3031 lines
103 KiB
C++
3031 lines
103 KiB
C++
/*************************************************************************/
|
|
/* rendering_server_scene.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "rendering_server_scene.h"
|
|
|
|
#include "core/os/os.h"
|
|
#include "rendering_server_globals.h"
|
|
#include "rendering_server_raster.h"
|
|
|
|
#include <new>
|
|
|
|
/* CAMERA API */
|
|
|
|
RID RenderingServerScene::camera_create() {
|
|
|
|
Camera *camera = memnew(Camera);
|
|
return camera_owner.make_rid(camera);
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::PERSPECTIVE;
|
|
camera->fov = p_fovy_degrees;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::ORTHOGONAL;
|
|
camera->size = p_size;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->type = Camera::FRUSTUM;
|
|
camera->size = p_size;
|
|
camera->offset = p_offset;
|
|
camera->znear = p_z_near;
|
|
camera->zfar = p_z_far;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->transform = p_transform.orthonormalized();
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
camera->visible_layers = p_layers;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_environment(RID p_camera, RID p_env) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->env = p_env;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_camera_effects(RID p_camera, RID p_fx) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->effects = p_fx;
|
|
}
|
|
|
|
void RenderingServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
camera->vaspect = p_enable;
|
|
}
|
|
|
|
/* SCENARIO API */
|
|
|
|
void *RenderingServerScene::_instance_pair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int) {
|
|
|
|
//RenderingServerScene *self = (RenderingServerScene*)p_self;
|
|
Instance *A = p_A;
|
|
Instance *B = p_B;
|
|
|
|
//instance indices are designed so greater always contains lesser
|
|
if (A->base_type > B->base_type) {
|
|
SWAP(A, B); //lesser always first
|
|
}
|
|
|
|
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceLightData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->lighting.push_back(B);
|
|
|
|
List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo);
|
|
|
|
if (geom->can_cast_shadows) {
|
|
|
|
light->shadow_dirty = true;
|
|
}
|
|
geom->lighting_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceReflectionProbeData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->reflection_probes.push_back(B);
|
|
|
|
List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo);
|
|
|
|
geom->reflection_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceDecalData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->decals.push_back(B);
|
|
|
|
List<InstanceDecalData::PairInfo>::Element *E = decal->geometries.push_back(pinfo);
|
|
|
|
geom->decal_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
if (A->dynamic_gi) {
|
|
InstanceLightmapData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->lightmap_captures.push_back(B);
|
|
List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.push_back(pinfo);
|
|
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
|
|
return E; //this element should make freeing faster
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
InstanceGIProbeData::PairInfo pinfo;
|
|
pinfo.geometry = A;
|
|
pinfo.L = geom->gi_probes.push_back(B);
|
|
|
|
List<InstanceGIProbeData::PairInfo>::Element *E;
|
|
if (A->dynamic_gi) {
|
|
E = gi_probe->dynamic_geometries.push_back(pinfo);
|
|
} else {
|
|
E = gi_probe->geometries.push_back(pinfo);
|
|
}
|
|
|
|
geom->gi_probes_dirty = true;
|
|
|
|
return E; //this element should make freeing faster
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
return gi_probe->lights.insert(A);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
void RenderingServerScene::_instance_unpair(void *p_self, OctreeElementID, Instance *p_A, int, OctreeElementID, Instance *p_B, int, void *udata) {
|
|
|
|
//RenderingServerScene *self = (RenderingServerScene*)p_self;
|
|
Instance *A = p_A;
|
|
Instance *B = p_B;
|
|
|
|
//instance indices are designed so greater always contains lesser
|
|
if (A->base_type > B->base_type) {
|
|
SWAP(A, B); //lesser always first
|
|
}
|
|
|
|
if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata);
|
|
|
|
geom->lighting.erase(E->get().L);
|
|
light->geometries.erase(E);
|
|
|
|
if (geom->can_cast_shadows) {
|
|
light->shadow_dirty = true;
|
|
}
|
|
geom->lighting_dirty = true;
|
|
|
|
} else if (B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata);
|
|
|
|
geom->reflection_probes.erase(E->get().L);
|
|
reflection_probe->geometries.erase(E);
|
|
|
|
geom->reflection_dirty = true;
|
|
} else if (B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceDecalData::PairInfo>::Element *E = reinterpret_cast<List<InstanceDecalData::PairInfo>::Element *>(udata);
|
|
|
|
geom->decals.erase(E->get().L);
|
|
decal->geometries.erase(E);
|
|
|
|
geom->decal_dirty = true;
|
|
} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
if (udata) { //only for dynamic geometries
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceLightmapData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapData::PairInfo>::Element *>(udata);
|
|
|
|
geom->lightmap_captures.erase(E->get().L);
|
|
lightmap_data->geometries.erase(E);
|
|
((RenderingServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
|
|
}
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
|
|
|
|
List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata);
|
|
|
|
geom->gi_probes.erase(E->get().L);
|
|
if (A->dynamic_gi) {
|
|
gi_probe->dynamic_geometries.erase(E);
|
|
} else {
|
|
gi_probe->geometries.erase(E);
|
|
}
|
|
|
|
geom->gi_probes_dirty = true;
|
|
|
|
} else if (B->base_type == RS::INSTANCE_GI_PROBE && A->base_type == RS::INSTANCE_LIGHT) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
|
|
Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata);
|
|
|
|
gi_probe->lights.erase(E);
|
|
}
|
|
}
|
|
|
|
RID RenderingServerScene::scenario_create() {
|
|
|
|
Scenario *scenario = memnew(Scenario);
|
|
ERR_FAIL_COND_V(!scenario, RID());
|
|
RID scenario_rid = scenario_owner.make_rid(scenario);
|
|
scenario->self = scenario_rid;
|
|
|
|
scenario->octree.set_pair_callback(_instance_pair, this);
|
|
scenario->octree.set_unpair_callback(_instance_unpair, this);
|
|
scenario->reflection_probe_shadow_atlas = RSG::scene_render->shadow_atlas_create();
|
|
RSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
|
|
RSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);
|
|
scenario->reflection_atlas = RSG::scene_render->reflection_atlas_create();
|
|
return scenario_rid;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_debug(RID p_scenario, RS::ScenarioDebugMode p_debug_mode) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->debug = p_debug_mode;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_environment(RID p_scenario, RID p_environment) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->environment = p_environment;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_camera_effects(RID p_scenario, RID p_camera_effects) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->camera_effects = p_camera_effects;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
scenario->fallback_environment = p_environment;
|
|
}
|
|
|
|
void RenderingServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
RSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count);
|
|
}
|
|
|
|
/* INSTANCING API */
|
|
|
|
void RenderingServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) {
|
|
|
|
if (p_update_aabb)
|
|
p_instance->update_aabb = true;
|
|
if (p_update_dependencies)
|
|
p_instance->update_dependencies = true;
|
|
|
|
if (p_instance->update_item.in_list())
|
|
return;
|
|
|
|
_instance_update_list.add(&p_instance->update_item);
|
|
}
|
|
|
|
RID RenderingServerScene::instance_create() {
|
|
|
|
Instance *instance = memnew(Instance);
|
|
ERR_FAIL_COND_V(!instance, RID());
|
|
|
|
RID instance_rid = instance_owner.make_rid(instance);
|
|
instance->self = instance_rid;
|
|
|
|
return instance_rid;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_base(RID p_instance, RID p_base) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
Scenario *scenario = instance->scenario;
|
|
|
|
if (instance->base_type != RS::INSTANCE_NONE) {
|
|
//free anything related to that base
|
|
|
|
if (scenario && instance->octree_id) {
|
|
scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
|
|
instance->octree_id = 0;
|
|
}
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (light->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
|
|
}
|
|
#endif
|
|
if (instance->scenario && light->D) {
|
|
instance->scenario->directional_lights.erase(light->D);
|
|
light->D = nullptr;
|
|
}
|
|
RSG::scene_render->free(light->instance);
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
|
|
RSG::scene_render->free(reflection_probe->instance);
|
|
if (reflection_probe->update_list.in_list()) {
|
|
reflection_probe_render_list.remove(&reflection_probe->update_list);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data);
|
|
RSG::scene_render->free(decal->instance);
|
|
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(instance->base_data);
|
|
//erase dependencies, since no longer a lightmap
|
|
while (lightmap_data->users.front()) {
|
|
instance_geometry_set_lightmap(lightmap_data->users.front()->get()->self, RID(), Rect2(), 0);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->lights.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
|
|
}
|
|
#endif
|
|
if (gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.remove(&gi_probe->update_element);
|
|
}
|
|
|
|
RSG::scene_render->free(gi_probe->probe_instance);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
if (instance->base_data) {
|
|
memdelete(instance->base_data);
|
|
instance->base_data = nullptr;
|
|
}
|
|
|
|
instance->blend_values.clear();
|
|
instance->materials.clear();
|
|
}
|
|
|
|
instance->base_type = RS::INSTANCE_NONE;
|
|
instance->base = RID();
|
|
|
|
if (p_base.is_valid()) {
|
|
|
|
instance->base_type = RSG::storage->get_base_type(p_base);
|
|
ERR_FAIL_COND(instance->base_type == RS::INSTANCE_NONE);
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
|
|
InstanceLightData *light = memnew(InstanceLightData);
|
|
|
|
if (scenario && RSG::storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) {
|
|
light->D = scenario->directional_lights.push_back(instance);
|
|
}
|
|
|
|
light->instance = RSG::scene_render->light_instance_create(p_base);
|
|
|
|
instance->base_data = light;
|
|
} break;
|
|
case RS::INSTANCE_MESH:
|
|
case RS::INSTANCE_MULTIMESH:
|
|
case RS::INSTANCE_IMMEDIATE:
|
|
case RS::INSTANCE_PARTICLES: {
|
|
|
|
InstanceGeometryData *geom = memnew(InstanceGeometryData);
|
|
instance->base_data = geom;
|
|
if (instance->base_type == RS::INSTANCE_MESH) {
|
|
instance->blend_values.resize(RSG::storage->mesh_get_blend_shape_count(p_base));
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
|
|
reflection_probe->owner = instance;
|
|
instance->base_data = reflection_probe;
|
|
|
|
reflection_probe->instance = RSG::scene_render->reflection_probe_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
|
|
InstanceDecalData *decal = memnew(InstanceDecalData);
|
|
decal->owner = instance;
|
|
instance->base_data = decal;
|
|
|
|
decal->instance = RSG::scene_render->decal_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
|
|
InstanceLightmapData *lightmap_data = memnew(InstanceLightmapData);
|
|
instance->base_data = lightmap_data;
|
|
//lightmap_data->instance = RSG::scene_render->lightmap_data_instance_create(p_base);
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
|
|
InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
|
|
instance->base_data = gi_probe;
|
|
gi_probe->owner = instance;
|
|
|
|
if (scenario && !gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
|
|
gi_probe->probe_instance = RSG::scene_render->gi_probe_instance_create(p_base);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
instance->base = p_base;
|
|
|
|
//forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it
|
|
RSG::storage->base_update_dependency(p_base, instance);
|
|
