godot/scene/animation/animation_tree_player.cpp
Rémi Verschelde 2712014744 Update copyright statements to 2018
Happy new year to the wonderful Godot community!
2018-01-02 11:27:24 +01:00

1834 lines
53 KiB
C++

/*************************************************************************/
/* animation_tree_player.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "animation_tree_player.h"
#include "animation_player.h"
#include "scene/scene_string_names.h"
void AnimationTreePlayer::set_animation_process_mode(AnimationProcessMode p_mode) {
if (animation_process_mode == p_mode)
return;
bool pr = processing;
if (pr)
_set_process(false);
animation_process_mode = p_mode;
if (pr)
_set_process(true);
}
AnimationTreePlayer::AnimationProcessMode AnimationTreePlayer::get_animation_process_mode() const {
return animation_process_mode;
}
void AnimationTreePlayer::_set_process(bool p_process, bool p_force) {
if (processing == p_process && !p_force)
return;
switch (animation_process_mode) {
case ANIMATION_PROCESS_FIXED: set_fixed_process(p_process && active); break;
case ANIMATION_PROCESS_IDLE: set_process(p_process && active); break;
}
processing = p_process;
}
bool AnimationTreePlayer::_set(const StringName &p_name, const Variant &p_value) {
if (String(p_name) == "base_path") {
set_base_path(p_value);
return true;
}
if (String(p_name) == "master_player") {
set_master_player(p_value);
return true;
}
if (String(p_name) == SceneStringNames::get_singleton()->playback_active) {
set_active(p_value);
return true;
}
if (String(p_name) != "data")
return false;
Dictionary data = p_value;
Array nodes = data.get_valid("nodes");
for (int i = 0; i < nodes.size(); i++) {
Dictionary node = nodes[i];
StringName id = node.get_valid("id");
Point2 pos = node.get_valid("pos");
NodeType nt = NODE_MAX;
String type = node.get_valid("type");
if (type == "output")
nt = NODE_OUTPUT;
else if (type == "animation")
nt = NODE_ANIMATION;
else if (type == "oneshot")
nt = NODE_ONESHOT;
else if (type == "mix")
nt = NODE_MIX;
else if (type == "blend2")
nt = NODE_BLEND2;
else if (type == "blend3")
nt = NODE_BLEND3;
else if (type == "blend4")
nt = NODE_BLEND4;
else if (type == "timescale")
nt = NODE_TIMESCALE;
else if (type == "timeseek")
nt = NODE_TIMESEEK;
else if (type == "transition")
nt = NODE_TRANSITION;
ERR_FAIL_COND_V(nt == NODE_MAX, false);
if (nt != NODE_OUTPUT)
add_node(nt, id);
node_set_pos(id, pos);
switch (nt) {
case NODE_OUTPUT: {
} break;
case NODE_ANIMATION: {
if (node.has("from"))
animation_node_set_master_animation(id, node.get_valid("from"));
else
animation_node_set_animation(id, node.get_valid("animation"));
Array filters = node.get_valid("filter");
for (int i = 0; i < filters.size(); i++) {
animation_node_set_filter_path(id, filters[i], true);
}
} break;
case NODE_ONESHOT: {
oneshot_node_set_fadein_time(id, node.get_valid("fade_in"));
oneshot_node_set_fadeout_time(id, node.get_valid("fade_out"));
oneshot_node_set_mix_mode(id, node.get_valid("mix"));
oneshot_node_set_autorestart(id, node.get_valid("autorestart"));
oneshot_node_set_autorestart_delay(id, node.get_valid("autorestart_delay"));
oneshot_node_set_autorestart_random_delay(id, node.get_valid("autorestart_random_delay"));
Array filters = node.get_valid("filter");
for (int i = 0; i < filters.size(); i++) {
oneshot_node_set_filter_path(id, filters[i], true);
}
} break;
case NODE_MIX: {
mix_node_set_amount(id, node.get_valid("mix"));
} break;
case NODE_BLEND2: {
blend2_node_set_amount(id, node.get_valid("blend"));
Array filters = node.get_valid("filter");
for (int i = 0; i < filters.size(); i++) {
blend2_node_set_filter_path(id, filters[i], true);
}
} break;
case NODE_BLEND3: {
blend3_node_set_amount(id, node.get_valid("blend"));
} break;
case NODE_BLEND4: {
blend4_node_set_amount(id, node.get_valid("blend"));
} break;
case NODE_TIMESCALE: {
timescale_node_set_scale(id, node.get_valid("scale"));
} break;
case NODE_TIMESEEK: {
} break;
case NODE_TRANSITION: {
transition_node_set_xfade_time(id, node.get_valid("xfade"));
Array transitions = node.get_valid("transitions");
transition_node_set_input_count(id, transitions.size());
for (int x = 0; x < transitions.size(); x++) {
Dictionary d = transitions[x];
bool aa = d.get_valid("auto_advance");
transition_node_set_input_auto_advance(id, x, aa);
}
} break;
default: {};
}
}
Array connections = data.get_valid("connections");
ERR_FAIL_COND_V(connections.size() % 3, false);
int cc = connections.size() / 3;
for (int i = 0; i < cc; i++) {
StringName src = connections[i * 3 + 0];
StringName dst = connections[i * 3 + 1];
int dst_in = connections[i * 3 + 2];
connect(src, dst, dst_in);
}
set_active(data.get_valid("active"));
set_master_player(data.get_valid("master"));
return true;
}
bool AnimationTreePlayer::_get(const StringName &p_name, Variant &r_ret) const {
if (String(p_name) == "base_path") {
r_ret = base_path;
return true;
}
if (String(p_name) == "master_player") {
r_ret = master;
return true;
}
if (String(p_name) == "playback/active") {
r_ret = is_active();
return true;
}
if (String(p_name) != "data")
return false;
Dictionary data;
Array nodes;
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *n = node_map[E->key()];
Dictionary node;
node["id"] = E->key();
node["pos"] = n->pos;
switch (n->type) {
case NODE_OUTPUT: node["type"] = "output"; break;
case NODE_ANIMATION: node["type"] = "animation"; break;
