type != NODE_SCREEN_TEX, 0);
Array arr = n.param2;
return arr[1];
}
void ShaderGraph::duplicate_nodes(ShaderType p_which, List<int> &p_nodes) {
//Create new node IDs
Map<int, int> duplicates = Map<int, int>();
int i = 1;
for (List<int>::Element *E = p_nodes.front(); E; E = E->next()) {
while (shader[p_which].node_map.has(i))
i++;
duplicates.insert(E->get(), i);
i++;
}
for (List<int>::Element *E = p_nodes.front(); E; E = E->next()) {
const Node &n = shader[p_which].node_map[E->get()];
Node nn = n;
nn.id = duplicates.find(n.id)->get();
nn.pos += Vector2(0, 100);
for (Map<int, SourceSlot>::Element *C = nn.connections.front(); C; C = C->next()) {
SourceSlot &c = C->get();
if (p_nodes.find(c.id))
c.id = duplicates.find(c.id)->get();
}
shader[p_which].node_map[nn.id] = nn;
}
_request_update();
}
List<int> ShaderGraph::generate_ids(ShaderType p_type, int count) {
List<int> ids = List<int>();
int i = 1;
while (ids.size() < count) {
while (shader[p_type].node_map.has(i))
i++;
ids.push_back(i);
i++;
}
return ids;
}
void ShaderGraph::scalar_op_node_set_op(ShaderType p_type, float p_id, ScalarOp p_op) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_SCALAR_OP);
n.param1 = p_op;
_request_update();
}
ShaderGraph::ScalarOp ShaderGraph::scalar_op_node_get_op(ShaderType p_type, float p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, SCALAR_MAX_OP);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), SCALAR_MAX_OP);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_SCALAR_OP, SCALAR_MAX_OP);
int op = n.param1;
return ScalarOp(op);
}
void ShaderGraph::vec_op_node_set_op(ShaderType p_type, float p_id, VecOp p_op) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_VEC_OP);
n.param1 = p_op;
_request_update();
}
ShaderGraph::VecOp ShaderGraph::vec_op_node_get_op(ShaderType p_type, float p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, VEC_MAX_OP);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), VEC_MAX_OP);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_VEC_OP, VEC_MAX_OP);
int op = n.param1;
return VecOp(op);
}
void ShaderGraph::vec_scalar_op_node_set_op(ShaderType p_type, float p_id, VecScalarOp p_op) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_VEC_SCALAR_OP);
n.param1 = p_op;
_request_update();
}
ShaderGraph::VecScalarOp ShaderGraph::vec_scalar_op_node_get_op(ShaderType p_type, float p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, VEC_SCALAR_MAX_OP);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), VEC_SCALAR_MAX_OP);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_VEC_SCALAR_OP, VEC_SCALAR_MAX_OP);
int op = n.param1;
return VecScalarOp(op);
}
void ShaderGraph::rgb_op_node_set_op(ShaderType p_type, float p_id, RGBOp p_op) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_RGB_OP);
n.param1 = p_op;
_request_update();
}
ShaderGraph::RGBOp ShaderGraph::rgb_op_node_get_op(ShaderType p_type, float p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, RGB_MAX_OP);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), RGB_MAX_OP);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_RGB_OP, RGB_MAX_OP);
int op = n.param1;
return RGBOp(op);
}
void ShaderGraph::xform_vec_mult_node_set_no_translation(ShaderType p_type, int p_id, bool p_no_translation) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_XFORM_VEC_MULT && n.type != NODE_XFORM_VEC_INV_MULT);
n.param1 = p_no_translation;
_request_update();
}
bool ShaderGraph::xform_vec_mult_node_get_no_translation(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, false);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), false);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_XFORM_VEC_MULT && n.type != NODE_XFORM_VEC_INV_MULT, false);
return n.param1;
}
void ShaderGraph::scalar_func_node_set_function(ShaderType p_type, int p_id, ScalarFunc p_func) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_SCALAR_FUNC);
int func = p_func;
ERR_FAIL_INDEX(func, SCALAR_MAX_FUNC);
n.param1 = func;
_request_update();
}
ShaderGraph::ScalarFunc ShaderGraph::scalar_func_node_get_function(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, SCALAR_MAX_FUNC);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), SCALAR_MAX_FUNC);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_SCALAR_FUNC, SCALAR_MAX_FUNC);
int func = n.param1;
return ScalarFunc(func);
}
void ShaderGraph::default_set_value(ShaderGraph::ShaderType p_which, int p_id, int p_param, const Variant &p_value) {
ERR_FAIL_INDEX(p_which, 3);
ERR_FAIL_COND(!shader[p_which].node_map.has(p_id));
Node &n = shader[p_which].node_map[p_id];
if (p_value.get_type() == Variant::NIL)
n.defaults.erase(n.defaults.find(p_param));
else
n.defaults[p_param] = p_value;
_request_update();
}
Variant ShaderGraph::default_get_value(ShaderGraph::ShaderType p_which, int p_id, int p_param) {
ERR_FAIL_INDEX_V(p_which, 3, Variant());
ERR_FAIL_COND_V(!shader[p_which].node_map.has(p_id), Variant());
const Node &n = shader[p_which].node_map[p_id];
if (!n.defaults.has(p_param))
return Variant();
return n.defaults[p_param];
}
void ShaderGraph::vec_func_node_set_function(ShaderType p_type, int p_id, VecFunc p_func) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_VEC_FUNC);
int func = p_func;
ERR_FAIL_INDEX(func, VEC_MAX_FUNC);
n.param1 = func;
_request_update();
}
ShaderGraph::VecFunc ShaderGraph::vec_func_node_get_function(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, VEC_MAX_FUNC);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), VEC_MAX_FUNC);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_VEC_FUNC, VEC_MAX_FUNC);
int func = n.param1;
return VecFunc(func);
}
void ShaderGraph::color_ramp_node_set_ramp(ShaderType p_type, int p_id, const DVector<Color> &p_colors, const DVector<real_t> &p_offsets) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
ERR_FAIL_COND(p_colors.size() != p_offsets.size());
Node &n = shader[p_type].node_map[p_id];
n.param1 = p_colors;
n.param2 = p_offsets;
_request_update();
}
DVector<Color> ShaderGraph::color_ramp_node_get_colors(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, DVector<Color>());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), DVector<Color>());
const Node &n = shader[p_type].node_map[p_id];
return n.param1;
}
DVector<real_t> ShaderGraph::color_ramp_node_get_offsets(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, DVector<real_t>());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), DVector<real_t>());
const Node &n = shader[p_type].node_map[p_id];
return n.param2;
}
void ShaderGraph::curve_map_node_set_points(ShaderType p_type, int p_id, const DVector<Vector2> &p_points) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
n.param1 = p_points;
_request_update();
}
DVector<Vector2> ShaderGraph::curve_map_node_get_points(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, DVector<Vector2>());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), DVector<Vector2>());
const Node &n = shader[p_type].node_map[p_id];
return n.param1;
}
