243f400ee2
Signed-off-by: RevoluPowered <gordon@gordonite.tech> Signed-off-by: K. S. Ernest (iFIre) Lee <ernest.lee@chibifire.com>
185 lines
6.8 KiB
C++
185 lines
6.8 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2019, assimp team
|
|
|
|
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file Implementation of the post processing step to invert
|
|
* all normals in meshes with infacing normals.
|
|
*/
|
|
|
|
// internal headers
|
|
#include "FixNormalsStep.h"
|
|
#include <assimp/StringUtils.h>
|
|
#include <assimp/DefaultLogger.hpp>
|
|
#include <assimp/postprocess.h>
|
|
#include <assimp/scene.h>
|
|
#include <stdio.h>
|
|
|
|
|
|
using namespace Assimp;
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
FixInfacingNormalsProcess::FixInfacingNormalsProcess()
|
|
{
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
FixInfacingNormalsProcess::~FixInfacingNormalsProcess()
|
|
{
|
|
// nothing to do here
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the processing step is present in the given flag field.
|
|
bool FixInfacingNormalsProcess::IsActive( unsigned int pFlags) const
|
|
{
|
|
return (pFlags & aiProcess_FixInfacingNormals) != 0;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Executes the post processing step on the given imported data.
|
|
void FixInfacingNormalsProcess::Execute( aiScene* pScene)
|
|
{
|
|
ASSIMP_LOG_DEBUG("FixInfacingNormalsProcess begin");
|
|
|
|
bool bHas( false );
|
|
for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
|
|
if (ProcessMesh(pScene->mMeshes[a], a)) {
|
|
bHas = true;
|
|
}
|
|
}
|
|
|
|
if (bHas) {
|
|
ASSIMP_LOG_DEBUG("FixInfacingNormalsProcess finished. Found issues.");
|
|
} else {
|
|
ASSIMP_LOG_DEBUG("FixInfacingNormalsProcess finished. No changes to the scene.");
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Apply the step to the mesh
|
|
bool FixInfacingNormalsProcess::ProcessMesh( aiMesh* pcMesh, unsigned int index)
|
|
{
|
|
ai_assert(nullptr != pcMesh);
|
|
|
|
// Nothing to do if there are no model normals
|
|
if (!pcMesh->HasNormals()) {
|
|
return false;
|
|
}
|
|
|
|
// Compute the bounding box of both the model vertices + normals and
|
|
// the unmodified model vertices. Then check whether the first BB
|
|
// is smaller than the second. In this case we can assume that the
|
|
// normals need to be flipped, although there are a few special cases ..
|
|
// convex, concave, planar models ...
|
|
|
|
aiVector3D vMin0 (1e10f,1e10f,1e10f);
|
|
aiVector3D vMin1 (1e10f,1e10f,1e10f);
|
|
aiVector3D vMax0 (-1e10f,-1e10f,-1e10f);
|
|
aiVector3D vMax1 (-1e10f,-1e10f,-1e10f);
|
|
|
|
for (unsigned int i = 0; i < pcMesh->mNumVertices;++i)
|
|
{
|
|
vMin1.x = std::min(vMin1.x,pcMesh->mVertices[i].x);
|
|
vMin1.y = std::min(vMin1.y,pcMesh->mVertices[i].y);
|
|
vMin1.z = std::min(vMin1.z,pcMesh->mVertices[i].z);
|
|
|
|
vMax1.x = std::max(vMax1.x,pcMesh->mVertices[i].x);
|
|
vMax1.y = std::max(vMax1.y,pcMesh->mVertices[i].y);
|
|
vMax1.z = std::max(vMax1.z,pcMesh->mVertices[i].z);
|
|
|
|
const aiVector3D vWithNormal = pcMesh->mVertices[i] + pcMesh->mNormals[i];
|
|
|
|
vMin0.x = std::min(vMin0.x,vWithNormal.x);
|
|
vMin0.y = std::min(vMin0.y,vWithNormal.y);
|
|
vMin0.z = std::min(vMin0.z,vWithNormal.z);
|
|
|
|
vMax0.x = std::max(vMax0.x,vWithNormal.x);
|
|
vMax0.y = std::max(vMax0.y,vWithNormal.y);
|
|
vMax0.z = std::max(vMax0.z,vWithNormal.z);
|
|
}
|
|
|
|
const float fDelta0_x = (vMax0.x - vMin0.x);
|
|
const float fDelta0_y = (vMax0.y - vMin0.y);
|
|
const float fDelta0_z = (vMax0.z - vMin0.z);
|
|
|
|
const float fDelta1_x = (vMax1.x - vMin1.x);
|
|
const float fDelta1_y = (vMax1.y - vMin1.y);
|
|
const float fDelta1_z = (vMax1.z - vMin1.z);
|
|
|
|
// Check whether the boxes are overlapping
|
|
if ((fDelta0_x > 0.0f) != (fDelta1_x > 0.0f))return false;
|
|
if ((fDelta0_y > 0.0f) != (fDelta1_y > 0.0f))return false;
|
|
if ((fDelta0_z > 0.0f) != (fDelta1_z > 0.0f))return false;
|
|
|
|
// Check whether this is a planar surface
|
|
const float fDelta1_yz = fDelta1_y * fDelta1_z;
|
|
|
|
if (fDelta1_x < 0.05f * std::sqrt( fDelta1_yz ))return false;
|
|
if (fDelta1_y < 0.05f * std::sqrt( fDelta1_z * fDelta1_x ))return false;
|
|
if (fDelta1_z < 0.05f * std::sqrt( fDelta1_y * fDelta1_x ))return false;
|
|
|
|
// now compare the volumes of the bounding boxes
|
|
if (std::fabs(fDelta0_x * fDelta0_y * fDelta0_z) < std::fabs(fDelta1_x * fDelta1_yz)) {
|
|
if (!DefaultLogger::isNullLogger()) {
|
|
ASSIMP_LOG_INFO_F("Mesh ", index, ": Normals are facing inwards (or the mesh is planar)", index);
|
|
}
|
|
|
|
// Invert normals
|
|
for (unsigned int i = 0; i < pcMesh->mNumVertices;++i)
|
|
pcMesh->mNormals[i] *= -1.0f;
|
|
|
|
// ... and flip faces
|
|
for (unsigned int i = 0; i < pcMesh->mNumFaces;++i)
|
|
{
|
|
aiFace& face = pcMesh->mFaces[i];
|
|
for( unsigned int b = 0; b < face.mNumIndices / 2; b++)
|
|
std::swap( face.mIndices[b], face.mIndices[ face.mNumIndices - 1 - b]);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|