case NODE_ONESHOT: node["type"] = "oneshot"; break;
case NODE_MIX: node["type"] = "mix"; break;
case NODE_BLEND2: node["type"] = "blend2"; break;
case NODE_BLEND3: node["type"] = "blend3"; break;
case NODE_BLEND4: node["type"] = "blend4"; break;
case NODE_TIMESCALE: node["type"] = "timescale"; break;
case NODE_TIMESEEK: node["type"] = "timeseek"; break;
case NODE_TRANSITION: node["type"] = "transition"; break;
default: node["type"] = ""; break;
}
switch (n->type) {
case NODE_OUTPUT: {
} break;
case NODE_ANIMATION: {
AnimationNode *an = static_cast<AnimationNode *>(n);
if (master != NodePath() && an->from != "") {
node["from"] = an->from;
} else {
node["animation"] = an->animation;
}
Array k;
List<NodePath> keys;
an->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *E = keys.front(); E; E = E->next()) {
k[i++] = E->get();
}
node["filter"] = k;
} break;
case NODE_ONESHOT: {
OneShotNode *osn = static_cast<OneShotNode *>(n);
node["fade_in"] = osn->fade_in;
node["fade_out"] = osn->fade_out;
node["mix"] = osn->mix;
node["autorestart"] = osn->autorestart;
node["autorestart_delay"] = osn->autorestart_delay;
node["autorestart_random_delay"] = osn->autorestart_random_delay;
Array k;
List<NodePath> keys;
osn->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *E = keys.front(); E; E = E->next()) {
k[i++] = E->get();
}
node["filter"] = k;
} break;
case NODE_MIX: {
MixNode *mn = static_cast<MixNode *>(n);
node["mix"] = mn->amount;
} break;
case NODE_BLEND2: {
Blend2Node *bn = static_cast<Blend2Node *>(n);
node["blend"] = bn->value;
Array k;
List<NodePath> keys;
bn->filter.get_key_list(&keys);
k.resize(keys.size());
int i = 0;
for (List<NodePath>::Element *E = keys.front(); E; E = E->next()) {
k[i++] = E->get();
}
node["filter"] = k;
} break;
case NODE_BLEND3: {
Blend3Node *bn = static_cast<Blend3Node *>(n);
node["blend"] = bn->value;
} break;
case NODE_BLEND4: {
Blend4Node *bn = static_cast<Blend4Node *>(n);
node["blend"] = bn->value;
} break;
case NODE_TIMESCALE: {
TimeScaleNode *tsn = static_cast<TimeScaleNode *>(n);
node["scale"] = tsn->scale;
} break;
case NODE_TIMESEEK: {
} break;
case NODE_TRANSITION: {
TransitionNode *tn = static_cast<TransitionNode *>(n);
node["xfade"] = tn->xfade;
Array transitions;
for (int i = 0; i < tn->input_data.size(); i++) {
Dictionary d;
d["auto_advance"] = tn->input_data[i].auto_advance;
transitions.push_back(d);
}
node["transitions"] = transitions;
} break;
default: {};
}
nodes.push_back(node);
}
data["nodes"] = nodes;
//connectiosn
List<Connection> connections;
get_connection_list(&connections);
Array connections_arr;
connections_arr.resize(connections.size() * 3);
int idx = 0;
for (List<Connection>::Element *E = connections.front(); E; E = E->next()) {
connections_arr.set(idx + 0, E->get().src_node);
connections_arr.set(idx + 1, E->get().dst_node);
connections_arr.set(idx + 2, E->get().dst_input);
idx += 3;
}
data["connections"] = connections_arr;
data["active"] = active;
data["master"] = master;
r_ret = data;
return true;
}
void AnimationTreePlayer::_get_property_list(List<PropertyInfo> *p_list) const {
p_list->push_back(PropertyInfo(Variant::NODE_PATH, "base_path"));
p_list->push_back(PropertyInfo(Variant::NODE_PATH, "master_player"));
p_list->push_back(PropertyInfo(Variant::DICTIONARY, "data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_STORAGE | PROPERTY_USAGE_NETWORK));
}
void AnimationTreePlayer::advance(float p_time) {
_process_animation(p_time);
}
void AnimationTreePlayer::_notification(int p_what) {
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
if (!processing) {
//make sure that a previous process state was not saved
//only process if "processing" is set
set_fixed_process(false);
set_process(false);
}
} break;
case NOTIFICATION_READY: {
dirty_caches = true;
if (master != NodePath()) {
_update_sources();
}
} break;
case NOTIFICATION_PROCESS: {
if (animation_process_mode == ANIMATION_PROCESS_FIXED)
break;
if (processing)
_process_animation(get_process_delta_time());
} break;
case NOTIFICATION_FIXED_PROCESS: {
if (animation_process_mode == ANIMATION_PROCESS_IDLE)
break;
if (processing)
_process_animation(get_fixed_process_delta_time());
} break;
}
}
void AnimationTreePlayer::_compute_weights(float *p_fallback_weight, HashMap<NodePath, float> *p_weights, float p_coeff, const HashMap<NodePath, bool> *p_filter, float p_filtered_coeff) {
if (p_filter != NULL) {
List<NodePath> key_list;
p_filter->get_key_list(&key_list);
for (List<NodePath>::Element *E = key_list.front(); E; E = E->next()) {
if ((*p_filter)[E->get()]) {
if (p_weights->has(E->get())) {
(*p_weights)[E->get()] *= p_filtered_coeff;
} else {
p_weights->set(E->get(), *p_fallback_weight * p_filtered_coeff);
}
} else if (p_weights->has(E->get())) {
(*p_weights)[E->get()] *= p_coeff;
}
}
}
List<NodePath> key_list;
p_weights->get_key_list(&key_list);
for (List<NodePath>::Element *E = key_list.front(); E; E = E->next()) {
if (p_filter == NULL || !p_filter->has(E->get())) {
(*p_weights)[E->get()] *= p_coeff;
}
}
*p_fallback_weight *= p_coeff;
}
float AnimationTreePlayer::_process_node(const StringName &p_node, AnimationNode **r_prev_anim, float p_time, bool p_seek, float p_fallback_weight, HashMap<NodePath, float> *p_weights) {
ERR_FAIL_COND_V(!node_map.has(p_node), 0);
NodeBase *nb = node_map[p_node];
//transform to seconds...