}
|
|
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
void RenderingServerScene::instance_set_scenario(RID p_instance, RID p_scenario) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->scenario) {
|
|
|
|
instance->scenario->instances.remove(&instance->scenario_item);
|
|
|
|
if (instance->octree_id) {
|
|
instance->scenario->octree.erase(instance->octree_id); //make dependencies generated by the octree go away
|
|
instance->octree_id = 0;
|
|
}
|
|
|
|
switch (instance->base_type) {
|
|
|
|
case RS::INSTANCE_LIGHT: {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
#ifdef DEBUG_ENABLED
|
|
if (light->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from light.");
|
|
}
|
|
#endif
|
|
if (light->D) {
|
|
instance->scenario->directional_lights.erase(light->D);
|
|
light->D = nullptr;
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
|
|
RSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance);
|
|
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->geometries.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair geometries from GIProbe.");
|
|
}
|
|
#endif
|
|
#ifdef DEBUG_ENABLED
|
|
if (gi_probe->lights.size()) {
|
|
ERR_PRINT("BUG, indexing did not unpair lights from GIProbe.");
|
|
}
|
|
#endif
|
|
|
|
if (gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.remove(&gi_probe->update_element);
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
instance->scenario = nullptr;
|
|
}
|
|
|
|
if (p_scenario.is_valid()) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND(!scenario);
|
|
|
|
instance->scenario = scenario;
|
|
|
|
scenario->instances.add(&instance->scenario_item);
|
|
|
|
switch (instance->base_type) {
|
|
|
|
case RS::INSTANCE_LIGHT: {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
|
|
|
|
if (RSG::storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) {
|
|
light->D = scenario->directional_lights.push_back(instance);
|
|
}
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
|
|
if (!gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
}
|
|
void RenderingServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->layer_mask = p_mask;
|
|
}
|
|
void RenderingServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->transform == p_transform)
|
|
return; //must be checked to avoid worst evil
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin;
|
|
ERR_FAIL_COND(Math::is_inf(v.x));
|
|
ERR_FAIL_COND(Math::is_nan(v.x));
|
|
ERR_FAIL_COND(Math::is_inf(v.y));
|
|
ERR_FAIL_COND(Math::is_nan(v.y));
|
|
ERR_FAIL_COND(Math::is_inf(v.z));
|
|
ERR_FAIL_COND(Math::is_nan(v.z));
|
|
}
|
|
|
|
#endif
|
|
instance->transform = p_transform;
|
|
_instance_queue_update(instance, true);
|
|
}
|
|
void RenderingServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->object_id = p_id;
|
|
}
|
|
void RenderingServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->update_item.in_list()) {
|
|
_update_dirty_instance(instance);
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_shape, instance->blend_values.size());
|
|
instance->blend_values.write[p_shape] = p_weight;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->base_type == RS::INSTANCE_MESH) {
|
|
//may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case
|
|
instance->materials.resize(MAX(p_surface + 1, RSG::storage->mesh_get_surface_count(instance->base)));
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_surface, instance->materials.size());
|
|
|
|
instance->materials.write[p_surface] = p_material;
|
|
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_visible(RID p_instance, bool p_visible) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->visible == p_visible)
|
|
return;
|
|
|
|
instance->visible = p_visible;
|
|
|
|
switch (instance->base_type) {
|
|
case RS::INSTANCE_LIGHT: {
|
|
if (RSG::storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHT, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_REFLECTION_PROBE: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_REFLECTION_PROBE, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_DECAL: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_DECAL, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_LIGHTMAP: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_LIGHTMAP, p_visible ? RS::INSTANCE_GEOMETRY_MASK : 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::INSTANCE_GI_PROBE: {
|
|
if (instance->octree_id && instance->scenario) {
|
|
instance->scenario->octree.set_pairable(instance->octree_id, p_visible, 1 << RS::INSTANCE_GI_PROBE, p_visible ? (RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT)) : 0);
|
|
}
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
inline bool is_geometry_instance(RenderingServer::InstanceType p_type) {
|
|
return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES || p_type == RS::INSTANCE_IMMEDIATE;
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
|
|
|
|
if (p_aabb != AABB()) {
|
|
|
|
// Set custom AABB
|
|
if (instance->custom_aabb == nullptr)
|
|
instance->custom_aabb = memnew(AABB);
|
|
*instance->custom_aabb = p_aabb;
|
|
|
|
} else {
|
|
|
|
// Clear custom AABB
|
|
if (instance->custom_aabb != nullptr) {
|
|
memdelete(instance->custom_aabb);
|
|
instance->custom_aabb = nullptr;
|
|
}
|
|
}
|
|
|
|
if (instance->scenario)
|
|
_instance_queue_update(instance, true, false);
|
|
}
|
|
|
|
void RenderingServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->skeleton == p_skeleton)
|
|
return;
|
|
|
|
instance->skeleton = p_skeleton;
|
|
|
|
if (p_skeleton.is_valid()) {
|
|
//update the dependency now, so if cleared, we remove it
|
|
RSG::storage->skeleton_update_dependency(p_skeleton, instance);
|
|
}
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_exterior(RID p_instance, bool p_enabled) {
|
|
}
|
|
|
|
void RenderingServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->extra_margin = p_margin;
|
|
_instance_queue_update(instance, true, false);
|
|
}
|
|
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
|
|
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
culled = scenario->octree.cull_aabb(p_aabb, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
|
|
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
culled = scenario->octree.cull_segment(p_from, p_from + p_to * 10000, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
Vector<ObjectID> RenderingServerScene::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
|
|
|
|
Vector<ObjectID> instances;
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
ERR_FAIL_COND_V(!scenario, instances);
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
|
|
|
|
int culled = 0;
|
|
Instance *cull[1024];
|
|
|
|
culled = scenario->octree.cull_convex(p_convex, cull, 1024);
|
|
|
|
for (int i = 0; i < culled; i++) {
|
|
|
|
Instance *instance = cull[i];
|
|
ERR_CONTINUE(!instance);
|
|
if (instance->object_id.is_null())
|
|
continue;
|
|
|
|
instances.push_back(instance->object_id);
|
|
}
|
|
|
|
return instances;
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
//ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK));
|
|
|
|
switch (p_flags) {
|
|
|
|
case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
|
|
|
|
instance->baked_light = p_enabled;
|
|
|
|
} break;
|
|
case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: {
|
|
|
|
if (p_enabled == instance->dynamic_gi) {
|
|
//bye, redundant
|
|
return;
|
|
}
|
|
|
|
if (instance->octree_id != 0) {
|
|
//remove from octree, it needs to be re-paired
|
|
instance->scenario->octree.erase(instance->octree_id);
|
|
instance->octree_id = 0;
|
|
_instance_queue_update(instance, true, true);
|
|
}
|
|
|
|
//once out of octree, can be changed
|
|
instance->dynamic_gi = p_enabled;
|
|
|
|
} break;
|
|
case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
|
|
|
|
instance->redraw_if_visible = p_enabled;
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->cast_shadows = p_shadow_casting_setting;
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
instance->material_override = p_material;
|
|
_instance_queue_update(instance, false, true);
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) {
|
|
}
|
|
void RenderingServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) {
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
if (instance->lightmap) {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(((Instance *)instance->lightmap)->base_data);
|
|
lightmap_data->users.erase(instance);
|
|
instance->lightmap = nullptr;
|
|
}
|
|
|
|
Instance *lightmap_instance = instance_owner.getornull(p_lightmap);
|
|
|
|
instance->lightmap = lightmap_instance;
|
|
instance->lightmap_uv_scale = p_lightmap_uv_scale;
|
|
instance->lightmap_slice_index = p_slice_index;
|
|
|
|
if (lightmap_instance) {
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(lightmap_instance->base_data);
|
|
lightmap_data->users.insert(instance);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value) {
|
|
|
|
Instance *instance = instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.find(p_parameter);
|
|
|
|
if (!E) {
|
|
RasterizerScene::InstanceBase::InstanceShaderParameter isp;
|
|
isp.index = -1;
|
|
isp.info = PropertyInfo();
|
|
isp.value = p_value;
|
|
instance->instance_shader_parameters[p_parameter] = isp;
|
|
} else {
|
|
E->get().value = p_value;
|
|
if (E->get().index >= 0 && instance->instance_allocated_shader_parameters) {
|
|
//update directly
|
|
RSG::storage->global_variables_instance_update(p_instance, E->get().index, p_value);
|
|
}
|
|
}
|
|
}
|
|
|
|
Variant RenderingServerScene::instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const {
|
|
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!instance, Variant());
|
|
|
|
if (instance->instance_shader_parameters.has(p_parameter)) {
|
|
return instance->instance_shader_parameters[p_parameter].value;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
Variant RenderingServerScene::instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const {
|
|
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!instance, Variant());
|
|
|
|
if (instance->instance_shader_parameters.has(p_parameter)) {
|
|
return instance->instance_shader_parameters[p_parameter].default_value;
|
|
}
|
|
return Variant();
|
|
}
|
|
|
|
void RenderingServerScene::instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const {
|
|
const Instance *instance = const_cast<RenderingServerScene *>(this)->instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!instance);
|
|
|
|
const_cast<RenderingServerScene *>(this)->update_dirty_instances();
|
|
|
|
Vector<StringName> names;
|
|
for (Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = instance->instance_shader_parameters.front(); E; E = E->next()) {
|
|
names.push_back(E->key());
|
|
}
|
|
names.sort_custom<StringName::AlphCompare>();
|
|
for (int i = 0; i < names.size(); i++) {
|
|
PropertyInfo pinfo = instance->instance_shader_parameters[names[i]].info;
|
|
p_parameters->push_back(pinfo);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance(Instance *p_instance) {
|
|
|
|
p_instance->version++;
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHT) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform);
|
|
light->shadow_dirty = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
|
|
reflection_probe->reflection_dirty = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_DECAL) {
|
|
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->decal_instance_set_transform(decal->instance, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(p_instance->base_data);
|
|
|
|
RSG::scene_render->gi_probe_instance_set_transform_to_data(gi_probe->probe_instance, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
|
|
|
|
RSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
|
|
}
|
|
|
|
if (p_instance->aabb.has_no_surface()) {
|
|
return;
|
|
}
|
|
|
|
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
//make sure lights are updated if it casts shadow
|
|
|
|
if (geom->can_cast_shadows) {
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
light->shadow_dirty = true;
|
|
}
|
|
}
|
|
|
|
if (!p_instance->lightmap && geom->lightmap_captures.size()) {
|
|
//affected by lightmap captures, must update capture info!