void ShaderGraph::input_node_set_name(ShaderType p_type, int p_id, const String &p_name) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
ERR_FAIL_COND(!p_name.is_valid_identifier());
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_SCALAR_INPUT && n.type != NODE_VEC_INPUT && n.type == NODE_RGB_INPUT && n.type == NODE_XFORM_INPUT && n.type == NODE_TEXTURE_INPUT && n.type == NODE_CUBEMAP_INPUT);
n.param1 = "";
n.param1 = _find_unique_name(p_name);
_request_update();
}
String ShaderGraph::input_node_get_name(ShaderType p_type, int p_id) {
ERR_FAIL_INDEX_V(p_type, 3, String());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), String());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_SCALAR_INPUT && n.type != NODE_VEC_INPUT && n.type == NODE_RGB_INPUT && n.type == NODE_XFORM_INPUT && n.type == NODE_TEXTURE_INPUT && n.type == NODE_CUBEMAP_INPUT, String());
return n.param1;
}
void ShaderGraph::scalar_input_node_set_value(ShaderType p_type, int p_id, float p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_SCALAR_INPUT);
n.param2 = p_value;
_request_update();
}
float ShaderGraph::scalar_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, 0);
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), 0);
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_SCALAR_INPUT, 0);
return n.param2;
}
void ShaderGraph::vec_input_node_set_value(ShaderType p_type, int p_id, const Vector3 &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_VEC_INPUT);
n.param2 = p_value;
_request_update();
}
Vector3 ShaderGraph::vec_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Vector3());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Vector3());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_VEC_INPUT, Vector3());
return n.param2;
}
void ShaderGraph::rgb_input_node_set_value(ShaderType p_type, int p_id, const Color &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_RGB_INPUT);
n.param2 = p_value;
_request_update();
}
Color ShaderGraph::rgb_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Color());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Color());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_RGB_INPUT, Color());
return n.param2;
}
void ShaderGraph::xform_input_node_set_value(ShaderType p_type, int p_id, const Transform &p_value) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_XFORM_INPUT);
n.param2 = p_value;
_request_update();
}
Transform ShaderGraph::xform_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Transform());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Transform());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_XFORM_INPUT, Transform());
return n.param2;
}
void ShaderGraph::texture_input_node_set_value(ShaderType p_type, int p_id, const Ref<Texture> &p_texture) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_TEXTURE_INPUT);
n.param2 = p_texture;
_request_update();
}
Ref<Texture> ShaderGraph::texture_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Ref<Texture>());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Ref<Texture>());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_TEXTURE_INPUT, Ref<Texture>());
return n.param2;
}
void ShaderGraph::cubemap_input_node_set_value(ShaderType p_type, int p_id, const Ref<CubeMap> &p_cubemap) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_CUBEMAP_INPUT);
n.param2 = p_cubemap;
_request_update();
}
Ref<CubeMap> ShaderGraph::cubemap_input_node_get_value(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Ref<CubeMap>());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Ref<CubeMap>());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_CUBEMAP_INPUT, Ref<CubeMap>());
return n.param2;
}
void ShaderGraph::comment_node_set_text(ShaderType p_type, int p_id, const String &p_comment) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND(n.type != NODE_COMMENT);
n.param1 = p_comment;
}
String ShaderGraph::comment_node_get_text(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, String());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), String());
const Node &n = shader[p_type].node_map[p_id];
ERR_FAIL_COND_V(n.type != NODE_COMMENT, String());
return n.param1;
}
void ShaderGraph::_request_update() {
if (_pending_update_shader)
return;
_pending_update_shader = true;
call_deferred("_update_shader");
}
Variant ShaderGraph::node_get_state(ShaderType p_type, int p_id) const {
ERR_FAIL_INDEX_V(p_type, 3, Variant());
ERR_FAIL_COND_V(!shader[p_type].node_map.has(p_id), Variant());
const Node &n = shader[p_type].node_map[p_id];
Dictionary s;
s["pos"] = n.pos;
s["param1"] = n.param1;
s["param2"] = n.param2;
Array keys;
for (Map<int, Variant>::Element *E = n.defaults.front(); E; E = E->next()) {
keys.append(E->key());
s[E->key()] = E->get();
}
s["default_keys"] = keys;
return s;
}
void ShaderGraph::node_set_state(ShaderType p_type, int p_id, const Variant &p_state) {
ERR_FAIL_INDEX(p_type, 3);
ERR_FAIL_COND(!shader[p_type].node_map.has(p_id));
Node &n = shader[p_type].node_map[p_id];
Dictionary d = p_state;
ERR_FAIL_COND(!d.has("pos"));
ERR_FAIL_COND(!d.has("param1"));
ERR_FAIL_COND(!d.has("param2"));
ERR_FAIL_COND(!d.has("default_keys"));
n.pos = d["pos"];
n.param1 = d["param1"];
n.param2 = d["param2"];
Array keys = d["default_keys"];
for (int i = 0; i < keys.size(); i++) {
n.defaults[keys[i]] = d[keys[i]];
}
}
ShaderGraph::ShaderGraph(Mode p_mode)
: Shader(p_mode) {
//shader = VisualServer::get_singleton()->shader_create();
_pending_update_shader = false;
Node input;
input.id = 1;
input.pos = Vector2(50, 40);
input.type = NODE_INPUT;
Node output;
output.id = 0;
output.pos = Vector2(350, 40);
output.type = NODE_OUTPUT;
for (int i = 0; i < 3; i++) {
shader[i].node_map.insert(0, output);
shader[i].node_map.insert(1, input);
}
}
ShaderGraph::~ShaderGraph() {
//VisualServer::get_singleton()->free(shader);
}
const ShaderGraph::InOutParamInfo ShaderGraph::inout_param_info[] = {
//material vertex in
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Vertex", "SRC_VERTEX", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Normal", "SRC_NORMAL", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Tangent", "SRC_TANGENT", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "BinormalF", "SRC_BINORMALF", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Color", "SRC_COLOR", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Alpha", "SRC_ALPHA", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "UV", "SRC_UV", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "UV2", "SRC_UV2", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "WorldMatrix", "WORLD_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "InvCameraMatrix", "INV_CAMERA_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "ProjectionMatrix", "PROJECTION_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "ModelviewMatrix", "MODELVIEW_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "InstanceID", "INSTANCE_ID", "", SLOT_TYPE_SCALAR, SLOT_IN },
//material vertex out