switch (nb->type) {
case NODE_OUTPUT: {
NodeOut *on = static_cast<NodeOut *>(nb);
HashMap<NodePath, float> weights;
return _process_node(on->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, &weights);
} break;
case NODE_ANIMATION: {
AnimationNode *an = static_cast<AnimationNode *>(nb);
float rem = 0;
if (!an->animation.is_null()) {
// float pos = an->time;
// float delta = p_time;
// const Animation *a = an->animation.operator->();
if (p_seek) {
an->time = p_time;
an->step = 0;
} else {
an->time = MAX(0, an->time + p_time);
an->step = p_time;
}
float anim_size = an->animation->get_length();
if (an->animation->has_loop()) {
if (anim_size)
an->time = Math::fposmod(an->time, anim_size);
} else if (an->time > anim_size) {
an->time = anim_size;
}
an->skip = true;
for (List<AnimationNode::TrackRef>::Element *E = an->tref.front(); E; E = E->next()) {
NodePath track_path = an->animation->track_get_path(E->get().local_track);
if (an->filter.has(track_path) && an->filter[track_path]) {
E->get().weight = 0;
} else {
if (p_weights->has(track_path)) {
float weight = (*p_weights)[track_path];
E->get().weight = weight;
} else {
E->get().weight = p_fallback_weight;
}
}
if (E->get().weight > CMP_EPSILON)
an->skip = false;
}
rem = anim_size - an->time;
}
if (!(*r_prev_anim))
active_list = an;
else
(*r_prev_anim)->next = an;
an->next = NULL;
*r_prev_anim = an;
return rem;
} break;
case NODE_ONESHOT: {
OneShotNode *osn = static_cast<OneShotNode *>(nb);
if (!osn->active) {
//make it as if this node doesn't exist, pass input 0 by.
return _process_node(osn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
}
float os_seek = p_seek;
if (p_seek)
osn->time = p_time;
if (osn->start) {
osn->time = 0;
os_seek = true;
}
float blend;
if (osn->time < osn->fade_in) {
if (osn->fade_in > 0)
blend = osn->time / osn->fade_in;
else
blend = 0; //wtf
} else if (!osn->start && osn->remaining < osn->fade_out) {
if (osn->fade_out)
blend = (osn->remaining / osn->fade_out);
else
blend = 1.0;
} else
blend = 1.0;
float main_rem;
float os_rem;
HashMap<NodePath, float> os_weights(*p_weights);
float os_fallback_weight = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, osn->mix ? 1.0 : 1.0 - blend, &osn->filter, 1.0);
_compute_weights(&os_fallback_weight, &os_weights, blend, &osn->filter, 0.0);
main_rem = _process_node(osn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
os_rem = _process_node(osn->inputs[1].node, r_prev_anim, p_time, os_seek, os_fallback_weight, &os_weights);
if (osn->start) {
osn->remaining = os_rem;
osn->start = false;
}
if (!p_seek) {
osn->time += p_time;
osn->remaining = os_rem;
if (osn->remaining <= 0)
osn->active = false;
}
return MAX(main_rem, osn->remaining);
} break;
case NODE_MIX: {
MixNode *mn = static_cast<MixNode *>(nb);
HashMap<NodePath, float> mn_weights(*p_weights);
float mn_fallback_weight = p_fallback_weight;
_compute_weights(&mn_fallback_weight, &mn_weights, mn->amount);
float rem = _process_node(mn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(mn->inputs[1].node, r_prev_anim, p_time, p_seek, mn_fallback_weight, &mn_weights);
return rem;
} break;
case NODE_BLEND2: {
Blend2Node *bn = static_cast<Blend2Node *>(nb);
HashMap<NodePath, float> bn_weights(*p_weights);
float bn_fallback_weight = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - bn->value, &bn->filter, 1.0);
_compute_weights(&bn_fallback_weight, &bn_weights, bn->value, &bn->filter, 0.0);
float rem = _process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, bn_fallback_weight, &bn_weights);
return rem;
} break;
case NODE_BLEND3: {
Blend3Node *bn = static_cast<Blend3Node *>(nb);
float rem;
float blend, lower_blend, upper_blend;
if (bn->value < 0) {
lower_blend = -bn->value;
blend = 1.0 - lower_blend;
upper_blend = 0;
} else {
lower_blend = 0;
blend = 1.0 - bn->value;
upper_blend = bn->value;
}
HashMap<NodePath, float> upper_weights(*p_weights);
float upper_fallback_weight = p_fallback_weight;
HashMap<NodePath, float> lower_weights(*p_weights);
float lower_fallback_weight = p_fallback_weight;
_compute_weights(&upper_fallback_weight, &upper_weights, upper_blend);
_compute_weights(&p_fallback_weight, p_weights, blend);
_compute_weights(&lower_fallback_weight, &lower_weights, lower_blend);
rem = _process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, lower_fallback_weight, &lower_weights);
_process_node(bn->inputs[2].node, r_prev_anim, p_time, p_seek, upper_fallback_weight, &upper_weights);