|
|
_update_instance_lightmap_captures(p_instance);
|
|
} else {
|
|
if (!p_instance->lightmap_sh.empty()) {
|
|
p_instance->lightmap_sh.clear(); //don't need SH
|
|
p_instance->lightmap_target_sh.clear(); //don't need SH
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
|
|
|
|
//if this moved, update the captured objects
|
|
InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(p_instance->base_data);
|
|
//erase dependencies, since no longer a lightmap
|
|
|
|
for (List<InstanceLightmapData::PairInfo>::Element *E = lightmap_data->geometries.front(); E; E = E->next()) {
|
|
Instance *geom = E->get().geometry;
|
|
_instance_queue_update(geom, true, false);
|
|
}
|
|
}
|
|
|
|
p_instance->mirror = p_instance->transform.basis.determinant() < 0.0;
|
|
|
|
AABB new_aabb;
|
|
|
|
new_aabb = p_instance->transform.xform(p_instance->aabb);
|
|
|
|
p_instance->transformed_aabb = new_aabb;
|
|
|
|
if (!p_instance->scenario) {
|
|
|
|
return;
|
|
}
|
|
|
|
if (p_instance->octree_id == 0) {
|
|
|
|
uint32_t base_type = 1 << p_instance->base_type;
|
|
uint32_t pairable_mask = 0;
|
|
bool pairable = false;
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_LIGHT || p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == RS::INSTANCE_DECAL || p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
|
|
|
|
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK : 0;
|
|
pairable = true;
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_GI_PROBE) {
|
|
//lights and geometries
|
|
pairable_mask = p_instance->visible ? RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT) : 0;
|
|
pairable = true;
|
|
}
|
|
|
|
// not inside octree
|
|
p_instance->octree_id = p_instance->scenario->octree.create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask);
|
|
|
|
} else {
|
|
|
|
/*
|
|
if (new_aabb==p_instance->data.transformed_aabb)
|
|
return;
|
|
*/
|
|
|
|
p_instance->scenario->octree.move(p_instance->octree_id, new_aabb);
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_aabb(Instance *p_instance) {
|
|
|
|
AABB new_aabb;
|
|
|
|
ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid());
|
|
|
|
switch (p_instance->base_type) {
|
|
case RenderingServer::INSTANCE_NONE: {
|
|
|
|
// do nothing
|
|
} break;
|
|
case RenderingServer::INSTANCE_MESH: {
|
|
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
|
|
|
|
} break;
|
|
|
|
case RenderingServer::INSTANCE_MULTIMESH: {
|
|
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->multimesh_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_IMMEDIATE: {
|
|
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->immediate_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_PARTICLES: {
|
|
|
|
if (p_instance->custom_aabb)
|
|
new_aabb = *p_instance->custom_aabb;
|
|
else
|
|
new_aabb = RSG::storage->particles_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_LIGHT: {
|
|
|
|
new_aabb = RSG::storage->light_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_REFLECTION_PROBE: {
|
|
|
|
new_aabb = RSG::storage->reflection_probe_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_DECAL: {
|
|
|
|
new_aabb = RSG::storage->decal_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_GI_PROBE: {
|
|
|
|
new_aabb = RSG::storage->gi_probe_get_bounds(p_instance->base);
|
|
|
|
} break;
|
|
case RenderingServer::INSTANCE_LIGHTMAP: {
|
|
|
|
new_aabb = RSG::storage->lightmap_get_aabb(p_instance->base);
|
|
|
|
} break;
|
|
default: {
|
|
}
|
|
}
|
|
|
|
// <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs
|
|
if (p_instance->extra_margin)
|
|
new_aabb.grow_by(p_instance->extra_margin);
|
|
|
|
p_instance->aabb = new_aabb;
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_lightmap_captures(Instance *p_instance) {
|
|
|
|
bool first_set = p_instance->lightmap_sh.size() == 0;
|
|
p_instance->lightmap_sh.resize(9); //using SH
|
|
p_instance->lightmap_target_sh.resize(9); //using SH
|
|
Color *instance_sh = p_instance->lightmap_target_sh.ptrw();
|
|
bool inside = false;
|
|
Color accum_sh[9];
|
|
float accum_blend = 0.0;
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
|
|
Instance *lightmap = E->get();
|
|
|
|
bool interior = RSG::storage->lightmap_is_interior(lightmap->base);
|
|
|
|
if (inside && !interior) {
|
|
continue; //we are inside, ignore exteriors
|
|
}
|
|
|
|
Transform to_bounds = lightmap->transform.affine_inverse();
|
|
Vector3 center = p_instance->transform.xform(p_instance->aabb.position + p_instance->aabb.size * 0.5); //use aabb center
|
|
|
|
Vector3 lm_pos = to_bounds.xform(center);
|
|
|
|
AABB bounds = RSG::storage->lightmap_get_aabb(lightmap->base);
|
|
if (!bounds.has_point(lm_pos)) {
|
|
continue; //not in this lightmap
|
|
}
|
|
|
|
Color sh[9];
|
|
RSG::storage->lightmap_tap_sh_light(lightmap->base, lm_pos, sh);
|
|
|
|
//rotate it
|
|
Basis rot = lightmap->transform.basis.orthonormalized();
|
|
for (int i = 0; i < 3; i++) {
|
|
float csh[9];
|
|
for (int j = 0; j < 9; j++) {
|
|
csh[j] = sh[j][i];
|
|
}
|
|
rot.rotate_sh(csh);
|
|
for (int j = 0; j < 9; j++) {
|
|
sh[j][i] = csh[j];
|
|
}
|
|
}
|
|
|
|
Vector3 inner_pos = ((lm_pos - bounds.position) / bounds.size) * 2.0 - Vector3(1.0, 1.0, 1.0);
|
|
|
|
float blend = MAX(inner_pos.x, MAX(inner_pos.y, inner_pos.z));
|
|
//make blend more rounded
|
|
blend = Math::lerp(inner_pos.length(), blend, blend);
|
|
blend *= blend;
|
|
blend = MAX(0.0, 1.0 - blend);
|
|
|
|
if (interior && !inside) {
|
|
//do not blend, just replace
|
|
for (int j = 0; j < 9; j++) {
|
|
accum_sh[j] = sh[j] * blend;
|
|
}
|
|
accum_blend = blend;
|
|
inside = true;
|
|
} else {
|
|
for (int j = 0; j < 9; j++) {
|
|
accum_sh[j] += sh[j] * blend;
|
|
}
|
|
accum_blend += blend;
|
|
}
|
|
}
|
|
|
|
if (accum_blend > 0.0) {
|
|
for (int j = 0; j < 9; j++) {
|
|
|
|
instance_sh[j] = accum_sh[j] / accum_blend;
|
|
if (first_set) {
|
|
p_instance->lightmap_sh.write[j] = instance_sh[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RenderingServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
|
|
|
|
Transform light_transform = p_instance->transform;
|
|
light_transform.orthonormalize(); //scale does not count on lights
|
|
|
|
bool animated_material_found = false;
|
|
|
|
switch (RSG::storage->light_get_type(p_instance->base)) {
|
|
|
|
case RS::LIGHT_DIRECTIONAL: {
|
|
|
|
real_t max_distance = p_cam_projection.get_z_far();
|
|
real_t shadow_max = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
|
|
if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
|
|
max_distance = MIN(shadow_max, max_distance);
|
|
}
|
|
max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
|
|
real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance);
|
|
|
|
RS::LightDirectionalShadowDepthRangeMode depth_range_mode = RSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base);
|
|
|
|
real_t pancake_size = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE);
|
|
|
|
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) {
|
|
//optimize min/max
|
|
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2));
|
|
//check distance max and min
|
|
|
|
bool found_items = false;
|
|
real_t z_max = -1e20;
|
|
real_t z_min = 1e20;
|
|
|
|
for (int i = 0; i < cull_count; i++) {
|
|
|
|
Instance *instance = instance_shadow_cull_result[i];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
continue;
|
|
}
|
|
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
|
|
real_t max, min;
|
|
instance->transformed_aabb.project_range_in_plane(base, min, max);
|
|
|
|
if (max > z_max) {
|
|
z_max = max;
|
|
}
|
|
|
|
if (min < z_min) {
|
|
z_min = min;
|
|
}
|
|
|
|
found_items = true;
|
|
}
|
|
|
|
if (found_items) {
|
|
min_distance = MAX(min_distance, z_min);
|
|
max_distance = MIN(max_distance, z_max);
|
|
}
|
|
}
|
|
|
|
real_t range = max_distance - min_distance;
|
|
|
|
int splits = 0;
|
|
switch (RSG::storage->light_directional_get_shadow_mode(p_instance->base)) {
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
|
|
splits = 1;
|
|
break;
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
splits = 2;
|
|
break;
|
|
case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
|
|
splits = 4;
|
|
break;
|
|
}
|
|
|
|
real_t distances[5];
|
|
|
|
distances[0] = min_distance;
|
|
for (int i = 0; i < splits; i++) {
|
|
distances[i + 1] = min_distance + RSG::storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
|
|
};
|
|
|
|
distances[splits] = max_distance;
|
|
|
|
real_t texture_size = RSG::scene_render->get_directional_light_shadow_size(light->instance);
|
|
|
|
bool overlap = RSG::storage->light_directional_get_blend_splits(p_instance->base);
|
|
|
|
real_t first_radius = 0.0;
|
|
|
|
real_t min_distance_bias_scale = pancake_size > 0 ? distances[1] / 10.0 : 0;
|
|
|
|
for (int i = 0; i < splits; i++) {
|
|
|
|
RENDER_TIMESTAMP("Culling Directional Light split" + itos(i));
|
|
|
|
// setup a camera matrix for that range!
