godot/thirdparty/embree/kernels/subdiv/feature_adaptive_eval_grid.h

360 lines
16 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "patch.h"
#include "catmullclark_patch.h"
#include "bspline_patch.h"
#include "gregory_patch.h"
#include "tessellation.h"
namespace embree
{
namespace isa
{
struct FeatureAdaptiveEvalGrid
{
typedef CatmullClark1Ring3fa CatmullClarkRing;
typedef CatmullClarkPatch3fa CatmullClarkPatch;
typedef BilinearPatch3fa BilinearPatch;
typedef BSplinePatch3fa BSplinePatch;
typedef BezierPatch3fa BezierPatch;
typedef GregoryPatch3fa GregoryPatch;
private:
const unsigned x0,x1;
const unsigned y0,y1;
const unsigned swidth,sheight;
const float rcp_swidth, rcp_sheight;
float* const Px;
float* const Py;
float* const Pz;
float* const U;
float* const V;
float* const Nx;
float* const Ny;
float* const Nz;
const unsigned dwidth;
//const unsigned dheight;
unsigned count;
public:
FeatureAdaptiveEvalGrid (const GeneralCatmullClarkPatch3fa& patch, unsigned subPatch,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V,
float* Nx, float* Ny, float* Nz,
const unsigned dwidth, const unsigned dheight)
: x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
{
assert(swidth < (2<<20) && sheight < (2<<20));
const BBox2f srange(Vec2f(0.0f,0.0f),Vec2f(float(swidth-1),float(sheight-1)));
const BBox2f erange(Vec2f((float)x0,(float)y0),Vec2f((float)x1,(float)y1));
/* convert into standard quad patch if possible */
if (likely(patch.isQuadPatch()))
{
CatmullClarkPatch3fa qpatch; patch.init(qpatch);
eval(qpatch, srange, erange, 0);
assert(count == (x1-x0+1)*(y1-y0+1));
return;
}
/* subdivide patch */
unsigned N;
array_t<CatmullClarkPatch3fa,GeneralCatmullClarkPatch3fa::SIZE> patches;
patch.subdivide(patches,N);
if (N == 4)
{
const Vec2f c = srange.center();
const BBox2f srange0(srange.lower,c);
const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
const BBox2f srange2(c,srange.upper);
const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
#if PATCH_USE_GREGORY == 2
BezierCurve3fa borders[GeneralCatmullClarkPatch3fa::SIZE]; patch.getLimitBorder(borders);
BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve3fa border1l,border1r; borders[1].subdivide(border1l,border1r);
BezierCurve3fa border2l,border2r; borders[2].subdivide(border2l,border2r);
BezierCurve3fa border3l,border3r; borders[3].subdivide(border3l,border3r);
GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
eval(patches[0],srange0,intersect(srange0,erange),1,&border0l,nullptr,nullptr,&border3r);
eval(patches[1],srange1,intersect(srange1,erange),1,&border0r,&border1l,nullptr,nullptr);
eval(patches[2],srange2,intersect(srange2,erange),1,nullptr,&border1r,&border2l,nullptr);
eval(patches[3],srange3,intersect(srange3,erange),1,nullptr,nullptr,&border2r,&border3l);
#else
GeneralCatmullClarkPatch3fa::fix_quad_ring_order(patches);
eval(patches[0],srange0,intersect(srange0,erange),1);
eval(patches[1],srange1,intersect(srange1,erange),1);
eval(patches[2],srange2,intersect(srange2,erange),1);
eval(patches[3],srange3,intersect(srange3,erange),1);
#endif
}
else
{
assert(subPatch < N);
#if PATCH_USE_GREGORY == 2
BezierCurve3fa borders[2]; patch.getLimitBorder(borders,subPatch);