return rem;
} break;
case NODE_BLEND4: {
Blend4Node *bn = static_cast<Blend4Node *>(nb);
HashMap<NodePath, float> weights1(*p_weights);
float fallback_weight1 = p_fallback_weight;
HashMap<NodePath, float> weights2(*p_weights);
float fallback_weight2 = p_fallback_weight;
HashMap<NodePath, float> weights3(*p_weights);
float fallback_weight3 = p_fallback_weight;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - bn->value.x);
_compute_weights(&fallback_weight1, &weights1, bn->value.x);
_compute_weights(&fallback_weight2, &weights2, 1.0 - bn->value.y);
_compute_weights(&fallback_weight3, &weights3, bn->value.y);
float rem = _process_node(bn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
_process_node(bn->inputs[1].node, r_prev_anim, p_time, p_seek, fallback_weight1, &weights1);
float rem2 = _process_node(bn->inputs[2].node, r_prev_anim, p_time, p_seek, fallback_weight2, &weights2);
_process_node(bn->inputs[3].node, r_prev_anim, p_time, p_seek, fallback_weight3, &weights3);
return MAX(rem, rem2);
} break;
case NODE_TIMESCALE: {
TimeScaleNode *tsn = static_cast<TimeScaleNode *>(nb);
float rem;
if (p_seek)
rem = _process_node(tsn->inputs[0].node, r_prev_anim, p_time, true, p_fallback_weight, p_weights);
else
rem = _process_node(tsn->inputs[0].node, r_prev_anim, p_time * tsn->scale, false, p_fallback_weight, p_weights);
if (tsn->scale == 0)
return INFINITY;
else
return rem / tsn->scale;
} break;
case NODE_TIMESEEK: {
TimeSeekNode *tsn = static_cast<TimeSeekNode *>(nb);
if (tsn->seek_pos >= 0 && !p_seek) {
p_time = tsn->seek_pos;
p_seek = true;
}
tsn->seek_pos = -1;
return _process_node(tsn->inputs[0].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
} break;
case NODE_TRANSITION: {
TransitionNode *tn = static_cast<TransitionNode *>(nb);
HashMap<NodePath, float> prev_weights(*p_weights);
float prev_fallback_weight = p_fallback_weight;
if (tn->prev < 0) { // process current animation, check for transition
float rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
if (p_seek)
tn->time = p_time;
else
tn->time += p_time;
if (tn->input_data[tn->current].auto_advance && rem <= tn->xfade) {
tn->set_current((tn->current + 1) % tn->inputs.size());
}
return rem;
} else { // cross-fading from tn->prev to tn->current
float blend = tn->xfade ? (tn->prev_xfading / tn->xfade) : 1;
float rem;
_compute_weights(&p_fallback_weight, p_weights, 1.0 - blend);
_compute_weights(&prev_fallback_weight, &prev_weights, blend);
if (!p_seek && tn->switched) { //just switched, seek to start of current
rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, 0, true, p_fallback_weight, p_weights);
} else {
rem = _process_node(tn->inputs[tn->current].node, r_prev_anim, p_time, p_seek, p_fallback_weight, p_weights);
}
tn->switched = false;
if (p_seek) { // don't seek prev animation
_process_node(tn->inputs[tn->prev].node, r_prev_anim, 0, false, prev_fallback_weight, &prev_weights);
tn->time = p_time;
} else {
_process_node(tn->inputs[tn->prev].node, r_prev_anim, p_time, false, prev_fallback_weight, &prev_weights);
tn->time += p_time;
tn->prev_xfading -= p_time;
if (tn->prev_xfading < 0) {
tn->prev = -1;
}
}
return rem;
}
} break;
default: {}
}
return 0;
}
void AnimationTreePlayer::_process_animation(float p_delta) {
if (last_error != CONNECT_OK)
return;
if (dirty_caches)
_recompute_caches();
active_list = NULL;
AnimationNode *prev = NULL;
if (reset_request) {
_process_node(out_name, &prev, 0, true);
reset_request = false;
} else
_process_node(out_name, &prev, p_delta);
if (dirty_caches) {
//some animation changed.. ignore this pass
return;
}
//update the tracks..
/* STEP 1 CLEAR TRACKS */
for (TrackMap::Element *E = track_map.front(); E; E = E->next()) {
Track &t = E->get();
t.loc.zero();
t.rot = Quat();
t.scale.x = 0;
t.scale.y = 0;
t.scale.z = 0;
t.value = t.object->get(t.property);
t.value.zero();
t.skip = false;
}
/* STEP 2 PROCESS ANIMATIONS */
AnimationNode *anim_list = active_list;
Quat empty_rot;
while (anim_list) {
if (!anim_list->animation.is_null() && !anim_list->skip) {
//check if animation is meaningful
Animation *a = anim_list->animation.operator->();
for (List<AnimationNode::TrackRef>::Element *E = anim_list->tref.front(); E; E = E->next()) {
AnimationNode::TrackRef &tr = E->get();
if (tr.track == NULL || tr.local_track < 0 || tr.weight < CMP_EPSILON)
continue;
switch (a->track_get_type(tr.local_track)) {
case Animation::TYPE_TRANSFORM: { ///< Transform a node or a bone.