|
|
CameraMatrix camera_matrix;
|
|
|
|
real_t aspect = p_cam_projection.get_aspect();
|
|
|
|
if (p_cam_orthogonal) {
|
|
|
|
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
|
|
|
|
camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
} else {
|
|
|
|
real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
|
|
camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
}
|
|
|
|
//obtain the frustum endpoints
|
|
|
|
Vector3 endpoints[8]; // frustum plane endpoints
|
|
bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
|
|
ERR_CONTINUE(!res);
|
|
|
|
// obtain the light frustm ranges (given endpoints)
|
|
|
|
Transform transform = light_transform; //discard scale and stabilize light
|
|
|
|
Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized();
|
|
Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized();
|
|
Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized();
|
|
//z_vec points agsint the camera, like in default opengl
|
|
|
|
real_t x_min = 0.f, x_max = 0.f;
|
|
real_t y_min = 0.f, y_max = 0.f;
|
|
real_t z_min = 0.f, z_max = 0.f;
|
|
|
|
// FIXME: z_max_cam is defined, computed, but not used below when setting up
|
|
// ortho_camera. Commented out for now to fix warnings but should be investigated.
|
|
real_t x_min_cam = 0.f, x_max_cam = 0.f;
|
|
real_t y_min_cam = 0.f, y_max_cam = 0.f;
|
|
real_t z_min_cam = 0.f;
|
|
//real_t z_max_cam = 0.f;
|
|
|
|
real_t bias_scale = 1.0;
|
|
real_t aspect_bias_scale = 1.0;
|
|
|
|
//used for culling
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
real_t d_x = x_vec.dot(endpoints[j]);
|
|
real_t d_y = y_vec.dot(endpoints[j]);
|
|
real_t d_z = z_vec.dot(endpoints[j]);
|
|
|
|
if (j == 0 || d_x < x_min)
|
|
x_min = d_x;
|
|
if (j == 0 || d_x > x_max)
|
|
x_max = d_x;
|
|
|
|
if (j == 0 || d_y < y_min)
|
|
y_min = d_y;
|
|
if (j == 0 || d_y > y_max)
|
|
y_max = d_y;
|
|
|
|
if (j == 0 || d_z < z_min)
|
|
z_min = d_z;
|
|
if (j == 0 || d_z > z_max)
|
|
z_max = d_z;
|
|
}
|
|
|
|
real_t radius = 0;
|
|
real_t soft_shadow_expand = 0;
|
|
Vector3 center;
|
|
|
|
{
|
|
//camera viewport stuff
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
center += endpoints[j];
|
|
}
|
|
center /= 8.0;
|
|
|
|
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
real_t d = center.distance_to(endpoints[j]);
|
|
if (d > radius)
|
|
radius = d;
|
|
}
|
|
|
|
radius *= texture_size / (texture_size - 2.0); //add a texel by each side
|
|
|
|
if (i == 0) {
|
|
first_radius = radius;
|
|
} else {
|
|
bias_scale = radius / first_radius;
|
|
}
|
|
|
|
z_min_cam = z_vec.dot(center) - radius;
|
|
|
|
{
|
|
|
|
float soft_shadow_angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);
|
|
|
|
if (soft_shadow_angle > 0.0 && pancake_size > 0.0) {
|
|
|
|
float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
|
|
soft_shadow_expand = Math::tan(Math::deg2rad(soft_shadow_angle)) * z_range;
|
|
|
|
x_max += soft_shadow_expand;
|
|
y_max += soft_shadow_expand;
|
|
|
|
x_min -= soft_shadow_expand;
|
|
y_min -= soft_shadow_expand;
|
|
}
|
|
}
|
|
|
|
x_max_cam = x_vec.dot(center) + radius + soft_shadow_expand;
|
|
x_min_cam = x_vec.dot(center) - radius - soft_shadow_expand;
|
|
y_max_cam = y_vec.dot(center) + radius + soft_shadow_expand;
|
|
y_min_cam = y_vec.dot(center) - radius - soft_shadow_expand;
|
|
|
|
if (depth_range_mode == RS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
|
|
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
|
|
//at the cost of some wasted resolution. Still the quality increase is very well worth it
|
|
|
|
real_t unit = radius * 2.0 / texture_size;
|
|
|
|
x_max_cam = Math::stepify(x_max_cam, unit);
|
|
x_min_cam = Math::stepify(x_min_cam, unit);
|
|
y_max_cam = Math::stepify(y_max_cam, unit);
|
|
y_min_cam = Math::stepify(y_min_cam, unit);
|
|
}
|
|
}
|
|
|
|
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
|
|
|
|
Vector<Plane> light_frustum_planes;
|
|
light_frustum_planes.resize(6);
|
|
|
|
//right/left
|
|
light_frustum_planes.write[0] = Plane(x_vec, x_max);
|
|
light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
|
|
//top/bottom
|
|
light_frustum_planes.write[2] = Plane(y_vec, y_max);
|
|
light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
|
|
//near/far
|
|
light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
|
|
light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
// a pre pass will need to be needed to determine the actual z-near to be used
|
|
|
|
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
|
|
|
|
real_t cull_max = 0;
|
|
for (int j = 0; j < cull_count; j++) {
|
|
|
|
real_t min, max;
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
continue;
|
|
}
|
|
|
|
instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max);
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
if (j == 0 || max > cull_max) {
|
|
cull_max = max;
|
|
}
|
|
}
|
|
|
|
if (cull_max > z_max) {
|
|
z_max = cull_max;
|
|
}
|
|
|
|
if (pancake_size > 0) {
|
|
z_max = z_vec.dot(center) + radius + pancake_size;
|
|
}
|
|
|
|
if (aspect != 1.0) {
|
|
|
|
// if the aspect is different, then the radius will become larger.
|
|
// if this happens, then bias needs to be adjusted too, as depth will increase
|
|
// to do this, compare the depth of one that would have resulted from a square frustum
|
|
|
|
CameraMatrix camera_matrix_square;
|
|
if (p_cam_orthogonal) {
|
|
|
|
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
|
|
if (p_cam_vaspect) {
|
|
camera_matrix_square.set_orthogonal(vp_he.x * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
} else {
|
|
camera_matrix_square.set_orthogonal(vp_he.y * 2.0, 1.0, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
}
|
|
} else {
|
|
Vector2 vp_he = camera_matrix.get_viewport_half_extents();
|
|
if (p_cam_vaspect) {
|
|
camera_matrix_square.set_frustum(vp_he.x * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
|
|
} else {
|
|
camera_matrix_square.set_frustum(vp_he.y * 2.0, 1.0, Vector2(), distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
|
|
}
|
|
}
|
|
|
|
Vector3 endpoints_square[8]; // frustum plane endpoints
|
|
res = camera_matrix_square.get_endpoints(p_cam_transform, endpoints_square);
|
|
ERR_CONTINUE(!res);
|
|
Vector3 center_square;
|
|
real_t z_max_square = 0;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
center_square += endpoints_square[j];
|
|
|
|
real_t d_z = z_vec.dot(endpoints_square[j]);
|
|
|
|
if (j == 0 || d_z > z_max_square)
|
|
z_max_square = d_z;
|
|
}
|
|
|
|
if (cull_max > z_max_square) {
|
|
z_max_square = cull_max;
|
|
}
|
|
|
|
center_square /= 8.0;
|
|
|
|
real_t radius_square = 0;
|
|
|
|
for (int j = 0; j < 8; j++) {
|
|
|
|
real_t d = center_square.distance_to(endpoints_square[j]);
|
|
if (d > radius_square)
|
|
radius_square = d;
|
|
}
|
|
|
|
radius_square *= texture_size / (texture_size - 2.0); //add a texel by each side
|
|
|
|
if (pancake_size > 0) {
|
|
z_max_square = z_vec.dot(center_square) + radius_square + pancake_size;
|
|
}
|
|
|
|
real_t z_min_cam_square = z_vec.dot(center_square) - radius_square;
|
|
|
|
aspect_bias_scale = (z_max - z_min_cam) / (z_max_square - z_min_cam_square);
|
|
|
|
// this is not entirely perfect, because the cull-adjusted z-max may be different
|
|
// but at least it's warranted that it results in a greater bias, so no acne should be present either way.
|
|
// pancaking also helps with this.