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Vertex", "VERTEX", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Normal", "NORMAL", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Tangent", "TANGENT", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Binormal", "BINORMAL", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "UV", "UV", ".xy", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "UV2", "UV2", ".xy", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Color", "COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Alpha", "COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Var1", "VAR1.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "Var2", "VAR2.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "SpecExp", "SPEC_EXP", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_VERTEX, "PointSize", "POINT_SIZE", "", SLOT_TYPE_SCALAR, SLOT_OUT },
//pixel vertex in
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Vertex", "VERTEX", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Position", "POSITION.xyz", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Normal", "IN_NORMAL", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Tangent", "TANGENT", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Binormal", "BINORMAL", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "UV", "vec3(UV,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "UV2", "vec3(UV2,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "UVScreen", "vec3(SCREEN_UV,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "PointCoord", "POINT_COORD", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Color", "COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Alpha", "COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "InvCameraMatrix", "INV_CAMERA_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Var1", "VAR1.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Var2", "VAR2.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
//pixel vertex out
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Diffuse", "DIFFUSE_OUT", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "DiffuseAlpha", "ALPHA_OUT", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Specular", "SPECULAR", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "SpecularExp", "SPEC_EXP", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Emission", "EMISSION", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Glow", "GLOW", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "ShadeParam", "SHADE_PARAM", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Normal", "NORMAL", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "NormalMap", "NORMALMAP", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "NormalMapDepth", "NORMALMAP_DEPTH", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, "Discard", "DISCARD", ">0.5", SLOT_TYPE_SCALAR, SLOT_OUT },
//light in
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "Normal", "NORMAL", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "LightDir", "LIGHT_DIR", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "LightDiffuse", "LIGHT_DIFFUSE", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "LightSpecular", "LIGHT_SPECULAR", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "EyeVec", "EYE_VEC", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "Diffuse", "DIFFUSE", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "Specular", "SPECULAR", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "SpecExp", "SPECULAR_EXP", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "ShadeParam", "SHADE_PARAM", "", SLOT_TYPE_SCALAR, SLOT_IN },
//light out
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "Light", "LIGHT", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_MATERIAL, SHADER_TYPE_LIGHT, "Shadow", "SHADOW", "", SLOT_TYPE_VEC, SLOT_OUT },
//canvas item vertex in
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Vertex", "vec3(SRC_VERTEX,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "UV", "SRC_UV", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Color", "SRC_COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Alpha", "SRC_COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "WorldMatrix", "WORLD_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "ExtraMatrix", "EXTRA_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "ProjectionMatrix", "PROJECTION_MATRIX", "", SLOT_TYPE_XFORM, SLOT_IN },
//canvas item vertex out
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Vertex", "VERTEX", ".xy", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "UV", "UV", ".xy", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Color", "COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Alpha", "COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Var1", "VAR1.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "Var2", "VAR2.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_VERTEX, "PointSize", "POINT_SIZE", "", SLOT_TYPE_SCALAR, SLOT_OUT },
//canvas item fragment in
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Color", "SRC_COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Alpha", "SRC_COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "UV", "vec3(UV,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "UVScreen", "vec3(SCREEN_UV,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "TexPixelSize", "vec3(TEXTURE_PIXEL_SIZE,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Var1", "VAR1.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Var2", "VAR2.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "PointCoord", "POINT_COORD", "", SLOT_TYPE_VEC, SLOT_IN },
//canvas item fragment out
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Color", "COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Alpha", "COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "Normal", "NORMAL", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "NormalMap", "NORMALMAP", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_FRAGMENT, "NormalMapDepth", "NORMALMAP_DEPTH", "", SLOT_TYPE_SCALAR, SLOT_OUT },
//canvas item light in
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "Color", "COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "Alpha", "COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "Normal", "NORMAL", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "UV", "vec3(UV,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "LightColor", "LIGHT_COLOR.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "LightAlpha", "LIGHT_COLOR.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "LightHeight", "LIGHT_HEIGHT", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "ShadowColor", "LIGHT_SHADOW.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "ShadowAlpha", "LIGHT_SHADOW.a", "", SLOT_TYPE_SCALAR, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "TexPixelSize", "vec3(TEXTURE_PIXEL_SIZE,0)", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "Var1", "VAR1.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "Var2", "VAR2.rgb", "", SLOT_TYPE_VEC, SLOT_IN },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "PointCoord", "POINT_COORD", "", SLOT_TYPE_VEC, SLOT_IN },