Vector3 loc;
Quat rot;
Vector3 scale;
a->transform_track_interpolate(tr.local_track, anim_list->time, &loc, &rot, &scale);
tr.track->loc += loc * tr.weight;
scale.x -= 1.0;
scale.y -= 1.0;
scale.z -= 1.0;
tr.track->scale += scale * tr.weight;
tr.track->rot = tr.track->rot * empty_rot.slerp(rot, tr.weight);
} break;
case Animation::TYPE_VALUE: { ///< Set a value in a property, can be interpolated.
if (a->value_track_get_update_mode(tr.local_track) == Animation::UPDATE_CONTINUOUS) {
Variant value = a->value_track_interpolate(tr.local_track, anim_list->time);
Variant::blend(tr.track->value, value, tr.weight, tr.track->value);
} else {
int index = a->track_find_key(tr.local_track, anim_list->time);
tr.track->value = a->track_get_key_value(tr.local_track, index);
}
} break;
case Animation::TYPE_METHOD: { ///< Call any method on a specific node.
List<int> indices;
a->method_track_get_key_indices(tr.local_track, anim_list->time, anim_list->step, &indices);
for (List<int>::Element *E = indices.front(); E; E = E->next()) {
StringName method = a->method_track_get_name(tr.local_track, E->get());
Vector<Variant> args = a->method_track_get_params(tr.local_track, E->get());
args.resize(VARIANT_ARG_MAX);
tr.track->object->call(method, args[0], args[1], args[2], args[3], args[4]);
}
} break;
}
}
}
anim_list = anim_list->next;
}
/* STEP 3 APPLY TRACKS */
for (TrackMap::Element *E = track_map.front(); E; E = E->next()) {
Track &t = E->get();
if (t.skip || !t.object)
continue;
if (t.property) { // value track
t.object->set(t.property, t.value);
continue;
}
Transform xform;
xform.basis = t.rot;
xform.origin = t.loc;
t.scale.x += 1.0;
t.scale.y += 1.0;
t.scale.z += 1.0;
xform.basis.scale(t.scale);
if (t.bone_idx >= 0) {
if (t.skeleton)
t.skeleton->set_bone_pose(t.bone_idx, xform);
} else if (t.spatial) {
t.spatial->set_transform(xform);
}
}
}
void AnimationTreePlayer::add_node(NodeType p_type, const StringName &p_node) {
ERR_FAIL_COND(p_type == NODE_OUTPUT);
ERR_FAIL_COND(node_map.has(p_node));
NodeBase *n = NULL;
switch (p_type) {
case NODE_ANIMATION: {
n = memnew(AnimationNode);
} break;
case NODE_ONESHOT: {
n = memnew(OneShotNode);
} break;
case NODE_MIX: {
n = memnew(MixNode);
} break;
case NODE_BLEND2: {
n = memnew(Blend2Node);
} break;
case NODE_BLEND3: {
n = memnew(Blend3Node);
} break;
case NODE_BLEND4: {
n = memnew(Blend4Node);
} break;
case NODE_TIMESCALE: {
n = memnew(TimeScaleNode);
} break;
case NODE_TIMESEEK: {
n = memnew(TimeSeekNode);
} break;
case NODE_TRANSITION: {
n = memnew(TransitionNode);
} break;
default: {}
}
//n->name+=" "+itos(p_node);
node_map[p_node] = n;
}
StringName AnimationTreePlayer::node_get_input_source(const StringName &p_node, int p_input) const {
ERR_FAIL_COND_V(!node_map.has(p_node), StringName());
ERR_FAIL_INDEX_V(p_input, node_map[p_node]->inputs.size(), StringName());
return node_map[p_node]->inputs[p_input].node;
}
int AnimationTreePlayer::node_get_input_count(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), -1);
return node_map[p_node]->inputs.size();
}
#define GET_NODE(m_type, m_cast) \
ERR_FAIL_COND(!node_map.has(p_node)); \
ERR_EXPLAIN("Invalid parameter for node type."); \
ERR_FAIL_COND(node_map[p_node]->type != m_type); \
m_cast *n = static_cast<m_cast *>(node_map[p_node]);
void AnimationTreePlayer::animation_node_set_animation(const StringName &p_node, const Ref<Animation> &p_animation) {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->animation = p_animation;
dirty_caches = true;
}
void AnimationTreePlayer::animation_node_set_master_animation(const StringName &p_node, const String &p_master_animation) {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->from = p_master_animation;
dirty_caches = true;
if (master != NodePath())
_update_sources();
}
void AnimationTreePlayer::animation_node_set_filter_path(const StringName &p_node, const NodePath &p_track_path, bool p_filter) {
GET_NODE(NODE_ANIMATION, AnimationNode);
if (p_filter)
n->filter[p_track_path] = true;
else
n->filter.erase(p_track_path);
}
void AnimationTreePlayer::animation_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_ANIMATION, AnimationNode);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::oneshot_node_set_fadein_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->fade_in = p_time;
}
void AnimationTreePlayer::oneshot_node_set_fadeout_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->fade_out = p_time;
}
void AnimationTreePlayer::oneshot_node_set_mix_mode(const StringName &p_node, bool p_mix) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->mix = p_mix;
}
void AnimationTreePlayer::oneshot_node_set_autorestart(const StringName &p_node, bool p_active) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart = p_active;
}
void AnimationTreePlayer::oneshot_node_set_autorestart_delay(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart_delay = p_time;
}
void AnimationTreePlayer::oneshot_node_set_autorestart_random_delay(const StringName &p_node, float p_time) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->autorestart_random_delay = p_time;
}