BezierCurve3fa border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve3fa border2l,border2r; borders[1].subdivide(border2l,border2r);
eval(patches[subPatch], srange, erange, 1, &border0l, nullptr, nullptr, &border2r);
#else
eval(patches[subPatch], srange, erange, 1);
#endif
}
assert(count == (x1-x0+1)*(y1-y0+1));
}
FeatureAdaptiveEvalGrid (const CatmullClarkPatch3fa& patch,
const BBox2f& srange, const BBox2f& erange, const unsigned depth,
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V,
float* Nx, float* Ny, float* Nz,
const unsigned dwidth, const unsigned dheight)
: x0(x0), x1(x1), y0(y0), y1(y1), swidth(swidth), sheight(sheight), rcp_swidth(1.0f/(swidth-1.0f)), rcp_sheight(1.0f/(sheight-1.0f)),
Px(Px), Py(Py), Pz(Pz), U(U), V(V), Nx(Nx), Ny(Ny), Nz(Nz), dwidth(dwidth), /*dheight(dheight),*/ count(0)
{
eval(patch,srange,erange,depth);
}
template<typename Patch>
void evalLocalGrid(const Patch& patch, const BBox2f& srange, const int lx0, const int lx1, const int ly0, const int ly1)
{
const float scale_x = rcp(srange.upper.x-srange.lower.x);
const float scale_y = rcp(srange.upper.y-srange.lower.y);
count += (lx1-lx0)*(ly1-ly0);
#if 0
for (unsigned iy=ly0; iy<ly1; iy++) {
for (unsigned ix=lx0; ix<lx1; ix++) {
const float lu = select(ix == swidth -1, float(1.0f), (float(ix)-srange.lower.x)*scale_x);
const float lv = select(iy == sheight-1, float(1.0f), (float(iy)-srange.lower.y)*scale_y);
const Vec3fa p = patch.eval(lu,lv);
const float u = float(ix)*rcp_swidth;
const float v = float(iy)*rcp_sheight;
const int ofs = (iy-y0)*dwidth+(ix-x0);
Px[ofs] = p.x;
Py[ofs] = p.y;
Pz[ofs] = p.z;
U[ofs] = u;
V[ofs] = v;
}
}
#else
foreach2(lx0,lx1,ly0,ly1,[&](const vboolx& valid, const vintx& ix, const vintx& iy) {
const vfloatx lu = select(ix == swidth -1, vfloatx(1.0f), (vfloatx(ix)-srange.lower.x)*scale_x);
const vfloatx lv = select(iy == sheight-1, vfloatx(1.0f), (vfloatx(iy)-srange.lower.y)*scale_y);
const Vec3vfx p = patch.eval(lu,lv);
Vec3vfx n = zero;
if (unlikely(Nx != nullptr)) n = normalize_safe(patch.normal(lu,lv));
const vfloatx u = vfloatx(ix)*rcp_swidth;
const vfloatx v = vfloatx(iy)*rcp_sheight;
const vintx ofs = (iy-y0)*dwidth+(ix-x0);
if (likely(all(valid)) && all(iy==iy[0])) {
const unsigned ofs2 = ofs[0];
vfloatx::storeu(Px+ofs2,p.x);
vfloatx::storeu(Py+ofs2,p.y);
vfloatx::storeu(Pz+ofs2,p.z);
vfloatx::storeu(U+ofs2,u);
vfloatx::storeu(V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(Nx+ofs2,n.x);
vfloatx::storeu(Ny+ofs2,n.y);
vfloatx::storeu(Nz+ofs2,n.z);
}
} else {
foreach_unique_index(valid,iy,[&](const vboolx& valid, const int iy0, const int j) {
const unsigned ofs2 = ofs[j]-j;
vfloatx::storeu(valid,Px+ofs2,p.x);
vfloatx::storeu(valid,Py+ofs2,p.y);
vfloatx::storeu(valid,Pz+ofs2,p.z);
vfloatx::storeu(valid,U+ofs2,u);
vfloatx::storeu(valid,V+ofs2,v);
if (unlikely(Nx != nullptr)) {
vfloatx::storeu(valid,Nx+ofs2,n.x);
vfloatx::storeu(valid,Ny+ofs2,n.y);
vfloatx::storeu(valid,Nz+ofs2,n.z);
}
});
}
});
#endif
}
__forceinline bool final(const CatmullClarkPatch3fa& patch, const CatmullClarkRing::Type type, unsigned depth)
{
const unsigned max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
//#if PATCH_MIN_RESOLUTION
// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