//canvas item light out
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "LightColor", "LIGHT.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "LightAlpha", "LIGHT.a", "", SLOT_TYPE_SCALAR, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "ShadowColor", "SHADOW.rgb", "", SLOT_TYPE_VEC, SLOT_OUT },
{ MODE_CANVAS_ITEM, SHADER_TYPE_LIGHT, "ShadowAlpha", "SHADOW.a", "", SLOT_TYPE_SCALAR, SLOT_OUT },
//end
{ MODE_MATERIAL, SHADER_TYPE_FRAGMENT, NULL, NULL, NULL, SLOT_TYPE_SCALAR, SLOT_OUT },
};
void ShaderGraph::get_input_output_node_slot_info(Mode p_mode, ShaderType p_type, List<SlotInfo> *r_slots) {
const InOutParamInfo *iop = &inout_param_info[0];
while (iop->name) {
if (p_mode == iop->shader_mode && p_type == iop->shader_type) {
SlotInfo si;
si.dir = iop->dir;
si.name = iop->name;
si.type = iop->slot_type;
r_slots->push_back(si);
}
iop++;
}
}
const ShaderGraph::NodeSlotInfo ShaderGraph::node_slot_info[] = {
{ NODE_SCALAR_CONST, { SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, //scalar constant
{ NODE_VEC_CONST, { SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, //vec3 constant
{ NODE_RGB_CONST, { SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, //rgb constant (shows a color picker instead)
{ NODE_XFORM_CONST, { SLOT_MAX }, { SLOT_TYPE_XFORM, SLOT_MAX } }, // 4x4 matrix constant
{ NODE_TIME, { SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // time in seconds
{ NODE_SCREEN_TEX, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // screen texture sampler (takes UV) (only usable in fragment shader)
{ NODE_SCALAR_OP, { SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // scalar vs scalar op (mul,{SLOT_MAX},{SLOT_MAX}}, add,{SLOT_MAX},{SLOT_MAX}}, div,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_VEC_OP, { SLOT_TYPE_VEC, SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // scalar vs scalar op (mul,{SLOT_MAX},{SLOT_MAX}}, add,{SLOT_MAX},{SLOT_MAX}}, div,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_VEC_SCALAR_OP, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // vec3 vs scalar op (mul,{SLOT_MAX},{SLOT_MAX}}, add,{SLOT_MAX},{SLOT_MAX}}, div,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_RGB_OP, { SLOT_TYPE_VEC, SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // vec3 vs scalar op (mul,{SLOT_MAX},{SLOT_MAX}}, add,{SLOT_MAX},{SLOT_MAX}}, div,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_XFORM_MULT, { SLOT_TYPE_XFORM, SLOT_TYPE_XFORM, SLOT_MAX }, { SLOT_TYPE_XFORM, SLOT_MAX } }, // mat4 x mat4
{ NODE_XFORM_VEC_MULT, { SLOT_TYPE_XFORM, SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // mat4 x vec3 mult (with no-translation option)
{ NODE_XFORM_VEC_INV_MULT, { SLOT_TYPE_VEC, SLOT_TYPE_XFORM, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // mat4 x vec3 inverse mult (with no-translation option)
{ NODE_SCALAR_FUNC, { SLOT_TYPE_SCALAR, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // scalar function (sin,{SLOT_MAX},{SLOT_MAX}}, cos,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_VEC_FUNC, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // vector function (normalize,{SLOT_MAX},{SLOT_MAX}}, negate,{SLOT_MAX},{SLOT_MAX}}, reciprocal,{SLOT_MAX},{SLOT_MAX}}, rgb2hsv,{SLOT_MAX},{SLOT_MAX}}, hsv2rgb,{SLOT_MAX},{SLOT_MAX}}, etc,{SLOT_MAX},{SLOT_MAX}}, etc)
{ NODE_VEC_LEN, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // vec3 length
{ NODE_DOT_PROD, { SLOT_TYPE_VEC, SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // vec3 . vec3 (dot product -> scalar output)
{ NODE_VEC_TO_SCALAR, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR } }, // 1 vec3 input,{SLOT_MAX},{SLOT_MAX}}, 3 scalar outputs
{ NODE_SCALAR_TO_VEC, { SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR }, { SLOT_TYPE_VEC, SLOT_MAX } }, // 3 scalar input,{SLOT_MAX},{SLOT_MAX}}, 1 vec3 output
{ NODE_SCALAR_INTERP, { SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR, SLOT_TYPE_SCALAR }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // scalar interpolation (with optional curve)
{ NODE_VEC_INTERP, { SLOT_TYPE_VEC, SLOT_TYPE_VEC, SLOT_TYPE_SCALAR }, { SLOT_TYPE_VEC, SLOT_MAX } }, // vec3 interpolation (with optional curve)
{ NODE_COLOR_RAMP, { SLOT_TYPE_SCALAR, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, // vec3 interpolation (with optional curve)
{ NODE_CURVE_MAP, { SLOT_TYPE_SCALAR, SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // vec3 interpolation (with optional curve)
{ NODE_SCALAR_INPUT, { SLOT_MAX }, { SLOT_TYPE_SCALAR, SLOT_MAX } }, // scalar uniform (assignable in material)
{ NODE_VEC_INPUT, { SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_MAX } }, // vec3 uniform (assignable in material)
{ NODE_RGB_INPUT, { SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, // color uniform (assignable in material)
{ NODE_XFORM_INPUT, { SLOT_MAX }, { SLOT_TYPE_XFORM, SLOT_MAX } }, // mat4 uniform (assignable in material)
{ NODE_TEXTURE_INPUT, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, // texture input (assignable in material)
{ NODE_CUBEMAP_INPUT, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, // cubemap input (assignable in material)
{ NODE_DEFAULT_TEXTURE, { SLOT_TYPE_VEC, SLOT_MAX }, { SLOT_TYPE_VEC, SLOT_TYPE_SCALAR, SLOT_MAX } }, // cubemap input (assignable in material)
{ NODE_COMMENT, { SLOT_MAX }, { SLOT_MAX } }, // comment
{ NODE_TYPE_MAX, { SLOT_MAX }, { SLOT_MAX } }
};
int ShaderGraph::get_node_input_slot_count(Mode p_mode, ShaderType p_shader_type, NodeType p_type) {
if (p_type == NODE_INPUT || p_type == NODE_OUTPUT) {
const InOutParamInfo *iop = &inout_param_info[0];
int pc = 0;
while (iop->name) {
if (p_mode == iop->shader_mode && p_shader_type == iop->shader_type) {
if (iop->dir == SLOT_OUT)
pc++;
}
iop++;
}
return pc;
} else if (p_type == NODE_VEC_TO_XFORM) {
return 4;
} else if (p_type == NODE_XFORM_TO_VEC) {
return 1;
} else {
const NodeSlotInfo *nsi = &node_slot_info[0];
while (nsi->type != NODE_TYPE_MAX) {
if (nsi->type == p_type) {
int pc = 0;
for (int i = 0; i < NodeSlotInfo::MAX_INS; i++) {
if (nsi->ins[i] == SLOT_MAX)
break;
pc++;
}
return pc;
}
nsi++;
}
return 0;
}
}
int ShaderGraph::get_node_output_slot_count(Mode p_mode, ShaderType p_shader_type, NodeType p_type) {
if (p_type == NODE_INPUT || p_type == NODE_OUTPUT) {
const InOutParamInfo *iop = &inout_param_info[0];
int pc = 0;
while (iop->name) {
if (p_mode == iop->shader_mode && p_shader_type == iop->shader_type) {
if (iop->dir == SLOT_IN)
pc++;
}
iop++;
}
return pc;
} else if (p_type == NODE_VEC_TO_XFORM) {
return 1;
} else if (p_type == NODE_XFORM_TO_VEC) {
return 4;
} else {
const NodeSlotInfo *nsi = &node_slot_info[0];
while (nsi->type != NODE_TYPE_MAX) {
if (nsi->type == p_type) {
int pc = 0;
for (int i = 0; i < NodeSlotInfo::MAX_OUTS; i++) {
if (nsi->outs[i] == SLOT_MAX)
break;
pc++;
}
return pc;
}
nsi++;
}
return 0;