void AnimationTreePlayer::oneshot_node_start(const StringName &p_node) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->active = true;
n->start = true;
}
void AnimationTreePlayer::oneshot_node_stop(const StringName &p_node) {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->active = false;
}
void AnimationTreePlayer::oneshot_node_set_filter_path(const StringName &p_node, const NodePath &p_filter, bool p_enable) {
GET_NODE(NODE_ONESHOT, OneShotNode);
if (p_enable)
n->filter[p_filter] = true;
else
n->filter.erase(p_filter);
}
void AnimationTreePlayer::oneshot_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_ONESHOT, OneShotNode);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::mix_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_MIX, MixNode);
n->amount = p_amount;
}
void AnimationTreePlayer::blend2_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_BLEND2, Blend2Node);
n->value = p_amount;
}
void AnimationTreePlayer::blend2_node_set_filter_path(const StringName &p_node, const NodePath &p_filter, bool p_enable) {
GET_NODE(NODE_BLEND2, Blend2Node);
if (p_enable)
n->filter[p_filter] = true;
else
n->filter.erase(p_filter);
}
void AnimationTreePlayer::blend2_node_set_get_filtered_paths(const StringName &p_node, List<NodePath> *r_paths) const {
GET_NODE(NODE_BLEND2, Blend2Node);
n->filter.get_key_list(r_paths);
}
void AnimationTreePlayer::blend3_node_set_amount(const StringName &p_node, float p_amount) {
GET_NODE(NODE_BLEND3, Blend3Node);
n->value = p_amount;
}
void AnimationTreePlayer::blend4_node_set_amount(const StringName &p_node, const Vector2 &p_amount) {
GET_NODE(NODE_BLEND4, Blend4Node);
n->value = p_amount;
}
void AnimationTreePlayer::timescale_node_set_scale(const StringName &p_node, float p_scale) {
GET_NODE(NODE_TIMESCALE, TimeScaleNode);
n->scale = p_scale;
}
void AnimationTreePlayer::timeseek_node_seek(const StringName &p_node, float p_pos) {
GET_NODE(NODE_TIMESEEK, TimeSeekNode);
n->seek_pos = p_pos;
}
void AnimationTreePlayer::transition_node_set_input_count(const StringName &p_node, int p_inputs) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_COND(p_inputs < 1);
n->inputs.resize(p_inputs);
n->input_data.resize(p_inputs);
last_error = _cycle_test(out_name);
}
void AnimationTreePlayer::transition_node_set_input_auto_advance(const StringName &p_node, int p_input, bool p_auto_advance) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_INDEX(p_input, n->input_data.size());
n->input_data[p_input].auto_advance = p_auto_advance;
}
void AnimationTreePlayer::transition_node_set_xfade_time(const StringName &p_node, float p_time) {
GET_NODE(NODE_TRANSITION, TransitionNode);
n->xfade = p_time;
}
void AnimationTreePlayer::TransitionNode::set_current(int p_current) {
ERR_FAIL_INDEX(p_current, inputs.size());
if (current == p_current)
return;
prev = current;
prev_xfading = xfade;
prev_time = time;
time = 0;
current = p_current;
switched = true;
}
void AnimationTreePlayer::transition_node_set_current(const StringName &p_node, int p_current) {
GET_NODE(NODE_TRANSITION, TransitionNode);
n->set_current(p_current);
}
void AnimationTreePlayer::node_set_pos(const StringName &p_node, const Vector2 &p_pos) {
ERR_FAIL_COND(!node_map.has(p_node));
node_map[p_node]->pos = p_pos;
}
AnimationTreePlayer::NodeType AnimationTreePlayer::node_get_type(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), NODE_OUTPUT);
return node_map[p_node]->type;
}
Point2 AnimationTreePlayer::node_get_pos(const StringName &p_node) const {
ERR_FAIL_COND_V(!node_map.has(p_node), Point2());
return node_map[p_node]->pos;
}
#define GET_NODE_V(m_type, m_cast, m_ret) \
ERR_FAIL_COND_V(!node_map.has(p_node), m_ret); \
ERR_EXPLAIN("Invalid parameter for node type."); \
ERR_FAIL_COND_V(node_map[p_node]->type != m_type, m_ret); \
m_cast *n = static_cast<m_cast *>(node_map[p_node]);
Ref<Animation> AnimationTreePlayer::animation_node_get_animation(const StringName &p_node) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, Ref<Animation>());
return n->animation;
}
String AnimationTreePlayer::animation_node_get_master_animation(const StringName &p_node) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, String());
return n->from;
}
bool AnimationTreePlayer::animation_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_ANIMATION, AnimationNode, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::oneshot_node_get_fadein_time(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->fade_in;
}
float AnimationTreePlayer::oneshot_node_get_fadeout_time(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->fade_out;
}
bool AnimationTreePlayer::oneshot_node_get_mix_mode(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->mix;
}
bool AnimationTreePlayer::oneshot_node_has_autorestart(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart;
}
float AnimationTreePlayer::oneshot_node_get_autorestart_delay(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart_delay;
}
float AnimationTreePlayer::oneshot_node_get_autorestart_random_delay(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->autorestart_random_delay;