|
|
}
|
|
|
|
{
|
|
|
|
CameraMatrix ortho_camera;
|
|
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
|
|
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
|
|
|
|
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
|
|
|
|
Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));
|
|
|
|
Transform ortho_transform;
|
|
ortho_transform.basis = transform.basis;
|
|
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
|
|
|
|
{
|
|
Vector3 max_in_view = p_cam_transform.affine_inverse().xform(z_vec * cull_max);
|
|
Vector3 dir_in_view = p_cam_transform.xform_inv(z_vec).normalized();
|
|
cull_max = dir_in_view.dot(max_in_view);
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, z_max - z_min_cam, distances[i + 1], i, radius * 2.0 / texture_size, bias_scale * aspect_bias_scale * min_distance_bias_scale, z_max, uv_scale);
|
|
}
|
|
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
|
|
} break;
|
|
case RS::LIGHT_OMNI: {
|
|
|
|
RS::LightOmniShadowMode shadow_mode = RSG::storage->light_omni_get_shadow_mode(p_instance->base);
|
|
|
|
if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::scene_render->light_instances_can_render_shadow_cube()) {
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
//using this one ensures that raster deferred will have it
|
|
RENDER_TIMESTAMP("Culling Shadow Paraboloid" + itos(i));
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
|
|
real_t z = i == 0 ? -1 : 1;
|
|
Vector<Plane> planes;
|
|
planes.resize(6);
|
|
planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
|
|
planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
|
|
planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
|
|
planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
|
|
planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
|
|
planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0));
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z);
|
|
|
|
for (int j = 0; j < cull_count; j++) {
|
|
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
} else { //shadow cube
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
CameraMatrix cm;
|
|
cm.set_perspective(90, 1, 0.01, radius);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
RENDER_TIMESTAMP("Culling Shadow Cube side" + itos(i));
|
|
//using this one ensures that raster deferred will have it
|
|
|
|
static const Vector3 view_normals[6] = {
|
|
Vector3(+1, 0, 0),
|
|
Vector3(-1, 0, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, +1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1)
|
|
};
|
|
static const Vector3 view_up[6] = {
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, -1),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0)
|
|
};
|
|
|
|
Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]);
|
|
|
|
Vector<Plane> planes = cm.get_projection_planes(xform);
|
|
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
Plane near_plane(xform.origin, -xform.basis.get_axis(2));
|
|
for (int j = 0; j < cull_count; j++) {
|
|
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
}
|
|
|
|
//restore the regular DP matrix
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0, 0);
|
|
}
|
|
|
|
} break;
|
|
case RS::LIGHT_SPOT: {
|
|
|
|
RENDER_TIMESTAMP("Culling Spot Light");
|
|
|
|
real_t radius = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
|
|
real_t angle = RSG::storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
|
|
CameraMatrix cm;
|
|
cm.set_perspective(angle * 2.0, 1.0, 0.01, radius);
|
|
|
|
Vector<Plane> planes = cm.get_projection_planes(light_transform);
|
|
int cull_count = p_scenario->octree.cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, RS::INSTANCE_GEOMETRY_MASK);
|
|
|
|
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
|
|
for (int j = 0; j < cull_count; j++) {
|
|
|
|
Instance *instance = instance_shadow_cull_result[j];
|
|
if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
|
|
cull_count--;
|
|
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
|
|
j--;
|
|
} else {
|
|
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
|
|
animated_material_found = true;
|
|
}
|
|
instance->depth = near_plane.distance_to(instance->transform.origin);
|
|
instance->depth_layer = 0;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0);
|
|
RSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
|
|
|
|
} break;
|
|
}
|
|
|
|
return animated_material_found;
|
|
}
|
|
|
|
void RenderingServerScene::render_camera(RID p_render_buffers, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
|
|
// render to mono camera
|
|
#ifndef _3D_DISABLED
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
/* STEP 1 - SETUP CAMERA */
|
|
CameraMatrix camera_matrix;
|
|
bool ortho = false;
|
|
|
|
switch (camera->type) {
|
|
case Camera::ORTHOGONAL: {
|
|
|
|
camera_matrix.set_orthogonal(
|
|
camera->size,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = true;
|
|
} break;
|
|
case Camera::PERSPECTIVE: {
|
|
|
|
camera_matrix.set_perspective(
|
|
camera->fov,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = false;
|
|
|
|
} break;
|
|
case Camera::FRUSTUM: {
|
|
|
|
camera_matrix.set_frustum(
|
|
camera->size,
|
|
p_viewport_size.width / (float)p_viewport_size.height,
|
|
camera->offset,
|
|
camera->znear,
|
|
camera->zfar,
|
|
camera->vaspect);
|
|
ortho = false;
|
|
} break;
|
|
}
|
|
|
|
_prepare_scene(camera->transform, camera_matrix, ortho, camera->vaspect, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
_render_scene(p_render_buffers, camera->transform, camera_matrix, ortho, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
|
|
#endif
|
|
}
|
|
|
|
void RenderingServerScene::render_camera(RID p_render_buffers, Ref<XRInterface> &p_interface, XRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
|
|
// render for AR/VR interface
|
|
|
|
Camera *camera = camera_owner.getornull(p_camera);
|
|
ERR_FAIL_COND(!camera);
|
|
|
|
/* SETUP CAMERA, we are ignoring type and FOV here */
|
|
float aspect = p_viewport_size.width / (float)p_viewport_size.height;
|
|
CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar);
|
|
|
|
// We also ignore our camera position, it will have been positioned with a slightly old tracking position.
|
|
// Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo!
|
|
Transform world_origin = XRServer::get_singleton()->get_world_origin();
|
|
Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin);
|
|
|
|
// For stereo render we only prepare for our left eye and then reuse the outcome for our right eye
|
|
if (p_eye == XRInterface::EYE_LEFT) {
|
|
// Center our transform, we assume basis is equal.
|
|
Transform mono_transform = cam_transform;
|
|
Transform right_transform = p_interface->get_transform_for_eye(XRInterface::EYE_RIGHT, world_origin);
|
|
mono_transform.origin += right_transform.origin;
|
|
mono_transform.origin *= 0.5;
|
|
|
|
// We need to combine our projection frustums for culling.
|
|
// Ideally we should use our clipping planes for this and combine them,
|
|
// however our shadow map logic uses our projection matrix.
|
|
// Note: as our left and right frustums should be mirrored, we don't need our right projection matrix.
|
|
|
|
// - get some base values we need
|
|
float eye_dist = (mono_transform.origin - cam_transform.origin).length();
|
|
float z_near = camera_matrix.get_z_near(); // get our near plane
|
|
float z_far = camera_matrix.get_z_far(); // get our far plane
|
|
float width = (2.0 * z_near) / camera_matrix.matrix[0][0];
|
|
float x_shift = width * camera_matrix.matrix[2][0];
|
|
float height = (2.0 * z_near) / camera_matrix.matrix[1][1];
|
|
float y_shift = height * camera_matrix.matrix[2][1];
|
|
|
|
// printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift);
|
|
|
|
// - calculate our near plane size (horizontal only, right_near is mirrored)
|
|
float left_near = -eye_dist - ((width - x_shift) * 0.5);
|
|
|
|
// - calculate our far plane size (horizontal only, right_far is mirrored)
|
|
float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near);
|
|
float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near);
|
|
if (left_far > left_far_right_eye) {
|
|
// on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes.
|
|
left_far = left_far_right_eye;
|
|
}
|
|
|
|
// - figure out required z-shift
|
|
float slope = (left_far - left_near) / (z_far - z_near);
|
|
float z_shift = (left_near / slope) - z_near;
|
|
|
|
// - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift)
|
|
float top_near = (height - y_shift) * 0.5;
|
|
top_near += (top_near / z_near) * z_shift;
|
|
float bottom_near = -(height + y_shift) * 0.5;
|
|
bottom_near += (bottom_near / z_near) * z_shift;
|
|
|
|
// printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift);
|
|
|
|
// - generate our frustum
|
|
CameraMatrix combined_matrix;
|
|
combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift);
|
|
|
|
// and finally move our camera back
|
|
Transform apply_z_shift;
|
|
apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards
|
|
mono_transform *= apply_z_shift;
|
|
|
|
// now prepare our scene with our adjusted transform projection matrix
|
|
_prepare_scene(mono_transform, combined_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
} else if (p_eye == XRInterface::EYE_MONO) {
|
|
// For mono render, prepare as per usual
|
|
_prepare_scene(cam_transform, camera_matrix, false, false, camera->env, camera->effects, camera->visible_layers, p_scenario, p_shadow_atlas, RID());
|
|
}
|
|
|
|
// And render our scene...
|
|
_render_scene(p_render_buffers, cam_transform, camera_matrix, false, camera->env, camera->effects, p_scenario, p_shadow_atlas, RID(), -1);
|
|
};
|
|
|
|
void RenderingServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_force_environment, RID p_force_camera_effects, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, bool p_using_shadows) {
|
|
// Note, in stereo rendering:
|
|
// - p_cam_transform will be a transform in the middle of our two eyes
|
|
// - p_cam_projection is a wider frustrum that encompasses both eyes
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
render_pass++;
|
|
uint32_t camera_layer_mask = p_visible_layers;
|
|
|
|
RSG::scene_render->set_scene_pass(render_pass);
|
|
|
|
RENDER_TIMESTAMP("Frustum Culling");
|
|
|
|
//rasterizer->set_camera(camera->transform, camera_matrix,ortho);
|
|
|
|
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
|
|
|
|
Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized());
|
|
float z_far = p_cam_projection.get_z_far();
|
|
|
|
/* STEP 2 - CULL */
|
|
instance_cull_count = scenario->octree.cull_convex(planes, instance_cull_result, MAX_INSTANCE_CULL);
|
|
light_cull_count = 0;
|
|
|
|
reflection_probe_cull_count = 0;
|
|
decal_cull_count = 0;
|
|
gi_probe_cull_count = 0;
|
|
lightmap_cull_count = 0;
|
|
|
|
//light_samplers_culled=0;
|
|
|
|
/*
|
|
print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0));
|
|
print_line("OTO: "+itos(p_scenario->octree.get_octant_count()));
|
|
print_line("OTE: "+itos(p_scenario->octree.get_elem_count()));
|
|
print_line("OTP: "+itos(p_scenario->octree.get_pair_count()));
|
|
*/
|
|
|
|
/* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */
|
|
//removed, will replace with culling
|
|
|
|
/* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */
|
|
uint64_t frame_number = RSG::rasterizer->get_frame_number();
|
|
float lightmap_probe_update_speed = RSG::storage->lightmap_get_probe_capture_update_speed() * RSG::rasterizer->get_frame_delta_time();
|
|
|
|
for (int i = 0; i < instance_cull_count; i++) {
|
|
|
|
Instance *ins = instance_cull_result[i];
|
|
|
|
bool keep = false;
|
|
|
|
if ((camera_layer_mask & ins->layer_mask) == 0) {
|
|
//failure
|
|
} else if (ins->base_type == RS::INSTANCE_LIGHT && ins->visible) {
|
|
|
|
if (light_cull_count < MAX_LIGHTS_CULLED) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
|
|
|
|
if (!light->geometries.empty()) {
|
|
//do not add this light if no geometry is affected by it..
|
|
light_cull_result[light_cull_count] = ins;
|
|
light_instance_cull_result[light_cull_count] = light->instance;
|
|
if (p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(ins->base)) {
|
|
RSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later
|
|
}
|
|
|
|
light_cull_count++;
|
|
}
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_REFLECTION_PROBE && ins->visible) {
|
|
|
|
if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data);
|
|
|
|
if (p_reflection_probe != reflection_probe->instance) {
|
|
//avoid entering The Matrix
|
|
|
|
if (!reflection_probe->geometries.empty()) {
|
|
//do not add this light if no geometry is affected by it..