}
}
ShaderGraph::SlotType ShaderGraph::get_node_input_slot_type(Mode p_mode, ShaderType p_shader_type, NodeType p_type, int p_idx) {
if (p_type == NODE_INPUT || p_type == NODE_OUTPUT) {
const InOutParamInfo *iop = &inout_param_info[0];
int pc = 0;
while (iop->name) {
if (p_mode == iop->shader_mode && p_shader_type == iop->shader_type) {
if (iop->dir == SLOT_OUT) {
if (pc == p_idx)
return iop->slot_type;
pc++;
}
}
iop++;
}
ERR_FAIL_V(SLOT_MAX);
} else if (p_type == NODE_VEC_TO_XFORM) {
return SLOT_TYPE_VEC;
} else if (p_type == NODE_XFORM_TO_VEC) {
return SLOT_TYPE_XFORM;
} else {
const NodeSlotInfo *nsi = &node_slot_info[0];
while (nsi->type != NODE_TYPE_MAX) {
if (nsi->type == p_type) {
for (int i = 0; i < NodeSlotInfo::MAX_INS; i++) {
if (nsi->ins[i] == SLOT_MAX)
break;
if (i == p_idx)
return nsi->ins[i];
}
}
nsi++;
}
ERR_FAIL_V(SLOT_MAX);
}
}
ShaderGraph::SlotType ShaderGraph::get_node_output_slot_type(Mode p_mode, ShaderType p_shader_type, NodeType p_type, int p_idx) {
if (p_type == NODE_INPUT || p_type == NODE_OUTPUT) {
const InOutParamInfo *iop = &inout_param_info[0];
int pc = 0;
while (iop->name) {
if (p_mode == iop->shader_mode && p_shader_type == iop->shader_type) {
if (iop->dir == SLOT_IN) {
if (pc == p_idx)
return iop->slot_type;
pc++;
}
}
iop++;
}
ERR_FAIL_V(SLOT_MAX);
} else if (p_type == NODE_VEC_TO_XFORM) {
return SLOT_TYPE_XFORM;
} else if (p_type == NODE_XFORM_TO_VEC) {
return SLOT_TYPE_VEC;
} else {
const NodeSlotInfo *nsi = &node_slot_info[0];
while (nsi->type != NODE_TYPE_MAX) {
if (nsi->type == p_type) {
for (int i = 0; i < NodeSlotInfo::MAX_OUTS; i++) {
if (nsi->outs[i] == SLOT_MAX)
break;
if (i == p_idx)
return nsi->outs[i];
}
}
nsi++;
}
ERR_FAIL_V(SLOT_MAX);
}
}
void ShaderGraph::_update_shader() {
String code[3];
List<StringName> names;
get_default_texture_param_list(&names);
for (List<StringName>::Element *E = names.front(); E; E = E->next()) {
set_default_texture_param(E->get(), Ref<Texture>());
}
for (int i = 0; i < 3; i++) {
int idx = 0;
for (Map<int, Node>::Element *E = shader[i].node_map.front(); E; E = E->next()) {
E->get().sort_order = idx++;
}
//simple method for graph solving using bubblesort derived algorithm
int iters = 0;
int iter_max = shader[i].node_map.size() * shader[i].node_map.size();
while (true) {
if (iters > iter_max)
break;
int swaps = 0;
for (Map<int, Node>::Element *E = shader[i].node_map.front(); E; E = E->next()) {
for (Map<int, SourceSlot>::Element *F = E->get().connections.front(); F; F = F->next()) {
//this is kinda slow, could be sped up
Map<int, Node>::Element *G = shader[i].node_map.find(F->get().id);
ERR_FAIL_COND(!G);
if (G->get().sort_order > E->get().sort_order) {
SWAP(G->get().sort_order, E->get().sort_order);
swaps++;
}
}
}
iters++;
if (swaps == 0) {
iters = 0;
break;
}
}
if (iters > 0) {
shader[i].error = GRAPH_ERROR_CYCLIC;
continue;
}
Vector<Node *> order;
order.resize(shader[i].node_map.size());
for (Map<int, Node>::Element *E = shader[i].node_map.front(); E; E = E->next()) {
order[E->get().sort_order] = &E->get();
}
//generate code for the ordered graph
bool failed = false;
if (i == SHADER_TYPE_FRAGMENT && get_mode() == MODE_MATERIAL) {
code[i] += "vec3 DIFFUSE_OUT=vec3(0,0,0);\n";
code[i] += "float ALPHA_OUT=0;\n";
}
Map<String, String> inputs_xlate;
Map<String, String> input_names_xlate;
Set<String> inputs_used;
for (int j = 0; j < order.size(); j++) {
Node *n = order[j];
if (n->type == NODE_INPUT) {
const InOutParamInfo *iop = &inout_param_info[0];
int idx = 0;
while (iop->name) {
if (get_mode() == iop->shader_mode && i == iop->shader_type && SLOT_IN == iop->dir) {
const char *typestr[4] = { "float", "vec3", "mat4", "texture" };
String vname = ("nd" + itos(n->id) + "sl" + itos(idx));
inputs_xlate[vname] = String(typestr[iop->slot_type]) + " " + vname + "=" + iop->variable + ";\n";
input_names_xlate[vname] = iop->variable;
idx++;
}
iop++;
}
} else if (n->type == NODE_OUTPUT) {
bool use_alpha = false;
const InOutParamInfo *iop = &inout_param_info[0];
int idx = 0;
while (iop->name) {
if (get_mode() == iop->shader_mode && i == iop->shader_type && SLOT_OUT == iop->dir) {
if (n->connections.has(idx)) {
String iname = ("nd" + itos(n->connections[idx].id) + "sl" + itos(n->connections[idx].slot));
if (node_get_type(ShaderType(i), n->connections[idx].id) == NODE_INPUT)
inputs_used.insert(iname);
code[i] += String(iop->variable) + "=" + iname + String(iop->postfix) + ";\n";
if (i == SHADER_TYPE_FRAGMENT && get_mode() == MODE_MATERIAL && String(iop->name) == "DiffuseAlpha")
use_alpha = true;
}
idx++;
}
iop++;
}
if (i == SHADER_TYPE_FRAGMENT && get_mode() == MODE_MATERIAL) {
if (use_alpha) {
code[i] += "DIFFUSE_ALPHA=vec4(DIFFUSE_OUT,ALPHA_OUT);\n";
} else {
code[i] += "DIFFUSE=DIFFUSE_OUT;\n";
}
}
} else {
Vector<String> inputs;
int max = get_node_input_slot_count(get_mode(), ShaderType(i), n->type);
for (int k = 0; k < max; k++) {
String iname;
if (!n->connections.has(k)) {
iname = "nd" + itos(n->id) + "sl" + itos(k) + "def";
} else {
iname = "nd" + itos(n->connections[k].id) + "sl" + itos(n->connections[k].slot);
if (node_get_type(ShaderType(i), n->connections[k].id) == NODE_INPUT) {
inputs_used.insert(iname);
}
}
inputs.push_back(iname);
}
if (failed)
break;
if (n->type == NODE_TEXTURE_INPUT || n->type == NODE_CUBEMAP_INPUT) {
set_default_texture_param(n->param1, n->param2);
}
_add_node_code(ShaderType(i), n, inputs, code[i]);
}
}
if (failed)
continue;
for (Set<String>::Element *E = inputs_used.front(); E; E = E->next()) {
ERR_CONTINUE(!inputs_xlate.has(E->get()));
code[i] = inputs_xlate[E->get()] + code[i];
String name = input_names_xlate[E->get()];
if (i == SHADER_TYPE_VERTEX && get_mode() == MODE_MATERIAL) {
if (name == ("SRC_COLOR"))
code[i] = "vec3 SRC_COLOR=COLOR.rgb;\n" + code[i];
if (name == ("SRC_ALPHA"))
code[i] = "float SRC_ALPHA=COLOR.a;\n" + code[i];
if (name == ("SRC_UV"))
code[i] = "vec3 SRC_UV=vec3(UV,0);\n" + code[i];
if (name == ("SRC_UV2"))
code[i] = "float SRC_UV2=vec3(UV2,0);\n" + code[i];
} else if (i == SHADER_TYPE_FRAGMENT && get_mode() == MODE_MATERIAL) {
if (name == ("IN_NORMAL"))
code[i] = "vec3 IN_NORMAL=NORMAL;\n" + code[i];
} else if (i == SHADER_TYPE_VERTEX && get_mode() == MODE_CANVAS_ITEM) {
if (name == ("SRC_COLOR"))
code[i] = "vec3 SRC_COLOR=COLOR.rgb;\n" + code[i];
if (name == ("SRC_UV"))
code[i] = "vec3 SRC_UV=vec3(UV,0);\n" + code[i];
}
}
shader[i].error = GRAPH_OK;
}
bool all_ok = true;
for (int i = 0; i < 3; i++) {
if (shader[i].error != GRAPH_OK)
all_ok = false;
}
/*print_line("VERTEX: \n"+code[0]);
print_line("FRAGMENT: \n"+code[1]);
print_line("LIGHT: \n"+code[2]);*/
if (all_ok) {
set_code(code[0], code[1], code[2]);
}
//do shader here
_pending_update_shader = false;
emit_signal(SceneStringNames::get_singleton()->updated);
}
void ShaderGraph::_plot_curve(const Vector2 &p_a, const Vector2 &p_b, const Vector2 &p_c, const Vector2 &p_d, uint8_t *p_heights, bool *p_useds) {
float geometry[4][4];
float tmp1[4][4];
float tmp2[4][4];
float deltas[4][4];
double x, dx, dx2, dx3;