}
bool AnimationTreePlayer::oneshot_node_is_active(const StringName &p_node) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->active;
}
bool AnimationTreePlayer::oneshot_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_ONESHOT, OneShotNode, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::mix_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_MIX, MixNode, 0);
return n->amount;
}
float AnimationTreePlayer::blend2_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND2, Blend2Node, 0);
return n->value;
}
bool AnimationTreePlayer::blend2_node_is_path_filtered(const StringName &p_node, const NodePath &p_path) const {
GET_NODE_V(NODE_BLEND2, Blend2Node, 0);
return n->filter.has(p_path);
}
float AnimationTreePlayer::blend3_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND3, Blend3Node, 0);
return n->value;
}
Vector2 AnimationTreePlayer::blend4_node_get_amount(const StringName &p_node) const {
GET_NODE_V(NODE_BLEND4, Blend4Node, Vector2());
return n->value;
}
float AnimationTreePlayer::timescale_node_get_scale(const StringName &p_node) const {
GET_NODE_V(NODE_TIMESCALE, TimeScaleNode, 0);
return n->scale;
}
void AnimationTreePlayer::transition_node_delete_input(const StringName &p_node, int p_input) {
GET_NODE(NODE_TRANSITION, TransitionNode);
ERR_FAIL_INDEX(p_input, n->inputs.size());
if (n->inputs.size() <= 1)
return;
n->inputs.remove(p_input);
n->input_data.remove(p_input);
last_error = _cycle_test(out_name);
}
int AnimationTreePlayer::transition_node_get_input_count(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, 0);
return n->inputs.size();
}
bool AnimationTreePlayer::transition_node_has_input_auto_advance(const StringName &p_node, int p_input) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, false);
ERR_FAIL_INDEX_V(p_input, n->inputs.size(), false);
return n->input_data[p_input].auto_advance;
}
float AnimationTreePlayer::transition_node_get_xfade_time(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, 0);
return n->xfade;
}
int AnimationTreePlayer::transition_node_get_current(const StringName &p_node) const {
GET_NODE_V(NODE_TRANSITION, TransitionNode, -1);
return n->current;
}
/*misc */
void AnimationTreePlayer::get_node_list(List<StringName> *p_node_list) const {
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
p_node_list->push_back(E->key());
}
}
void AnimationTreePlayer::remove_node(const StringName &p_node) {
ERR_FAIL_COND(!node_map.has(p_node));
ERR_EXPLAIN("Node 0 (output) can't be removed.");
ERR_FAIL_COND(p_node == out_name);
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_node)
nb->inputs[i].node = StringName();
}
}
node_map.erase(p_node);
// compute last error again, just in case
last_error = _cycle_test(out_name);
dirty_caches = true;
}
AnimationTreePlayer::ConnectError AnimationTreePlayer::_cycle_test(const StringName &p_at_node) {
ERR_FAIL_COND_V(!node_map.has(p_at_node), CONNECT_INCOMPLETE);
NodeBase *nb = node_map[p_at_node];
if (nb->cycletest)
return CONNECT_CYCLE;
nb->cycletest = true;
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == StringName())
return CONNECT_INCOMPLETE;
ConnectError _err = _cycle_test(nb->inputs[i].node);
if (_err)
return _err;
}
return CONNECT_OK;
}
Error AnimationTreePlayer::connect(const StringName &p_src_node, const StringName &p_dst_node, int p_dst_input) {
ERR_FAIL_COND_V(!node_map.has(p_src_node), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(!node_map.has(p_dst_node), ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(p_src_node == p_dst_node, ERR_INVALID_PARAMETER);
// NodeBase *src = node_map[p_src_node];
NodeBase *dst = node_map[p_dst_node];
ERR_FAIL_INDEX_V(p_dst_input, dst->inputs.size(), ERR_INVALID_PARAMETER);
// int oldval = dst->inputs[p_dst_input].node;
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_src_node)
nb->inputs[i].node = StringName();
}
}
dst->inputs[p_dst_input].node = p_src_node;
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
nb->cycletest = false;
}
last_error = _cycle_test(out_name);
if (last_error) {
if (last_error == CONNECT_INCOMPLETE)
return ERR_UNCONFIGURED;
else if (last_error == CONNECT_CYCLE)
return ERR_CYCLIC_LINK;
}
dirty_caches = true;
return OK;
}
bool AnimationTreePlayer::is_connected(const StringName &p_src_node, const StringName &p_dst_node, int p_dst_input) const {
ERR_FAIL_COND_V(!node_map.has(p_src_node), false);
ERR_FAIL_COND_V(!node_map.has(p_dst_node), false);
ERR_FAIL_COND_V(p_src_node == p_dst_node, false);
NodeBase *dst = node_map[p_dst_node];
return dst->inputs[p_dst_input].node == p_src_node;
}
void AnimationTreePlayer::disconnect(const StringName &p_node, int p_input) {
ERR_FAIL_COND(!node_map.has(p_node));
NodeBase *dst = node_map[p_node];
ERR_FAIL_INDEX(p_input, dst->inputs.size());
dst->inputs[p_input].node = StringName();
last_error = CONNECT_INCOMPLETE;
dirty_caches = true;
}
void AnimationTreePlayer::get_connection_list(List<Connection> *p_connections) const {
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node != StringName()) {
Connection c;
c.src_node = nb->inputs[i].node;