//#else
return depth>=max_eval_depth;
//#endif
}
void eval(const CatmullClarkPatch3fa& patch, const BBox2f& srange, const BBox2f& erange, const unsigned depth,
const BezierCurve3fa* border0 = nullptr, const BezierCurve3fa* border1 = nullptr, const BezierCurve3fa* border2 = nullptr, const BezierCurve3fa* border3 = nullptr)
{
if (erange.empty())
return;
int lx0 = (int) ceilf(erange.lower.x);
int lx1 = (int) ceilf(erange.upper.x) + (erange.upper.x == x1 && (srange.lower.x < erange.upper.x || erange.upper.x == 0));
int ly0 = (int) ceilf(erange.lower.y);
int ly1 = (int) ceilf(erange.upper.y) + (erange.upper.y == y1 && (srange.lower.y < erange.upper.y || erange.upper.y == 0));
if (lx0 >= lx1 || ly0 >= ly1) return;
CatmullClarkPatch::Type ty = patch.type();
if (unlikely(final(patch,ty,depth)))
{
if (ty & CatmullClarkRing::TYPE_REGULAR) {
RegularPatch rpatch(patch,border0,border1,border2,border3);
evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
return;
} else {
IrregularFillPatch ipatch(patch,border0,border1,border2,border3);
evalLocalGrid(ipatch,srange,lx0,lx1,ly0,ly1);
return;
}
}
else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
assert(depth > 0);
RegularPatch rpatch(patch,border0,border1,border2,border3);
evalLocalGrid(rpatch,srange,lx0,lx1,ly0,ly1);
return;
}
#if PATCH_USE_GREGORY == 2
else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
assert(depth > 0);
GregoryPatch gpatch(patch,border0,border1,border2,border3);
evalLocalGrid(gpatch,srange,lx0,lx1,ly0,ly1);
}
#endif
else
{
array_t<CatmullClarkPatch3fa,4> patches;
patch.subdivide(patches);
const Vec2f c = srange.center();
const BBox2f srange0(srange.lower,c);
const BBox2f srange1(Vec2f(c.x,srange.lower.y),Vec2f(srange.upper.x,c.y));
const BBox2f srange2(c,srange.upper);
const BBox2f srange3(Vec2f(srange.lower.x,c.y),Vec2f(c.x,srange.upper.y));
eval(patches[0],srange0,intersect(srange0,erange),depth+1);
eval(patches[1],srange1,intersect(srange1,erange),depth+1);
eval(patches[2],srange2,intersect(srange2,erange),depth+1);
eval(patches[3],srange3,intersect(srange3,erange),depth+1);
}
}
};
template<typename Eval, typename Patch>
bool stitch_col(const Patch& patch, int subPatch,
const bool right, const unsigned y0, const unsigned y1, const int fine_y, const int coarse_y,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dx0, const unsigned dwidth, const unsigned dheight)
{
assert(coarse_y <= fine_y);
if (likely(fine_y == coarse_y))
return false;
const unsigned y0s = stitch(y0,fine_y,coarse_y);
const unsigned y1s = stitch(y1,fine_y,coarse_y);
const unsigned M = y1s-y0s+1 + VSIZEX;
dynamic_large_stack_array(float,px,M,64*sizeof(float));
dynamic_large_stack_array(float,py,M,64*sizeof(float));
dynamic_large_stack_array(float,pz,M,64*sizeof(float));
dynamic_large_stack_array(float,u,M,64*sizeof(float));
dynamic_large_stack_array(float,v,M,64*sizeof(float));
dynamic_large_stack_array(float,nx,M,64*sizeof(float));
dynamic_large_stack_array(float,ny,M,64*sizeof(float));
dynamic_large_stack_array(float,nz,M,64*sizeof(float));
const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
Eval(patch,subPatch, right,right, y0s,y1s, 2,coarse_y+1, px,py,pz,u,v,