double y, dy, dy2, dy3;
double d, d2, d3;
int lastx, lasty;
int newx, newy;
int ntimes;
int i, j;
int xmax = 255;
int ymax = 255;
/* construct the geometry matrix from the segment */
for (i = 0; i < 4; i++) {
geometry[i][2] = 0;
geometry[i][3] = 0;
}
geometry[0][0] = (p_a[0] * xmax);
geometry[1][0] = (p_b[0] * xmax);
geometry[2][0] = (p_c[0] * xmax);
geometry[3][0] = (p_d[0] * xmax);
geometry[0][1] = (p_a[1] * ymax);
geometry[1][1] = (p_b[1] * ymax);
geometry[2][1] = (p_c[1] * ymax);
geometry[3][1] = (p_d[1] * ymax);
/* subdivide the curve ntimes (1000) times */
ntimes = 4 * xmax;
/* ntimes can be adjusted to give a finer or coarser curve */
d = 1.0 / ntimes;
d2 = d * d;
d3 = d * d * d;
/* construct a temporary matrix for determining the forward differencing deltas */
tmp2[0][0] = 0;
tmp2[0][1] = 0;
tmp2[0][2] = 0;
tmp2[0][3] = 1;
tmp2[1][0] = d3;
tmp2[1][1] = d2;
tmp2[1][2] = d;
tmp2[1][3] = 0;
tmp2[2][0] = 6 * d3;
tmp2[2][1] = 2 * d2;
tmp2[2][2] = 0;
tmp2[2][3] = 0;
tmp2[3][0] = 6 * d3;
tmp2[3][1] = 0;
tmp2[3][2] = 0;
tmp2[3][3] = 0;
/* compose the basis and geometry matrices */
static const float CR_basis[4][4] = {
{ -0.5, 1.5, -1.5, 0.5 },
{ 1.0, -2.5, 2.0, -0.5 },
{ -0.5, 0.0, 0.5, 0.0 },
{ 0.0, 1.0, 0.0, 0.0 },
};
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
tmp1[i][j] = (CR_basis[i][0] * geometry[0][j] +
CR_basis[i][1] * geometry[1][j] +
CR_basis[i][2] * geometry[2][j] +
CR_basis[i][3] * geometry[3][j]);
}
}
/* compose the above results to get the deltas matrix */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
deltas[i][j] = (tmp2[i][0] * tmp1[0][j] +
tmp2[i][1] * tmp1[1][j] +
tmp2[i][2] * tmp1[2][j] +
tmp2[i][3] * tmp1[3][j]);
}
}
/* extract the x deltas */
x = deltas[0][0];
dx = deltas[1][0];
dx2 = deltas[2][0];
dx3 = deltas[3][0];
/* extract the y deltas */
y = deltas[0][1];
dy = deltas[1][1];
dy2 = deltas[2][1];
dy3 = deltas[3][1];
lastx = CLAMP(x, 0, xmax);
lasty = CLAMP(y, 0, ymax);
p_heights[lastx] = lasty;
p_useds[lastx] = true;
/* loop over the curve */
for (i = 0; i < ntimes; i++) {
/* increment the x values */
x += dx;
dx += dx2;
dx2 += dx3;
/* increment the y values */
y += dy;
dy += dy2;
dy2 += dy3;
newx = CLAMP((Math::round(x)), 0, xmax);
newy = CLAMP((Math::round(y)), 0, ymax);
/* if this point is different than the last one...then draw it */
if ((lastx != newx) || (lasty != newy)) {
p_useds[newx] = true;
p_heights[newx] = newy;
}
lastx = newx;
lasty = newy;
}
}
void ShaderGraph::_add_node_code(ShaderType p_type, Node *p_node, const Vector<String> &p_inputs, String &code) {
const char *typestr[4] = { "float", "vec3", "mat4", "texture" };
#define OUTNAME(id, slot) (String(typestr[get_node_output_slot_type(get_mode(), p_type, p_node->type, slot)]) + " " + ("nd" + itos(id) + "sl" + itos(slot)))
#define OUTVAR(id, slot) ("nd" + itos(id) + "sl" + itos(slot))
#define DEF_VEC(slot) \
if (p_inputs[slot].ends_with("def")) { \
Vector3 v = p_node->defaults[slot]; \
code += String(typestr[1]) + " " + p_inputs[slot] + "=vec3(" + v + ");\n"; \
}
#define DEF_SCALAR(slot) \
if (p_inputs[slot].ends_with("def")) { \
double v = p_node->defaults[slot]; \
code += String(typestr[0]) + " " + p_inputs[slot] + "=" + rtos(v) + ";\n"; \
}
#define DEF_COLOR(slot) \
if (p_inputs[slot].ends_with("def")) { \
Color col = p_node->defaults[slot]; \
code += String(typestr[1]) + " " + p_inputs[slot] + "=vec3(" + rtos(col.r) + "," + rtos(col.g) + "," + rtos(col.b) + ");\n"; \
}
#define DEF_MATRIX(slot) \
if (p_inputs[slot].ends_with("def")) { \
Transform xf = p_node->defaults[slot]; \
code += String(typestr[2]) + " " + p_inputs[slot] + "=mat4(\n"; \
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(0).x) + "," + rtos(xf.basis.get_axis(0).y) + "," + rtos(xf.basis.get_axis(0).z) + "),0),\n"; \
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(1).x) + "," + rtos(xf.basis.get_axis(1).y) + "," + rtos(xf.basis.get_axis(1).z) + "),0),\n"; \
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(2).x) + "," + rtos(xf.basis.get_axis(2).y) + "," + rtos(xf.basis.get_axis(2).z) + "),0),\n"; \
code += "\tvec4(vec3(" + rtos(xf.origin.x) + "," + rtos(xf.origin.y) + "," + rtos(xf.origin.z) + "),1)\n"; \
code += ");\n"; \
}
switch (p_node->type) {
case NODE_INPUT: {
} break;
case NODE_SCALAR_CONST: {
double scalar = p_node->param1;
code += OUTNAME(p_node->id, 0) + "=" + rtos(scalar) + ";\n";
} break;
case NODE_VEC_CONST: {
Vector3 vec = p_node->param1;
code += OUTNAME(p_node->id, 0) + "=vec3(" + rtos(vec.x) + "," + rtos(vec.y) + "," + rtos(vec.z) + ");\n";
} break;
case NODE_RGB_CONST: {
Color col = p_node->param1;
code += OUTNAME(p_node->id, 0) + "=vec3(" + rtos(col.r) + "," + rtos(col.g) + "," + rtos(col.b) + ");\n";
code += OUTNAME(p_node->id, 1) + "=" + rtos(col.a) + ";\n";
} break;
case NODE_XFORM_CONST: {
Transform xf = p_node->param1;
code += OUTNAME(p_node->id, 0) + "=mat4(\n";
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(0).x) + "," + rtos(xf.basis.get_axis(0).y) + "," + rtos(xf.basis.get_axis(0).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(1).x) + "," + rtos(xf.basis.get_axis(1).y) + "," + rtos(xf.basis.get_axis(1).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(xf.basis.get_axis(2).x) + "," + rtos(xf.basis.get_axis(2).y) + "," + rtos(xf.basis.get_axis(2).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(xf.origin.x) + "," + rtos(xf.origin.y) + "," + rtos(xf.origin.z) + "),1)\n";
code += ");";
} break;
case NODE_TIME: {
code += OUTNAME(p_node->id, 0) + "=TIME;\n";
} break;
case NODE_SCREEN_TEX: {
DEF_VEC(0);
code += OUTNAME(p_node->id, 0) + "=texscreen(" + p_inputs[0] + ".xy);\n";
} break;
case NODE_SCALAR_OP: {
DEF_SCALAR(0);
DEF_SCALAR(1);
int op = p_node->param1;
String optxt;
switch (op) {
case SCALAR_OP_ADD: optxt = p_inputs[0] + "+" + p_inputs[1] + ";"; break;
case SCALAR_OP_SUB: optxt = p_inputs[0] + "-" + p_inputs[1] + ";"; break;
case SCALAR_OP_MUL: optxt = p_inputs[0] + "*" + p_inputs[1] + ";"; break;
case SCALAR_OP_DIV: optxt = p_inputs[0] + "/" + p_inputs[1] + ";"; break;
case SCALAR_OP_MOD: optxt = "mod(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case SCALAR_OP_POW: optxt = "pow(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case SCALAR_OP_MAX: optxt = "max(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case SCALAR_OP_MIN: optxt = "min(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case SCALAR_OP_ATAN2: optxt = "atan2(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
}
code += OUTNAME(p_node->id, 0) + "=" + optxt + "\n";
} break;
case NODE_VEC_OP: {
DEF_VEC(0);
DEF_VEC(1);
int op = p_node->param1;
String optxt;
switch (op) {
case VEC_OP_ADD: optxt = p_inputs[0] + "+" + p_inputs[1] + ";"; break;
case VEC_OP_SUB: optxt = p_inputs[0] + "-" + p_inputs[1] + ";"; break;
case VEC_OP_MUL: optxt = p_inputs[0] + "*" + p_inputs[1] + ";"; break;
case VEC_OP_DIV: optxt = p_inputs[0] + "/" + p_inputs[1] + ";"; break;
