godot/thirdparty/embree/kernels/common/scene_points.h

283 lines
9.3 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "buffer.h"
#include "default.h"
#include "geometry.h"
namespace embree
{
/*! represents an array of points */
struct Points : public Geometry
{
/*! type of this geometry */
static const Geometry::GTypeMask geom_type = Geometry::MTY_POINTS;
public:
/*! line segments construction */
Points(Device* device, Geometry::GType gtype);
public:
void setMask(unsigned mask);
void setNumTimeSteps(unsigned int numTimeSteps);
void setVertexAttributeCount(unsigned int N);
void setBuffer(RTCBufferType type,
unsigned int slot,
RTCFormat format,
const Ref<Buffer>& buffer,
size_t offset,
size_t stride,
unsigned int num);
void* getBuffer(RTCBufferType type, unsigned int slot);
void updateBuffer(RTCBufferType type, unsigned int slot);
void commit();
bool verify();
void setMaxRadiusScale(float s);
void addElementsToCount (GeometryCounts & counts) const;
public:
/*! returns the number of vertices */
__forceinline size_t numVertices() const {
return vertices[0].size();
}
/*! returns i'th vertex of the first time step */
__forceinline Vec3ff vertex(size_t i) const {
return vertices0[i];
}
/*! returns i'th vertex of the first time step */
__forceinline const char* vertexPtr(size_t i) const {
return vertices0.getPtr(i);
}
/*! returns i'th normal of the first time step */
__forceinline Vec3fa normal(size_t i) const {
return normals0[i];
}
/*! returns i'th radius of the first time step */
__forceinline float radius(size_t i) const {
return vertices0[i].w;
}
/*! returns i'th vertex of itime'th timestep */
__forceinline Vec3ff vertex(size_t i, size_t itime) const {
return vertices[itime][i];
}
/*! returns i'th vertex of itime'th timestep */
__forceinline const char* vertexPtr(size_t i, size_t itime) const {
return vertices[itime].getPtr(i);
}
/*! returns i'th normal of itime'th timestep */
__forceinline Vec3fa normal(size_t i, size_t itime) const {
return normals[itime][i];
}
/*! returns i'th radius of itime'th timestep */
__forceinline float radius(size_t i, size_t itime) const {
return vertices[itime][i].w;
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const Vec3ff& v0) const {
return enlarge(BBox3fa(v0), maxRadiusScale*Vec3fa(v0.w));
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(size_t i) const
{
const Vec3ff v0 = vertex(i);
return bounds(v0);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(size_t i, size_t itime) const
{
const Vec3ff v0 = vertex(i, itime);
return bounds(v0);
}
/*! calculates bounding box of i'th line segment */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i) const
{
const Vec3ff v0 = vertex(i);
const Vec3ff w0(xfmVector(space, (Vec3fa)v0), v0.w);
return bounds(w0);
}
/*! calculates bounding box of i'th line segment for the itime'th time step */
__forceinline BBox3fa bounds(const LinearSpace3fa& space, size_t i, size_t itime) const
{
const Vec3ff v0 = vertex(i, itime);
const Vec3ff w0(xfmVector(space, (Vec3fa)v0), v0.w);
return bounds(w0);
}
/*! check if the i'th primitive is valid at the itime'th timestep */
__forceinline bool valid(size_t i, size_t itime) const {
return valid(i, make_range(itime, itime));
}
/*! check if the i'th primitive is valid between the specified time range */
__forceinline bool valid(size_t i, const range<size_t>& itime_range) const
{
const unsigned int index = (unsigned int)i;
if (index >= numVertices())
return false;
for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++) {
const Vec3ff v0 = vertex(index + 0, itime);
if (unlikely(!isvalid4(v0)))
return false;
if (v0.w < 0.0f)
return false;
}
return true;
}
/*! calculates the linear bounds of the i'th primitive at the itimeGlobal'th time segment */
__forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
return LBBox3fa(bounds(i, itime + 0), bounds(i, itime + 1));
}
/*! calculates the build bounds of the i'th primitive, if it's valid */
__forceinline bool buildBounds(size_t i, BBox3fa* bbox) const
{
if (!valid(i, 0))
return false;
*bbox = bounds(i);
return true;
}
/*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
__forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
{
if (!valid(i, itime + 0) || !valid(i, itime + 1))
return false;
bbox = bounds(i, itime); // use bounds of first time step in builder
return true;
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
return LBBox3fa([&](size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline LBBox3fa linearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& dt) const {
return LBBox3fa([&](size_t itime) { return bounds(space, primID, itime); }, dt, time_range, fnumTimeSegments);
}
/*! calculates the linear bounds of the i'th primitive for the specified time range */
__forceinline bool linearBounds(size_t i, const BBox1f& time_range, LBBox3fa& bbox) const
{
if (!valid(i, timeSegmentRange(time_range))) return false;
bbox = linearBounds(i, time_range);
return true;
}
/*! get fast access to first vertex buffer */
__forceinline float * getCompactVertexArray () const {
return (float*) vertices0.getPtr();
}
public:
BufferView<Vec3ff> vertices0; //!< fast access to first vertex buffer
BufferView<Vec3fa> normals0; //!< fast access to first normal buffer
vector<BufferView<Vec3ff>> vertices; //!< vertex array for each timestep
vector<BufferView<Vec3fa>> normals; //!< normal array for each timestep
vector<BufferView<char>> vertexAttribs; //!< user buffers
float maxRadiusScale = 1.0; //!< maximal min-width scaling of curve radii
};
namespace isa
{
struct PointsISA : public Points
{
PointsISA(Device* device, Geometry::GType gtype) : Points(device, gtype) {}
Vec3fa computeDirection(unsigned int primID) const
{
return Vec3fa(1, 0, 0);
}
Vec3fa computeDirection(unsigned int primID, size_t time) const
{
return Vec3fa(1, 0, 0);
}
PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
BBox3fa bounds = empty;
if (!buildBounds(j, &bounds))
continue;
const PrimRef prim(bounds, geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
{
PrimInfo pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
BBox3fa bounds = empty;
if (!buildBounds(j, itime, bounds))
continue;
const PrimRef prim(bounds, geomID, unsigned(j));
pinfo.add_center2(prim);
prims[k++] = prim;
}
return pinfo;
}
PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims,
const BBox1f& t0t1,
const range<size_t>& r,
size_t k,
unsigned int geomID) const
{
PrimInfoMB pinfo(empty);
for (size_t j = r.begin(); j < r.end(); j++) {
if (!valid(j, timeSegmentRange(t0t1)))
continue;
const PrimRefMB prim(linearBounds(j, t0t1), this->numTimeSegments(), this->time_range, this->numTimeSegments(), geomID, unsigned(j));
pinfo.add_primref(prim);
prims[k++] = prim;
}
return pinfo;
}
BBox3fa vbounds(size_t i) const
{
return bounds(i);
}
BBox3fa vbounds(const LinearSpace3fa& space, size_t i) const
{
return bounds(space, i);
}
LBBox3fa vlinearBounds(size_t primID, const BBox1f& time_range) const
{
return linearBounds(primID, time_range);
}
LBBox3fa vlinearBounds(const LinearSpace3fa& space, size_t primID, const BBox1f& time_range) const
{
return linearBounds(space, primID, time_range);
}
};
} // namespace isa
DECLARE_ISA_FUNCTION(Points*, createPoints, Device* COMMA Geometry::GType);
} // namespace embree