has_Nxyz ? (float*)nx : nullptr,has_Nxyz ? (float*)ny : nullptr ,has_Nxyz ? (float*)nz : nullptr, 1,4097);
for (unsigned y=y0; y<=y1; y++)
{
const unsigned ys = stitch(y,fine_y,coarse_y)-y0s;
Px[(y-y0)*dwidth+dx0] = px[ys];
Py[(y-y0)*dwidth+dx0] = py[ys];
Pz[(y-y0)*dwidth+dx0] = pz[ys];
U [(y-y0)*dwidth+dx0] = u[ys];
V [(y-y0)*dwidth+dx0] = v[ys];
if (unlikely(has_Nxyz)) {
Nx[(y-y0)*dwidth+dx0] = nx[ys];
Ny[(y-y0)*dwidth+dx0] = ny[ys];
Nz[(y-y0)*dwidth+dx0] = nz[ys];
}
}
return true;
}
template<typename Eval, typename Patch>
bool stitch_row(const Patch& patch, int subPatch,
const bool bottom, const unsigned x0, const unsigned x1, const int fine_x, const int coarse_x,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dy0, const unsigned dwidth, const unsigned dheight)
{
assert(coarse_x <= fine_x);
if (likely(fine_x == coarse_x))
return false;
const unsigned x0s = stitch(x0,fine_x,coarse_x);
const unsigned x1s = stitch(x1,fine_x,coarse_x);
const unsigned M = x1s-x0s+1 + VSIZEX;
dynamic_large_stack_array(float,px,M,32*sizeof(float));
dynamic_large_stack_array(float,py,M,32*sizeof(float));
dynamic_large_stack_array(float,pz,M,32*sizeof(float));
dynamic_large_stack_array(float,u,M,32*sizeof(float));
dynamic_large_stack_array(float,v,M,32*sizeof(float));
dynamic_large_stack_array(float,nx,M,32*sizeof(float));
dynamic_large_stack_array(float,ny,M,32*sizeof(float));
dynamic_large_stack_array(float,nz,M,32*sizeof(float));
const bool has_Nxyz = Nx; assert(!Nx || (Ny && Nz));
Eval(patch,subPatch, x0s,x1s, bottom,bottom, coarse_x+1,2, px,py,pz,u,v,
has_Nxyz ? (float*)nx :nullptr, has_Nxyz ? (float*)ny : nullptr , has_Nxyz ? (float*)nz : nullptr, 4097,1);
for (unsigned x=x0; x<=x1; x++)
{
const unsigned xs = stitch(x,fine_x,coarse_x)-x0s;
Px[dy0*dwidth+x-x0] = px[xs];
Py[dy0*dwidth+x-x0] = py[xs];
Pz[dy0*dwidth+x-x0] = pz[xs];
U [dy0*dwidth+x-x0] = u[xs];
V [dy0*dwidth+x-x0] = v[xs];
if (unlikely(has_Nxyz)) {
Nx[dy0*dwidth+x-x0] = nx[xs];
Ny[dy0*dwidth+x-x0] = ny[xs];
Nz[dy0*dwidth+x-x0] = nz[xs];
}
}
return true;
}
template<typename Eval, typename Patch>
void feature_adaptive_eval_grid (const Patch& patch, unsigned subPatch, const float levels[4],
const unsigned x0, const unsigned x1, const unsigned y0, const unsigned y1, const unsigned swidth, const unsigned sheight,
float* Px, float* Py, float* Pz, float* U, float* V, float* Nx, float* Ny, float* Nz, const unsigned dwidth, const unsigned dheight)
{
bool sl = false, sr = false, st = false, sb = false;
if (levels) {
sl = x0 == 0 && stitch_col<Eval,Patch>(patch,subPatch,0,y0,y1,sheight-1,int(levels[3]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
sr = x1 == swidth-1 && stitch_col<Eval,Patch>(patch,subPatch,1,y0,y1,sheight-1,int(levels[1]), Px,Py,Pz,U,V,Nx,Ny,Nz, x1-x0,dwidth,dheight);
st = y0 == 0 && stitch_row<Eval,Patch>(patch,subPatch,0,x0,x1,swidth-1,int(levels[0]), Px,Py,Pz,U,V,Nx,Ny,Nz, 0 ,dwidth,dheight);
sb = y1 == sheight-1 && stitch_row<Eval,Patch>(patch,subPatch,1,x0,x1,swidth-1,int(levels[2]), Px,Py,Pz,U,V,Nx,Ny,Nz, y1-y0,dwidth,dheight);
}
const unsigned ofs = st*dwidth+sl;
Eval(patch,subPatch,x0+sl,x1-sr,y0+st,y1-sb, swidth,sheight, Px+ofs,Py+ofs,Pz+ofs,U+ofs,V+ofs,Nx?Nx+ofs:nullptr,Ny?Ny+ofs:nullptr,Nz?Nz+ofs:nullptr, dwidth,dheight);
}
}
}