|
|
|
|
if (reflection_probe->reflection_dirty || RSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) {
|
|
if (!reflection_probe->update_list.in_list()) {
|
|
reflection_probe->render_step = 0;
|
|
reflection_probe_render_list.add_last(&reflection_probe->update_list);
|
|
}
|
|
|
|
reflection_probe->reflection_dirty = false;
|
|
}
|
|
|
|
if (RSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) {
|
|
reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance;
|
|
reflection_probe_cull_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_DECAL && ins->visible) {
|
|
|
|
if (decal_cull_count < MAX_DECALS_CULLED) {
|
|
|
|
InstanceDecalData *decal = static_cast<InstanceDecalData *>(ins->base_data);
|
|
|
|
if (!decal->geometries.empty()) {
|
|
//do not add this decal if no geometry is affected by it..
|
|
decal_instance_cull_result[decal_cull_count] = decal->instance;
|
|
decal_cull_count++;
|
|
}
|
|
}
|
|
|
|
} else if (ins->base_type == RS::INSTANCE_GI_PROBE && ins->visible) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data);
|
|
if (!gi_probe->update_element.in_list()) {
|
|
gi_probe_update_list.add(&gi_probe->update_element);
|
|
}
|
|
|
|
if (gi_probe_cull_count < MAX_GI_PROBES_CULLED) {
|
|
gi_probe_instance_cull_result[gi_probe_cull_count] = gi_probe->probe_instance;
|
|
gi_probe_cull_count++;
|
|
}
|
|
} else if (ins->base_type == RS::INSTANCE_LIGHTMAP && ins->visible) {
|
|
|
|
if (lightmap_cull_count < MAX_LIGHTMAPS_CULLED) {
|
|
lightmap_cull_result[lightmap_cull_count] = ins;
|
|
lightmap_cull_count++;
|
|
}
|
|
|
|
} else if (((1 << ins->base_type) & RS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
|
|
|
|
keep = true;
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data);
|
|
|
|
if (ins->redraw_if_visible) {
|
|
RenderingServerRaster::redraw_request();
|
|
}
|
|
|
|
if (ins->base_type == RS::INSTANCE_PARTICLES) {
|
|
//particles visible? process them
|
|
if (RSG::storage->particles_is_inactive(ins->base)) {
|
|
//but if nothing is going on, don't do it.
|
|
keep = false;
|
|
} else {
|
|
RSG::storage->particles_request_process(ins->base);
|
|
//particles visible? request redraw
|
|
RenderingServerRaster::redraw_request();
|
|
}
|
|
}
|
|
|
|
if (geom->lighting_dirty) {
|
|
int l = 0;
|
|
//only called when lights AABB enter/exit this geometry
|
|
ins->light_instances.resize(geom->lighting.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
|
|
ins->light_instances.write[l++] = light->instance;
|
|
}
|
|
|
|
geom->lighting_dirty = false;
|
|
}
|
|
|
|
if (geom->reflection_dirty) {
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->reflection_probe_instances.resize(geom->reflection_probes.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
|
|
|
|
ins->reflection_probe_instances.write[l++] = reflection_probe->instance;
|
|
}
|
|
|
|
geom->reflection_dirty = false;
|
|
}
|
|
|
|
if (geom->gi_probes_dirty) {
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->gi_probe_instances.resize(geom->gi_probes.size());
|
|
|
|
for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) {
|
|
|
|
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data);
|
|
|
|
ins->gi_probe_instances.write[l++] = gi_probe->probe_instance;
|
|
}
|
|
|
|
geom->gi_probes_dirty = false;
|
|
}
|
|
|
|
if (ins->last_frame_pass != frame_number && !ins->lightmap_target_sh.empty() && !ins->lightmap_sh.empty()) {
|
|
Color *sh = ins->lightmap_sh.ptrw();
|
|
const Color *target_sh = ins->lightmap_target_sh.ptr();
|
|
for (uint32_t j = 0; j < 9; j++) {
|
|
sh[j] = sh[j].lerp(target_sh[j], MIN(1.0, lightmap_probe_update_speed));
|
|
}
|
|
}
|
|
|
|
ins->depth = near_plane.distance_to(ins->transform.origin);
|
|
ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15);
|
|
}
|
|
|
|
if (!keep) {
|
|
// remove, no reason to keep
|
|
instance_cull_count--;
|
|
SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]);
|
|
i--;
|
|
ins->last_render_pass = 0; // make invalid
|
|
} else {
|
|
|
|
ins->last_render_pass = render_pass;
|
|
}
|
|
ins->last_frame_pass = frame_number;
|
|
}
|
|
|
|
/* STEP 5 - PROCESS LIGHTS */
|
|
|
|
RID *directional_light_ptr = &light_instance_cull_result[light_cull_count];
|
|
directional_light_count = 0;
|
|
|
|
// directional lights
|
|
{
|
|
|
|
Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size());
|
|
int directional_shadow_count = 0;
|
|
|
|
for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) {
|
|
|
|
if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) {
|
|
break;
|
|
}
|
|
|
|
if (!E->get()->visible)
|
|
continue;
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
|
|
//check shadow..
|
|
|
|
if (light) {
|
|
if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::storage->light_has_shadow(E->get()->base)) {
|
|
lights_with_shadow[directional_shadow_count++] = E->get();
|
|
}
|
|
//add to list
|
|
directional_light_ptr[directional_light_count++] = light->instance;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->set_directional_shadow_count(directional_shadow_count);
|
|
|
|
for (int i = 0; i < directional_shadow_count; i++) {
|
|
|
|
RENDER_TIMESTAMP(">Rendering Directional Light " + itos(i));
|
|
|
|
_light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
|
|
|
|
RENDER_TIMESTAMP("<Rendering Directional Light " + itos(i));
|
|
}
|
|
}
|
|
|
|
if (p_using_shadows) { //setup shadow maps
|
|
|
|
//SortArray<Instance*,_InstanceLightsort> sorter;
|
|
//sorter.sort(light_cull_result,light_cull_count);
|
|
for (int i = 0; i < light_cull_count; i++) {
|
|
|
|
Instance *ins = light_cull_result[i];
|
|
|
|
if (!p_shadow_atlas.is_valid() || !RSG::storage->light_has_shadow(ins->base))
|
|
continue;
|
|
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
|
|
|
|
float coverage = 0.f;
|
|
|
|
{ //compute coverage
|
|
|
|
Transform cam_xf = p_cam_transform;
|
|
float zn = p_cam_projection.get_z_near();
|
|
Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane
|
|
|
|
// near plane half width and height
|
|
Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents();
|
|
|
|
switch (RSG::storage->light_get_type(ins->base)) {
|
|
|
|
case RS::LIGHT_OMNI: {
|
|
|
|
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
|
|
|
|
//get two points parallel to near plane
|
|
Vector3 points[2] = {
|
|
ins->transform.origin,
|
|
ins->transform.origin + cam_xf.basis.get_axis(0) * radius
|
|
};
|
|
|
|
if (!p_cam_orthogonal) {
|
|
//if using perspetive, map them to near plane
|
|
for (int j = 0; j < 2; j++) {
|
|
if (p.distance_to(points[j]) < 0) {
|
|
points[j].z = -zn; //small hack to keep size constant when hitting the screen
|
|
}
|
|
|
|
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
|
|
}
|
|
}
|
|
|
|
float screen_diameter = points[0].distance_to(points[1]) * 2;
|
|
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
|
|
} break;
|
|
case RS::LIGHT_SPOT: {
|
|
|
|
float radius = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
|
|
float angle = RSG::storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
|
|
float w = radius * Math::sin(Math::deg2rad(angle));
|
|
float d = radius * Math::cos(Math::deg2rad(angle));
|
|
|
|
Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d;
|
|
|
|
Vector3 points[2] = {
|
|
base,
|
|
base + cam_xf.basis.get_axis(0) * w
|
|
};
|
|
|
|
if (!p_cam_orthogonal) {
|
|
//if using perspetive, map them to near plane
|
|
for (int j = 0; j < 2; j++) {
|
|
if (p.distance_to(points[j]) < 0) {
|
|
points[j].z = -zn; //small hack to keep size constant when hitting the screen
|
|
}
|
|
|
|
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
|
|
}
|
|
}
|
|
|
|
float screen_diameter = points[0].distance_to(points[1]) * 2;
|
|
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
|
|
|
|
} break;
|
|
default: {
|
|
ERR_PRINT("Invalid Light Type");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (light->shadow_dirty) {
|
|
light->last_version++;
|
|
light->shadow_dirty = false;
|
|
}
|
|
|
|
bool redraw = RSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);
|
|
|
|
if (redraw) {
|
|
//must redraw!