case VEC_OP_MOD: optxt = "mod(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case VEC_OP_POW: optxt = "pow(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case VEC_OP_MAX: optxt = "max(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case VEC_OP_MIN: optxt = "min(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
case VEC_OP_CROSS: optxt = "cross(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
}
code += OUTNAME(p_node->id, 0) + "=" + optxt + "\n";
} break;
case NODE_VEC_SCALAR_OP: {
DEF_VEC(0);
DEF_SCALAR(1);
int op = p_node->param1;
String optxt;
switch (op) {
case VEC_SCALAR_OP_MUL: optxt = p_inputs[0] + "*" + p_inputs[1] + ";"; break;
case VEC_SCALAR_OP_DIV: optxt = p_inputs[0] + "/" + p_inputs[1] + ";"; break;
case VEC_SCALAR_OP_POW: optxt = "pow(" + p_inputs[0] + "," + p_inputs[1] + ");"; break;
}
code += OUTNAME(p_node->id, 0) + "=" + optxt + "\n";
} break;
case NODE_RGB_OP: {
DEF_COLOR(0);
DEF_COLOR(1);
int op = p_node->param1;
static const char *axisn[3] = { "x", "y", "z" };
switch (op) {
case RGB_OP_SCREEN: {
code += OUTNAME(p_node->id, 0) + "=vec3(1.0)-(vec3(1.0)-" + p_inputs[0] + ")*(vec3(1.0)-" + p_inputs[1] + ");\n";
} break;
case RGB_OP_DIFFERENCE: {
code += OUTNAME(p_node->id, 0) + "=abs(" + p_inputs[0] + "-" + p_inputs[1] + ");\n";
} break;
case RGB_OP_DARKEN: {
code += OUTNAME(p_node->id, 0) + "=min(" + p_inputs[0] + "," + p_inputs[1] + ");\n";
} break;
case RGB_OP_LIGHTEN: {
code += OUTNAME(p_node->id, 0) + "=max(" + p_inputs[0] + "," + p_inputs[1] + ");\n";
} break;
case RGB_OP_OVERLAY: {
code += OUTNAME(p_node->id, 0) + ";\n";
for (int i = 0; i < 3; i++) {
code += "{\n";
code += "\tfloat base=" + p_inputs[0] + "." + axisn[i] + ";\n";
code += "\tfloat blend=" + p_inputs[1] + "." + axisn[i] + ";\n";
code += "\tif (base < 0.5) {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = 2.0 * base * blend;\n";
code += "\t} else {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = 1.0 - 2.0 * (1.0 - blend) * (1.0 - base);\n";
code += "\t}\n";
code += "}\n";
}
} break;
case RGB_OP_DODGE: {
code += OUTNAME(p_node->id, 0) + "=(" + p_inputs[0] + ")/(vec3(1.0)-" + p_inputs[1] + ");\n";
} break;
case RGB_OP_BURN: {
code += OUTNAME(p_node->id, 0) + "=vec3(1.0)-(vec3(1.0)-" + p_inputs[0] + ")/(" + p_inputs[1] + ");\n";
} break;
case RGB_OP_SOFT_LIGHT: {
code += OUTNAME(p_node->id, 0) + ";\n";
for (int i = 0; i < 3; i++) {
code += "{\n";
code += "\tfloat base=" + p_inputs[0] + "." + axisn[i] + ";\n";
code += "\tfloat blend=" + p_inputs[1] + "." + axisn[i] + ";\n";
code += "\tif (base < 0.5) {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = (base * (blend+0.5));\n";
code += "\t} else {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = (1 - (1-base) * (1-(blend-0.5)));\n";
code += "\t}\n";
code += "}\n";
}
} break;
case RGB_OP_HARD_LIGHT: {
code += OUTNAME(p_node->id, 0) + ";\n";
for (int i = 0; i < 3; i++) {
code += "{\n";
code += "\tfloat base=" + p_inputs[0] + "." + axisn[i] + ";\n";
code += "\tfloat blend=" + p_inputs[1] + "." + axisn[i] + ";\n";
code += "\tif (base < 0.5) {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = (base * (2*blend));\n";
code += "\t} else {\n";
code += "\t\t" + OUTVAR(p_node->id, 0) + "." + axisn[i] + " = (1 - (1-base) * (1-2*(blend-0.5)));\n";
code += "\t}\n";
code += "}\n";
}
} break;
}
} break;
case NODE_XFORM_MULT: {
DEF_MATRIX(0);
DEF_MATRIX(1);
code += OUTNAME(p_node->id, 0) + "=" + p_inputs[0] + "*" + p_inputs[1] + ";\n";
} break;
case NODE_XFORM_VEC_MULT: {
DEF_MATRIX(0);
DEF_VEC(1);
bool no_translation = p_node->param1;
if (no_translation) {
code += OUTNAME(p_node->id, 0) + "=(" + p_inputs[0] + "*vec4(" + p_inputs[1] + ",0)).xyz;\n";
} else {
code += OUTNAME(p_node->id, 0) + "=(" + p_inputs[0] + "*vec4(" + p_inputs[1] + ",1)).xyz;\n";
}
} break;
case NODE_XFORM_VEC_INV_MULT: {
DEF_VEC(0);
DEF_MATRIX(1);
bool no_translation = p_node->param1;
if (no_translation) {
code += OUTNAME(p_node->id, 0) + "=(" + p_inputs[1] + "*vec4(" + p_inputs[0] + ",0)).xyz;\n";
} else {
code += OUTNAME(p_node->id, 0) + "=(" + p_inputs[1] + "*vec4(" + p_inputs[0] + ",1)).xyz;\n";
}
} break;
case NODE_SCALAR_FUNC: {
DEF_SCALAR(0);
static const char *scalar_func_id[SCALAR_MAX_FUNC] = {
"sin($)",
"cos($)",
"tan($)",
"asin($)",
"acos($)",
"atan($)",
"sinh($)",
"cosh($)",
"tanh($)",
"log($)",
"exp($)",
"sqrt($)",
"abs($)",
"sign($)",
"floor($)",
"round($)",
"ceil($)",
"fract($)",
"min(max($,0),1)",
"-($)",
};
int func = p_node->param1;
ERR_FAIL_INDEX(func, SCALAR_MAX_FUNC);
code += OUTNAME(p_node->id, 0) + "=" + String(scalar_func_id[func]).replace("$", p_inputs[0]) + ";\n";
} break;
case NODE_VEC_FUNC: {
DEF_VEC(0);
static const char *vec_func_id[VEC_MAX_FUNC] = {
"normalize($)",
"max(min($,vec3(1,1,1)),vec3(0,0,0))",
"-($)",
"1.0/($)",
"",
"",
};
int func = p_node->param1;
ERR_FAIL_INDEX(func, VEC_MAX_FUNC);
if (func == VEC_FUNC_RGB2HSV) {
code += OUTNAME(p_node->id, 0) + ";\n";
code += "{\n";
code += "\tvec3 c = " + p_inputs[0] + ";\n";
code += "\tvec4 K = vec4(0.0, -1.0 / 3.0, 2.0 / 3.0, -1.0);\n";
code += "\tvec4 p = mix(vec4(c.bg, K.wz), vec4(c.gb, K.xy), step(c.b, c.g));\n";
code += "\tvec4 q = mix(vec4(p.xyw, c.r), vec4(c.r, p.yzx), step(p.x, c.r));\n";
code += "\tfloat d = q.x - min(q.w, q.y);\n";
code += "\tfloat e = 1.0e-10;\n";
code += "\t" + OUTVAR(p_node->id, 0) + "=vec3(abs(q.z + (q.w - q.y) / (6.0 * d + e)), d / (q.x + e), q.x);\n";
code += "}\n";
} else if (func == VEC_FUNC_HSV2RGB) {
code += OUTNAME(p_node->id, 0) + ";\n";
code += "{\n";
code += "\tvec3 c = " + p_inputs[0] + ";\n";
code += "\tvec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);\n";
code += "\tvec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);\n";
code += "\t" + OUTVAR(p_node->id, 0) + "=c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);\n";
code += "}\n";
} else {
code += OUTNAME(p_node->id, 0) + "=" + String(vec_func_id[func]).replace("$", p_inputs[0]) + ";\n";
}
} break;
case NODE_VEC_LEN: {
DEF_VEC(0);
code += OUTNAME(p_node->id, 0) + "=length(" + p_inputs[0] + ");\n";
} break;
case NODE_DOT_PROD: {
DEF_VEC(0);
DEF_VEC(1);
code += OUTNAME(p_node->id, 0) + "=dot(" + p_inputs[1] + "," + p_inputs[0] + ");\n";
} break;
case NODE_VEC_TO_SCALAR: {
DEF_VEC(0);
code += OUTNAME(p_node->id, 0) + "=" + p_inputs[0] + ".x;\n";
code += OUTNAME(p_node->id, 1) + "=" + p_inputs[0] + ".y;\n";
code += OUTNAME(p_node->id, 2) + "=" + p_inputs[0] + ".z;\n";
} break;
case NODE_SCALAR_TO_VEC: {
DEF_SCALAR(0);
DEF_SCALAR(1);
DEF_SCALAR(2);
code += OUTNAME(p_node->id, 0) + "=vec3(" + p_inputs[0] + "," + p_inputs[1] + "," + p_inputs[2] + "" + ");\n";
} break;
case NODE_VEC_TO_XFORM: {
DEF_VEC(0);
DEF_VEC(1);
DEF_VEC(2);
DEF_VEC(3);
code += OUTNAME(p_node->id, 0) + "=mat4(" +
"vec4(" + p_inputs[0] + ".x," + p_inputs[0] + ".y," + p_inputs[0] + ".z, 0.0),"
"vec4(" +
p_inputs[1] + ".x," + p_inputs[1] + ".y," + p_inputs[1] + ".z, 0.0),"
"vec4(" +
p_inputs[2] + ".x," + p_inputs[2] + ".y," + p_inputs[2] + ".z, 0.0),"
"vec4(" +
p_inputs[3] + ".x," + p_inputs[3] + ".y," + p_inputs[3] + ".z, 1.0));\n";
} break;
case NODE_XFORM_TO_VEC: {
