godot/doc/classes/Transform.xml

191 lines
6.6 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Transform" category="Built-In Types" version="3.2">
<brief_description>
3D transformation (3×4 matrix).
</brief_description>
<description>
Represents one or many transformations in 3D space such as translation, rotation, or scaling. It consists of a [member basis] and an [member origin]. It is similar to a 3×4 matrix.
</description>
<tutorials>
<link>https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
<link>https://docs.godotengine.org/en/latest/tutorials/3d/using_transforms.html</link>
</tutorials>
<methods>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="x_axis" type="Vector3">
</argument>
<argument index="1" name="y_axis" type="Vector3">
</argument>
<argument index="2" name="z_axis" type="Vector3">
</argument>
<argument index="3" name="origin" type="Vector3">
</argument>
<description>
Constructs the Transform from four [Vector3]. Each axis corresponds to local basis vectors (some of which may be scaled).
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="basis" type="Basis">
</argument>
<argument index="1" name="origin" type="Vector3">
</argument>
<description>
Constructs the Transform from a [Basis] and [Vector3].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Transform2D">
</argument>
<description>
Constructs the Transform from a [Transform2D].
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Quat">
</argument>
<description>
Constructs the Transform from a [Quat]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="Transform">
<return type="Transform">
</return>
<argument index="0" name="from" type="Basis">
</argument>
<description>
Constructs the Transform from a [Basis]. The origin will be Vector3(0, 0, 0).
</description>
</method>
<method name="affine_inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation, scaling and translation.
</description>
</method>
<method name="interpolate_with">
<return type="Transform">
</return>
<argument index="0" name="transform" type="Transform">
</argument>
<argument index="1" name="weight" type="float">
</argument>
<description>
Interpolates the transform to other Transform by weight amount (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
<method name="is_equal_approx">
<return type="bool">
</return>
<argument index="0" name="transform" type="Transform">
</argument>
<description>
</description>
</method>
<method name="looking_at">
<return type="Transform">
</return>
<argument index="0" name="target" type="Vector3">
</argument>
<argument index="1" name="up" type="Vector3">
</argument>
<description>
Returns a copy of the transform rotated such that its -Z axis points towards the [code]target[/code] position.
The transform will first be rotated around the given [code]up[/code] vector, and then fully aligned to the target by a further rotation around an axis perpendicular to both the [code]target[/code] and [code]up[/code] vectors.
Operations take place in global space.
</description>
</method>
<method name="orthonormalized">
<return type="Transform">
</return>
<description>
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
<return type="Transform">
</return>
<argument index="0" name="axis" type="Vector3">
</argument>
<argument index="1" name="phi" type="float">
</argument>
<description>
Rotates the transform around given axis by phi. The axis must be a normalized vector.
</description>
</method>
<method name="scaled">
<return type="Transform">
</return>
<argument index="0" name="scale" type="Vector3">
</argument>
<description>
Scales the transform by the specified 3D scaling factors.
</description>
</method>
<method name="translated">
<return type="Transform">
</return>
<argument index="0" name="ofs" type="Vector3">
</argument>
<description>
Translates the transform by the specified offset.
</description>
</method>
<method name="xform">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Inverse-transforms the given [Vector3], [Plane], [AABB], or [PoolVector3Array] by this transform.
</description>
</method>
</methods>
<members>
<member name="basis" type="Basis" setter="" getter="" default="Basis( 1, 0, 0, 0, 1, 0, 0, 0, 1 )">
The basis is a matrix containing 3 [Vector3] as its columns: X axis, Y axis, and Z axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="origin" type="Vector3" setter="" getter="" default="Vector3( 0, 0, 0 )">
The translation offset of the transform.
</member>
</members>
<constants>
<constant name="IDENTITY" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
</constant>
<constant name="FLIP_X" value="Transform( -1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the YZ plane.
</constant>
<constant name="FLIP_Y" value="Transform( 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XZ plane.
</constant>
<constant name="FLIP_Z" value="Transform( 1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0 )">
[Transform] with mirroring applied perpendicular to the XY plane.
</constant>
</constants>
</class>