|
|
RENDER_TIMESTAMP(">Rendering Light " + itos(i));
|
|
light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_cam_vaspect, p_shadow_atlas, scenario);
|
|
RENDER_TIMESTAMP("<Rendering Light " + itos(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_render_scene(RID p_render_buffers, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_force_camera_effects, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
/* ENVIRONMENT */
|
|
|
|
RID environment;
|
|
if (p_force_environment.is_valid()) //camera has more environment priority
|
|
environment = p_force_environment;
|
|
else if (scenario->environment.is_valid())
|
|
environment = scenario->environment;
|
|
else
|
|
environment = scenario->fallback_environment;
|
|
|
|
RID camera_effects;
|
|
if (p_force_camera_effects.is_valid()) {
|
|
camera_effects = p_force_camera_effects;
|
|
} else {
|
|
camera_effects = scenario->camera_effects;
|
|
}
|
|
/* PROCESS GEOMETRY AND DRAW SCENE */
|
|
|
|
RENDER_TIMESTAMP("Render Scene ");
|
|
RSG::scene_render->render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, gi_probe_instance_cull_result, gi_probe_cull_count, decal_instance_cull_result, decal_cull_count, (RasterizerScene::InstanceBase **)lightmap_cull_result, lightmap_cull_count, environment, camera_effects, p_shadow_atlas, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass);
|
|
}
|
|
|
|
void RenderingServerScene::render_empty_scene(RID p_render_buffers, RID p_scenario, RID p_shadow_atlas) {
|
|
|
|
#ifndef _3D_DISABLED
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_scenario);
|
|
|
|
RID environment;
|
|
if (scenario->environment.is_valid())
|
|
environment = scenario->environment;
|
|
else
|
|
environment = scenario->fallback_environment;
|
|
RENDER_TIMESTAMP("Render Empty Scene ");
|
|
RSG::scene_render->render_scene(p_render_buffers, Transform(), CameraMatrix(), true, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, nullptr, 0, environment, RID(), p_shadow_atlas, scenario->reflection_atlas, RID(), 0);
|
|
#endif
|
|
}
|
|
|
|
bool RenderingServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) {
|
|
|
|
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
|
|
Scenario *scenario = p_instance->scenario;
|
|
ERR_FAIL_COND_V(!scenario, true);
|
|
|
|
RenderingServerRaster::redraw_request(); //update, so it updates in editor
|
|
|
|
if (p_step == 0) {
|
|
|
|
if (!RSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
|
|
return true; //all full
|
|
}
|
|
}
|
|
|
|
if (p_step >= 0 && p_step < 6) {
|
|
|
|
static const Vector3 view_normals[6] = {
|
|
Vector3(+1, 0, 0),
|
|
Vector3(-1, 0, 0),
|
|
Vector3(0, +1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1)
|
|
};
|
|
static const Vector3 view_up[6] = {
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, 0, +1),
|
|
Vector3(0, 0, -1),
|
|
Vector3(0, -1, 0),
|
|
Vector3(0, -1, 0)
|
|
};
|
|
|
|
Vector3 extents = RSG::storage->reflection_probe_get_extents(p_instance->base);
|
|
Vector3 origin_offset = RSG::storage->reflection_probe_get_origin_offset(p_instance->base);
|
|
float max_distance = RSG::storage->reflection_probe_get_origin_max_distance(p_instance->base);
|
|
|
|
Vector3 edge = view_normals[p_step] * extents;
|
|
float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit
|
|
|
|
max_distance = MAX(max_distance, distance);
|
|
|
|
//render cubemap side
|
|
CameraMatrix cm;
|
|
cm.set_perspective(90, 1, 0.01, max_distance);
|
|
|
|
Transform local_view;
|
|
local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);
|
|
|
|
Transform xform = p_instance->transform * local_view;
|
|
|
|
RID shadow_atlas;
|
|
|
|
bool use_shadows = RSG::storage->reflection_probe_renders_shadows(p_instance->base);
|
|
if (use_shadows) {
|
|
|
|
shadow_atlas = scenario->reflection_probe_shadow_atlas;
|
|
}
|
|
|
|
RENDER_TIMESTAMP("Render Reflection Probe, Step " + itos(p_step));
|
|
_prepare_scene(xform, cm, false, false, RID(), RID(), RSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, use_shadows);
|
|
_render_scene(RID(), xform, cm, false, RID(), RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step);
|
|
|
|
} else {
|
|
//do roughness postprocess step until it believes it's done
|
|
RENDER_TIMESTAMP("Post-Process Reflection Probe, Step " + itos(p_step));
|
|
return RSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void RenderingServerScene::render_probes() {
|
|
|
|
/* REFLECTION PROBES */
|
|
|
|
SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
|
|
|
|
bool busy = false;
|
|
|
|
while (ref_probe) {
|
|
|
|
SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
|
|
RID base = ref_probe->self()->owner->base;
|
|
|
|
switch (RSG::storage->reflection_probe_get_update_mode(base)) {
|
|
|
|
case RS::REFLECTION_PROBE_UPDATE_ONCE: {
|
|
if (busy) //already rendering something
|
|
break;
|
|
|
|
bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
|
|
if (done) {
|
|
reflection_probe_render_list.remove(ref_probe);
|
|
} else {
|
|
ref_probe->self()->render_step++;
|
|
}
|
|
|
|
busy = true; //do not render another one of this kind
|
|
} break;
|
|
case RS::REFLECTION_PROBE_UPDATE_ALWAYS: {
|
|
|
|
int step = 0;
|
|
bool done = false;
|
|
while (!done) {
|
|
done = _render_reflection_probe_step(ref_probe->self()->owner, step);
|
|
step++;
|
|
}
|
|
|
|
reflection_probe_render_list.remove(ref_probe);
|
|
} break;
|
|
}
|
|
|
|
ref_probe = next;
|
|
}
|
|
|
|
/* GI PROBES */
|
|
|
|
SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first();
|
|
|
|
if (gi_probe) {
|
|
RENDER_TIMESTAMP("Render GI Probes");
|
|
}
|
|
|
|
while (gi_probe) {
|
|
|
|
SelfList<InstanceGIProbeData> *next = gi_probe->next();
|
|
|
|
InstanceGIProbeData *probe = gi_probe->self();
|
|
//Instance *instance_probe = probe->owner;
|
|
|
|
//check if probe must be setup, but don't do if on the lighting thread
|
|
|
|
bool cache_dirty = false;
|
|
int cache_count = 0;
|
|
{
|
|
|
|
int light_cache_size = probe->light_cache.size();
|
|
const InstanceGIProbeData::LightCache *caches = probe->light_cache.ptr();
|
|
const RID *instance_caches = probe->light_instances.ptr();
|
|
|
|
int idx = 0; //must count visible lights
|
|
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
if (cache_dirty) {
|
|
//do nothing, since idx must count all visible lights anyway
|
|
} else if (idx >= light_cache_size) {
|
|
cache_dirty = true;
|
|
} else {
|
|
|
|
const InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
if (
|
|
instance_caches[idx] != instance_light->instance ||
|
|
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
|
|
cache->type != RSG::storage->light_get_type(instance->base) ||
|
|
cache->transform != instance->transform ||
|
|
cache->color != RSG::storage->light_get_color(instance->base) ||
|
|
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
|
|
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
|
|
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
|
|
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
|
|
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
|
|
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
|
|
cache_dirty = true;
|
|
}
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
|
|
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
if (cache_dirty) {
|
|
//do nothing, since idx must count all visible lights anyway
|
|
} else if (idx >= light_cache_size) {
|
|
cache_dirty = true;
|
|
} else {
|
|
|
|
const InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
if (
|
|
instance_caches[idx] != instance_light->instance ||
|
|
cache->has_shadow != RSG::storage->light_has_shadow(instance->base) ||
|
|
cache->type != RSG::storage->light_get_type(instance->base) ||
|
|
cache->transform != instance->transform ||
|
|
cache->color != RSG::storage->light_get_color(instance->base) ||
|
|
cache->energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
|
|
cache->bake_energy != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
|
|
cache->radius != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
|
|
cache->attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
|
|
cache->spot_angle != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
|
|
cache->spot_attenuation != RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
|
|
cache_dirty = true;
|
|
}
|
|
}
|
|
|
|
idx++;
|
|
}
|
|
|
|
if (idx != light_cache_size) {
|
|
cache_dirty = true;
|
|
}
|
|
|
|
cache_count = idx;
|
|
}
|
|
|
|
bool update_lights = RSG::scene_render->gi_probe_needs_update(probe->probe_instance);
|
|
|
|
if (cache_dirty) {
|
|
probe->light_cache.resize(cache_count);
|
|
probe->light_instances.resize(cache_count);
|
|
|
|
if (cache_count) {
|
|
InstanceGIProbeData::LightCache *caches = probe->light_cache.ptrw();
|
|
RID *instance_caches = probe->light_instances.ptrw();
|
|
|
|
int idx = 0; //must count visible lights
|
|
for (Set<Instance *>::Element *E = probe->lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
|
|
InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
instance_caches[idx] = instance_light->instance;
|
|
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
|
|
cache->type = RSG::storage->light_get_type(instance->base);
|
|
cache->transform = instance->transform;
|
|
cache->color = RSG::storage->light_get_color(instance->base);
|
|
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
|
|
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
|
|
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
|
|
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
|
|
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
|
|
|
|
idx++;
|
|
}
|
|
for (List<Instance *>::Element *E = probe->owner->scenario->directional_lights.front(); E; E = E->next()) {
|
|
Instance *instance = E->get();
|
|
InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
|
|
if (!instance->visible) {
|
|
continue;
|
|
}
|
|
|
|
InstanceGIProbeData::LightCache *cache = &caches[idx];
|
|
|
|
instance_caches[idx] = instance_light->instance;
|
|
cache->has_shadow = RSG::storage->light_has_shadow(instance->base);
|
|
cache->type = RSG::storage->light_get_type(instance->base);
|
|
cache->transform = instance->transform;
|
|
cache->color = RSG::storage->light_get_color(instance->base);
|
|
cache->energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
|
|
cache->bake_energy = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
|
|
cache->radius = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
|
|
cache->attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
|
|
cache->spot_angle = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
|
|
cache->spot_attenuation = RSG::storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
|
|
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
update_lights = true;
|
|
}
|
|
|
|
instance_cull_count = 0;
