191 lines
6.6 KiB
XML
191 lines
6.6 KiB
XML
<?xml version="1.0" encoding="UTF-8" ?>
|
||
<class name="Transform" category="Built-In Types" version="3.2">
|
||
<brief_description>
|
||
3D transformation (3×4 matrix).
|
||
</brief_description>
|
||
<description>
|
||
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [member basis] and an [member origin]. It is similar to a 3×4 matrix.
|
||
</description>
|
||
<tutorials>
|
||
<link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
|
||
<link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
|
||
</tutorials>
|
||
<methods>
|
||
<method name="Transform">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="x_axis" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="y_axis" type="Vector3">
|
||
</argument>
|
||
<argument index="2" name="z_axis" type="Vector3">
|
||
</argument>
|
||
<argument index="3" name="origin" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
|
||
</description>
|
||
</method>
|
||
<method name="Transform">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="basis" type="Basis">
|
||
</argument>
|
||
<argument index="1" name="origin" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Constructs the Transform from a [Basis] and [Vector3].
|
||
</description>
|
||
</method>
|
||
<method name="Transform">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="from" type="Transform2D">
|
||
</argument>
|
||
<description>
|
||
Constructs the Transform from a [Transform2D].
|
||
</description>
|
||
</method>
|
||
<method name="Transform">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="from" type="Quat">
|
||
</argument>
|
||
<description>
|
||
Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
|
||
</description>
|
||
</method>
|
||
<method name="Transform">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="from" type="Basis">
|
||
</argument>
|
||
<description>
|
||
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
|
||
</description>
|
||
</method>
|
||
<method name="affine_inverse">
|
||
<return type="Transform">
|
||
</return>
|
||
<description>
|
||
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
|
||
</description>
|
||
</method>
|
||
<method name="interpolate_with">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="transform" type="Transform">
|
||
</argument>
|
||
<argument index="1" name="weight" type="float">
|
||
</argument>
|
||
<description>
|
||
Interpolates the transform to other Transform by weight amount (0-1).
|
||
</description>
|
||
</method>
|
||
<method name="inverse">
|
||
<return type="Transform">
|
||
</return>
|
||
<description>
|
||
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
|
||
</description>
|
||
</method>
|
||
<method name="is_equal_approx">
|
||
<return type="bool">
|
||
</return>
|
||
<argument index="0" name="transform" type="Transform">
|
||
</argument>
|
||
<description>
|
||
</description>
|
||
</method>
|
||
<method name="looking_at">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="target" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="up" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
|
||
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
|
||
Operations take place in global space.
|
||
</description>
|
||
</method>
|
||
<method name="orthonormalized">
|
||
<return type="Transform">
|
||
</return>
|
||
<description>
|
||
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
|
||
</description>
|
||
</method>
|
||
<method name="rotated">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="axis" type="Vector3">
|
||
</argument>
|
||
<argument index="1" name="phi" type="float">
|
||
</argument>
|
||
<description>
|
||
Rotates the transform around given axis by phi. The axis must be a normalized vector.
|
||
</description>
|
||
</method>
|
||
<method name="scaled">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="scale" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Scales the transform by the specified 3D scaling factors.
|
||
</description>
|
||
</method>
|
||
<method name="translated">
|
||
<return type="Transform">
|
||
</return>
|
||
<argument index="0" name="ofs" type="Vector3">
|
||
</argument>
|
||
<description>
|
||
Translates the transform by the specified offset.
|
||
</description>
|
||
</method>
|
||
<method name="xform">
|
||
<return type="Variant">
|
||
</return>
|
||
<argument index="0" name="v" type="Variant">
|
||
</argument>
|
||
<description>
|
||
Transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
|
||
</description>
|
||
</method>
|
||
<method name="xform_inv">
|
||
<return type="Variant">
|
||
</return>
|
||
<argument index="0" name="v" type="Variant">
|
||
</argument>
|
||
<description>
|
||
Inverse-transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
|
||
</description>
|
||
</method>
|
||
</methods>
|
||
<members>
|
||
<member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
|
||
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
|
||
</member>
|
||
<member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )">
|
||
The translation offset of the transform.
|
||
</member>
|
||
</members>
|
||
<constants>
|
||
<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
|
||
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
|
||
</constant>
|
||
<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
|
||
[Transform] with mirroring applied perpendicular to the YZ plane.
|
||
</constant>
|
||
<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )">
|
||
[Transform] with mirroring applied perpendicular to the XZ plane.
|
||
</constant>
|
||
<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )">
|
||
[Transform] with mirroring applied perpendicular to the XY plane.
|
||
</constant>
|
||
</constants>
|
||
</class>
|