DEF_MATRIX(0);
code += OUTNAME(p_node->id, 0) + ";\n";
code += OUTNAME(p_node->id, 1) + ";\n";
code += OUTNAME(p_node->id, 2) + ";\n";
code += OUTNAME(p_node->id, 3) + ";\n";
code += "{\n";
code += "\tvec4 xform_row_01=" + p_inputs[0] + ".x;\n";
code += "\tvec4 xform_row_02=" + p_inputs[0] + ".y;\n";
code += "\tvec4 xform_row_03=" + p_inputs[0] + ".z;\n";
code += "\tvec4 xform_row_04=" + p_inputs[0] + ".w;\n";
code += "\t" + OUTVAR(p_node->id, 0) + "=vec3(xform_row_01.x, xform_row_01.y, xform_row_01.z);\n";
code += "\t" + OUTVAR(p_node->id, 1) + "=vec3(xform_row_02.x, xform_row_02.y, xform_row_02.z);\n";
code += "\t" + OUTVAR(p_node->id, 2) + "=vec3(xform_row_03.x, xform_row_03.y, xform_row_03.z);\n";
code += "\t" + OUTVAR(p_node->id, 3) + "=vec3(xform_row_04.x, xform_row_04.y, xform_row_04.z);\n";
code += "}\n";
} break;
case NODE_SCALAR_INTERP: {
DEF_SCALAR(0);
DEF_SCALAR(1);
DEF_SCALAR(2);
code += OUTNAME(p_node->id, 0) + "=mix(" + p_inputs[0] + "," + p_inputs[1] + "," + p_inputs[2] + ");\n";
} break;
case NODE_VEC_INTERP: {
DEF_VEC(0);
DEF_VEC(1);
DEF_SCALAR(2);
code += OUTNAME(p_node->id, 0) + "=mix(" + p_inputs[0] + "," + p_inputs[1] + "," + p_inputs[2] + ");\n";
} break;
case NODE_COLOR_RAMP: {
DEF_SCALAR(0);
static const int color_ramp_len = 512;
DVector<uint8_t> cramp;
cramp.resize(color_ramp_len * 4);
{
DVector<Color> colors = p_node->param1;
DVector<real_t> offsets = p_node->param2;
int cc = colors.size();
DVector<uint8_t>::Write crw = cramp.write();
DVector<Color>::Read cr = colors.read();
DVector<real_t>::Read ofr = offsets.read();
int at = 0;
Color color_at(0, 0, 0, 1);
for (int i = 0; i <= cc; i++) {
int pos;
Color to;
if (i == cc) {
if (at == color_ramp_len)
break;
pos = color_ramp_len;
to = Color(1, 1, 1, 1);
} else {
to = cr[i];
pos = MIN(ofr[i] * color_ramp_len, color_ramp_len);
}
for (int j = at; j < pos; j++) {
float t = (j - at) / float(pos - at);
Color c = color_at.linear_interpolate(to, t);
crw[j * 4 + 0] = Math::fast_ftoi(CLAMP(c.r * 255.0, 0, 255));
crw[j * 4 + 1] = Math::fast_ftoi(CLAMP(c.g * 255.0, 0, 255));
crw[j * 4 + 2] = Math::fast_ftoi(CLAMP(c.b * 255.0, 0, 255));
crw[j * 4 + 3] = Math::fast_ftoi(CLAMP(c.a * 255.0, 0, 255));
}
at = pos;
color_at = to;
}
}
Image gradient(color_ramp_len, 1, 0, Image::FORMAT_RGBA, cramp);
Ref<ImageTexture> it = memnew(ImageTexture);
it->create_from_image(gradient, Texture::FLAG_FILTER | Texture::FLAG_MIPMAPS);
String crampname = "cramp_" + itos(p_node->id);
set_default_texture_param(crampname, it);
code += "uniform texture " + crampname + ";\n";
code += "vec4 " + crampname + "_r=tex(" + crampname + ",vec2(" + p_inputs[0] + ",0));\n";
code += OUTNAME(p_node->id, 0) + "=" + crampname + "_r.rgb;\n";
code += OUTNAME(p_node->id, 1) + "=" + crampname + "_r.a;\n";
} break;
case NODE_CURVE_MAP: {
DEF_SCALAR(0);
static const int curve_map_len = 256;
bool mapped[256];
zeromem(mapped, sizeof(mapped));
DVector<uint8_t> cmap;
cmap.resize(curve_map_len);
{
DVector<Point2> points = p_node->param1;
int pc = points.size();
DVector<uint8_t>::Write cmw = cmap.write();
DVector<Point2>::Read pr = points.read();
Vector2 prev = Vector2(0, 0);
Vector2 prev2 = Vector2(0, 0);
for (int i = -1; i < pc; i++) {
Vector2 next;
Vector2 next2;
if (i + 1 >= pc) {
next = Vector2(1, 1);
} else {
next = Vector2(pr[i + 1].x, pr[i + 1].y);
}
if (i + 2 >= pc) {
next2 = Vector2(1, 1);
} else {
next2 = Vector2(pr[i + 2].x, pr[i + 2].y);
}
/*if (i==-1 && prev.offset==next.offset) {
prev=next;
continue;
}*/
_plot_curve(prev2, prev, next, next2, cmw.ptr(), mapped);
prev2 = prev;
prev = next;
}
uint8_t pp = 0;
for (int i = 0; i < curve_map_len; i++) {
if (!mapped[i]) {
cmw[i] = pp;
} else {
pp = cmw[i];
}
}
}
Image gradient(curve_map_len, 1, 0, Image::FORMAT_GRAYSCALE, cmap);
Ref<ImageTexture> it = memnew(ImageTexture);
it->create_from_image(gradient, Texture::FLAG_FILTER | Texture::FLAG_MIPMAPS);
String cmapname = "cmap_" + itos(p_node->id);
set_default_texture_param(cmapname, it);
code += "uniform texture " + cmapname + ";\n";
code += OUTNAME(p_node->id, 0) + "=tex(" + cmapname + ",vec2(" + p_inputs[0] + ",0)).r;\n";
} break;
case NODE_SCALAR_INPUT: {
String name = p_node->param1;
float dv = p_node->param2;
code += "uniform float " + name + "=" + rtos(dv) + ";\n";
code += OUTNAME(p_node->id, 0) + "=" + name + ";\n";
} break;
case NODE_VEC_INPUT: {
String name = p_node->param1;
Vector3 dv = p_node->param2;
code += "uniform vec3 " + name + "=vec3(" + rtos(dv.x) + "," + rtos(dv.y) + "," + rtos(dv.z) + ");\n";
code += OUTNAME(p_node->id, 0) + "=" + name + ";\n";
} break;
case NODE_RGB_INPUT: {
String name = p_node->param1;
Color dv = p_node->param2;
code += "uniform color " + name + "=vec4(" + rtos(dv.r) + "," + rtos(dv.g) + "," + rtos(dv.b) + "," + rtos(dv.a) + ");\n";
code += OUTNAME(p_node->id, 0) + "=" + name + ".rgb;\n";
code += OUTNAME(p_node->id, 1) + "=" + name + ".a;\n";
} break;
case NODE_XFORM_INPUT: {
String name = p_node->param1;
Transform dv = p_node->param2;
code += "uniform mat4 " + name + "=mat4(\n";
code += "\tvec4(vec3(" + rtos(dv.basis.get_axis(0).x) + "," + rtos(dv.basis.get_axis(0).y) + "," + rtos(dv.basis.get_axis(0).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(dv.basis.get_axis(1).x) + "," + rtos(dv.basis.get_axis(1).y) + "," + rtos(dv.basis.get_axis(1).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(dv.basis.get_axis(2).x) + "," + rtos(dv.basis.get_axis(2).y) + "," + rtos(dv.basis.get_axis(2).z) + "),0),\n";
code += "\tvec4(vec3(" + rtos(dv.origin.x) + "," + rtos(dv.origin.y) + "," + rtos(dv.origin.z) + "),1)\n";
code += ");";
code += OUTNAME(p_node->id, 0) + "=" + name + ";\n";
} break;
case NODE_TEXTURE_INPUT: {
DEF_VEC(0);
String name = p_node->param1;
String rname = "rt_read_tex" + itos(p_node->id);
code += "uniform texture " + name + ";";
code += "vec4 " + rname + "=tex(" + name + "," + p_inputs[0] + ".xy);\n";
code += OUTNAME(p_node->id, 0) + "=" + rname + ".rgb;\n";
code += OUTNAME(p_node->id, 1) + "=" + rname + ".a;\n";
} break;
case NODE_CUBEMAP_INPUT: {
DEF_VEC(0);
String name = p_node->param1;
code += "uniform cubemap " + name + ";";
String rname = "rt_read_tex" + itos(p_node->id);
code += "vec4 " + rname + "=texcube(" + name + "," + p_inputs[0] + ".xy);\n";
code += OUTNAME(p_node->id, 0) + "=" + rname + ".rgb;\n";
code += OUTNAME(p_node->id, 1) + "=" + rname + ".a;\n";
} break;
case NODE_DEFAULT_TEXTURE: {
DEF_VEC(0);
if (get_mode() == MODE_CANVAS_ITEM && p_type == SHADER_TYPE_FRAGMENT) {
String rname = "rt_default_tex" + itos(p_node->id);
code += "vec4 " + rname + "=tex(TEXTURE," + p_inputs[0] + ".xy);\n";
code += OUTNAME(p_node->id, 0) + "=" + rname + ".rgb;\n";
code += OUTNAME(p_node->id, 1) + "=" + rname + ".a;\n";
} else {
//not supported
code += OUTNAME(p_node->id, 0) + "=vec3(0,0,0);\n";
code += OUTNAME(p_node->id, 1) + "=1.0;\n";
}
} break;
case NODE_OUTPUT: {
} break;
case NODE_COMMENT: {
} break;
case NODE_TYPE_MAX: {
}
}
#undef DEF_SCALAR
#undef DEF_COLOR
#undef DEF_MATRIX
#undef DEF_VEC
}