|
|
for (List<InstanceGIProbeData::PairInfo>::Element *E = probe->dynamic_geometries.front(); E; E = E->next()) {
|
|
if (instance_cull_count < MAX_INSTANCE_CULL) {
|
|
Instance *ins = E->get().geometry;
|
|
if (!ins->visible) {
|
|
continue;
|
|
}
|
|
InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data;
|
|
|
|
if (geom->gi_probes_dirty) {
|
|
//giprobes may be dirty, so update
|
|
int l = 0;
|
|
//only called when reflection probe AABB enter/exit this geometry
|
|
ins->gi_probe_instances.resize(geom->gi_probes.size());
|
|
|
|
for (List<Instance *>::Element *F = geom->gi_probes.front(); F; F = F->next()) {
|
|
|
|
InstanceGIProbeData *gi_probe2 = static_cast<InstanceGIProbeData *>(F->get()->base_data);
|
|
|
|
ins->gi_probe_instances.write[l++] = gi_probe2->probe_instance;
|
|
}
|
|
|
|
geom->gi_probes_dirty = false;
|
|
}
|
|
|
|
instance_cull_result[instance_cull_count++] = E->get().geometry;
|
|
}
|
|
}
|
|
|
|
RSG::scene_render->gi_probe_update(probe->probe_instance, update_lights, probe->light_instances, instance_cull_count, (RasterizerScene::InstanceBase **)instance_cull_result);
|
|
|
|
gi_probe_update_list.remove(gi_probe);
|
|
|
|
gi_probe = next;
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_instance_shader_parameters_from_material(Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> &isparams, const Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> &existing_isparams, RID p_material) {
|
|
|
|
List<RasterizerStorage::InstanceShaderParam> plist;
|
|
RSG::storage->material_get_instance_shader_parameters(p_material, &plist);
|
|
for (List<RasterizerStorage::InstanceShaderParam>::Element *E = plist.front(); E; E = E->next()) {
|
|
StringName name = E->get().info.name;
|
|
if (isparams.has(name)) {
|
|
if (isparams[name].info.type != E->get().info.type) {
|
|
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different data types. Only the first one (in order) will display correctly.");
|
|
}
|
|
if (isparams[name].index != E->get().index) {
|
|
WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E->get().info.name + "', but they do it with different indices. Only the first one (in order) will display correctly.");
|
|
}
|
|
continue; //first one found always has priority
|
|
}
|
|
|
|
RasterizerScene::InstanceBase::InstanceShaderParameter isp;
|
|
isp.index = E->get().index;
|
|
isp.info = E->get().info;
|
|
isp.default_value = E->get().default_value;
|
|
if (existing_isparams.has(name)) {
|
|
isp.value = existing_isparams[name].value;
|
|
} else {
|
|
isp.value = E->get().default_value;
|
|
}
|
|
isparams[name] = isp;
|
|
}
|
|
}
|
|
|
|
void RenderingServerScene::_update_dirty_instance(Instance *p_instance) {
|
|
|
|
if (p_instance->update_aabb) {
|
|
_update_instance_aabb(p_instance);
|
|
}
|
|
|
|
if (p_instance->update_dependencies) {
|
|
|
|
p_instance->instance_increase_version();
|
|
|
|
if (p_instance->base.is_valid()) {
|
|
RSG::storage->base_update_dependency(p_instance->base, p_instance);
|
|
}
|
|
|
|
if (p_instance->material_override.is_valid()) {
|
|
RSG::storage->material_update_dependency(p_instance->material_override, p_instance);
|
|
}
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_MESH) {
|
|
//remove materials no longer used and un-own them
|
|
|
|
int new_mat_count = RSG::storage->mesh_get_surface_count(p_instance->base);
|
|
p_instance->materials.resize(new_mat_count);
|
|
|
|
int new_blend_shape_count = RSG::storage->mesh_get_blend_shape_count(p_instance->base);
|
|
if (new_blend_shape_count != p_instance->blend_values.size()) {
|
|
p_instance->blend_values.resize(new_blend_shape_count);
|
|
for (int i = 0; i < new_blend_shape_count; i++) {
|
|
p_instance->blend_values.write[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
|
|
|
|
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
|
|
|
|
bool can_cast_shadows = true;
|
|
bool is_animated = false;
|
|
Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter> isparams;
|
|
|
|
if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
if (p_instance->material_override.is_valid()) {
|
|
if (!RSG::storage->material_casts_shadows(p_instance->material_override)) {
|
|
can_cast_shadows = false;
|
|
}
|
|
is_animated = RSG::storage->material_is_animated(p_instance->material_override);
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, p_instance->material_override);
|
|
} else {
|
|
|
|
if (p_instance->base_type == RS::INSTANCE_MESH) {
|
|
RID mesh = p_instance->base;
|
|
|
|
if (mesh.is_valid()) {
|
|
bool cast_shadows = false;
|
|
|
|
for (int i = 0; i < p_instance->materials.size(); i++) {
|
|
|
|
RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::storage->mesh_surface_get_material(mesh, i);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
} else {
|
|
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
}
|
|
|
|
} else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) {
|
|
RID mesh = RSG::storage->multimesh_get_mesh(p_instance->base);
|
|
if (mesh.is_valid()) {
|
|
|
|
bool cast_shadows = false;
|
|
|
|
int sc = RSG::storage->mesh_get_surface_count(mesh);
|
|
for (int i = 0; i < sc; i++) {
|
|
|
|
RID mat = RSG::storage->mesh_surface_get_material(mesh, i);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
|
|
} else {
|
|
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
RSG::storage->base_update_dependency(mesh, p_instance);
|
|
}
|
|
} else if (p_instance->base_type == RS::INSTANCE_IMMEDIATE) {
|
|
|
|
RID mat = RSG::storage->immediate_get_material(p_instance->base);
|
|
|
|
if (!(!mat.is_valid() || RSG::storage->material_casts_shadows(mat))) {
|
|
can_cast_shadows = false;
|
|
}
|
|
|
|
if (mat.is_valid() && RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
if (mat.is_valid()) {
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
}
|
|
|
|
if (mat.is_valid()) {
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
|
|
} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
|
|
|
|
bool cast_shadows = false;
|
|
|
|
int dp = RSG::storage->particles_get_draw_passes(p_instance->base);
|
|
|
|
for (int i = 0; i < dp; i++) {
|
|
|
|
RID mesh = RSG::storage->particles_get_draw_pass_mesh(p_instance->base, i);
|
|
if (!mesh.is_valid())
|
|
continue;
|
|
|
|
int sc = RSG::storage->mesh_get_surface_count(mesh);
|
|
for (int j = 0; j < sc; j++) {
|
|
|
|
RID mat = RSG::storage->mesh_surface_get_material(mesh, j);
|
|
|
|
if (!mat.is_valid()) {
|
|
cast_shadows = true;
|
|
} else {
|
|
|
|
if (RSG::storage->material_casts_shadows(mat)) {
|
|
cast_shadows = true;
|
|
}
|
|
|
|
if (RSG::storage->material_is_animated(mat)) {
|
|
is_animated = true;
|
|
}
|
|
|
|
_update_instance_shader_parameters_from_material(isparams, p_instance->instance_shader_parameters, mat);
|
|
|
|
RSG::storage->material_update_dependency(mat, p_instance);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!cast_shadows) {
|
|
can_cast_shadows = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (can_cast_shadows != geom->can_cast_shadows) {
|
|
//ability to cast shadows change, let lights now
|
|
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
|
|
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
|
|
light->shadow_dirty = true;
|
|
}
|
|
|
|
geom->can_cast_shadows = can_cast_shadows;
|
|
}
|
|
|
|
geom->material_is_animated = is_animated;
|
|
p_instance->instance_shader_parameters = isparams;
|
|
|
|
if (p_instance->instance_allocated_shader_parameters != (p_instance->instance_shader_parameters.size() > 0)) {
|
|
p_instance->instance_allocated_shader_parameters = (p_instance->instance_shader_parameters.size() > 0);
|
|
if (p_instance->instance_allocated_shader_parameters) {
|
|
p_instance->instance_allocated_shader_parameters_offset = RSG::storage->global_variables_instance_allocate(p_instance->self);
|
|
for (Map<StringName, RasterizerScene::InstanceBase::InstanceShaderParameter>::Element *E = p_instance->instance_shader_parameters.front(); E; E = E->next()) {
|
|
if (E->get().value.get_type() != Variant::NIL) {
|
|
RSG::storage->global_variables_instance_update(p_instance->self, E->get().index, E->get().value);
|
|
}
|
|
}
|
|
} else {
|
|
RSG::storage->global_variables_instance_free(p_instance->self);
|
|
p_instance->instance_allocated_shader_parameters_offset = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (p_instance->skeleton.is_valid()) {
|
|
RSG::storage->skeleton_update_dependency(p_instance->skeleton, p_instance);
|
|
}
|
|
|
|
p_instance->clean_up_dependencies();
|
|
}
|
|
|
|
_instance_update_list.remove(&p_instance->update_item);
|
|
|
|
_update_instance(p_instance);
|
|
|
|
p_instance->update_aabb = false;
|
|
p_instance->update_dependencies = false;
|
|
}
|
|
|
|
void RenderingServerScene::update_dirty_instances() {
|
|
|
|
RSG::storage->update_dirty_resources();
|
|
|
|
while (_instance_update_list.first()) {
|
|
|
|
_update_dirty_instance(_instance_update_list.first()->self());
|
|
}
|
|
}
|
|
|
|
bool RenderingServerScene::free(RID p_rid) {
|
|
|
|
if (camera_owner.owns(p_rid)) {
|
|
|
|
Camera *camera = camera_owner.getornull(p_rid);
|
|
|
|
camera_owner.free(p_rid);
|
|
memdelete(camera);
|
|
|
|
} else if (scenario_owner.owns(p_rid)) {
|
|
|
|
Scenario *scenario = scenario_owner.getornull(p_rid);
|
|
|
|
while (scenario->instances.first()) {
|
|
instance_set_scenario(scenario->instances.first()->self()->self, RID());
|
|
}
|
|
RSG::scene_render->free(scenario->reflection_probe_shadow_atlas);
|
|
RSG::scene_render->free(scenario->reflection_atlas);
|
|
scenario_owner.free(p_rid);
|
|
memdelete(scenario);
|
|
|
|
} else if (instance_owner.owns(p_rid)) {
|
|
// delete the instance
|
|
|
|
update_dirty_instances();
|
|
|
|
Instance *instance = instance_owner.getornull(p_rid);
|
|
|
|
instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0);
|
|
instance_set_scenario(p_rid, RID());
|
|
instance_set_base(p_rid, RID());
|
|
instance_geometry_set_material_override(p_rid, RID());
|
|
instance_attach_skeleton(p_rid, RID());
|
|
|
|
if (instance->instance_allocated_shader_parameters) {
|
|
//free the used shader parameters
|
|
RSG::storage->global_variables_instance_free(instance->self);
|
|
}
|
|
update_dirty_instances(); //in case something changed this
|
|
|
|
instance_owner.free(p_rid);
|
|
memdelete(instance);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
TypedArray<Image> RenderingServerScene::bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) {
|
|
return RSG::scene_render->bake_render_uv2(p_base, p_material_overrides, p_image_size);
|
|
}
|
|
|
|
RenderingServerScene *RenderingServerScene::singleton = nullptr;
|
|
|
|
RenderingServerScene::RenderingServerScene() {
|
|
|
|
render_pass = 1;
|
|
singleton = this;
|
|
}
|
|
|
|
RenderingServerScene::~RenderingServerScene() {
|
|
}
|