c.dst_node = E->key();
c.dst_input = i;
p_connections->push_back(c);
}
}
}
}
AnimationTreePlayer::Track *AnimationTreePlayer::_find_track(const NodePath &p_path) {
Node *parent = get_node(base_path);
ERR_FAIL_COND_V(!parent, NULL);
RES resource;
Node *child = parent->get_node_and_resource(p_path, resource);
if (!child) {
String err = "Animation track references unknown Node: '" + String(p_path) + "'.";
WARN_PRINT(err.ascii().get_data());
return NULL;
}
ObjectID id = child->get_instance_ID();
StringName property;
int bone_idx = -1;
if (p_path.get_property()) {
if (child->cast_to<Skeleton>())
bone_idx = child->cast_to<Skeleton>()->find_bone(p_path.get_property());
if (bone_idx == -1)
property = p_path.get_property();
}
TrackKey key;
key.id = id;
key.bone_idx = bone_idx;
key.property = property;
if (!track_map.has(key)) {
Track tr;
tr.id = id;
tr.object = resource.is_valid() ? (Object *)resource.ptr() : (Object *)child;
tr.skeleton = child->cast_to<Skeleton>();
tr.spatial = child->cast_to<Spatial>();
tr.bone_idx = bone_idx;
tr.property = property;
track_map[key] = tr;
}
return &track_map[key];
}
void AnimationTreePlayer::_recompute_caches() {
track_map.clear();
_recompute_caches(out_name);
dirty_caches = false;
}
void AnimationTreePlayer::_recompute_caches(const StringName &p_node) {
ERR_FAIL_COND(!node_map.has(p_node));
NodeBase *nb = node_map[p_node];
if (nb->type == NODE_ANIMATION) {
AnimationNode *an = static_cast<AnimationNode *>(nb);
an->tref.clear();
if (!an->animation.is_null()) {
Ref<Animation> a = an->animation;
for (int i = 0; i < an->animation->get_track_count(); i++) {
Track *tr = _find_track(a->track_get_path(i));
if (!tr)
continue;
AnimationNode::TrackRef tref;
tref.local_track = i;
tref.track = tr;
tref.weight = 0;
an->tref.push_back(tref);
}
}
}
for (int i = 0; i < nb->inputs.size(); i++) {
_recompute_caches(nb->inputs[i].node);
}
}
void AnimationTreePlayer::recompute_caches() {
dirty_caches = true;
}
/* playback */
void AnimationTreePlayer::set_active(bool p_active) {
if (active == p_active)
return;
active = p_active;
processing = active;
reset_request = p_active;
_set_process(processing, true);
}
bool AnimationTreePlayer::is_active() const {
return active;
}
AnimationTreePlayer::ConnectError AnimationTreePlayer::get_last_error() const {
return last_error;
}
void AnimationTreePlayer::reset() {
reset_request = true;
}
void AnimationTreePlayer::set_base_path(const NodePath &p_path) {
base_path = p_path;
recompute_caches();
}
NodePath AnimationTreePlayer::get_base_path() const {
return base_path;
}
void AnimationTreePlayer::set_master_player(const NodePath &p_path) {
if (p_path == master)
return;
master = p_path;
_update_sources();
recompute_caches();
}
NodePath AnimationTreePlayer::get_master_player() const {
return master;
}
DVector<String> AnimationTreePlayer::_get_node_list() {
List<StringName> nl;
get_node_list(&nl);
DVector<String> ret;
ret.resize(nl.size());
int idx = 0;
for (List<StringName>::Element *E = nl.front(); E; E = E->next()) {
ret.set(idx++, E->get());
}
return ret;
}
void AnimationTreePlayer::_update_sources() {
if (master == NodePath())
return;
if (!is_inside_tree())
return;
Node *m = get_node(master);
if (!m) {
master = NodePath();
ERR_FAIL_COND(!m);
}
AnimationPlayer *ap = m->cast_to<AnimationPlayer>();
if (!ap) {
master = NodePath();
ERR_FAIL_COND(!ap);
}
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
if (E->get()->type == NODE_ANIMATION) {
AnimationNode *an = static_cast<AnimationNode *>(E->get());
if (an->from != "") {
an->animation = ap->get_animation(an->from);
}
}
}
}
bool AnimationTreePlayer::node_exists(const StringName &p_name) const {
return (node_map.has(p_name));
}
Error AnimationTreePlayer::node_rename(const StringName &p_node, const StringName &p_new_name) {
if (p_new_name == p_node)
return OK;
ERR_FAIL_COND_V(!node_map.has(p_node), ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(node_map.has(p_new_name), ERR_ALREADY_EXISTS);
ERR_FAIL_COND_V(p_new_name == StringName(), ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_node == out_name, ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_new_name == out_name, ERR_INVALID_DATA);
for (Map<StringName, NodeBase *>::Element *E = node_map.front(); E; E = E->next()) {
NodeBase *nb = E->get();
for (int i = 0; i < nb->inputs.size(); i++) {
if (nb->inputs[i].node == p_node) {
nb->inputs[i].node = p_new_name;
}
}
}
node_map[p_new_name] = node_map[p_node];
node_map.erase(p_node);
return OK;
}
void AnimationTreePlayer::_bind_methods() {
ObjectTypeDB::bind_method(_MD("add_node", "type", "id"), &AnimationTreePlayer::add_node);
ObjectTypeDB::bind_method(_MD("node_exists", "node"), &AnimationTreePlayer::node_exists);
ObjectTypeDB::bind_method(_MD("node_rename", "node", "new_name"), &AnimationTreePlayer::node_rename);
ObjectTypeDB::bind_method(_MD("node_get_type", "id"), &AnimationTreePlayer::node_get_type);
ObjectTypeDB::bind_method(_MD("node_get_input_count", "id"), &AnimationTreePlayer::node_get_input_count);
ObjectTypeDB::bind_method(_MD("node_get_input_source", "id", "idx"), &AnimationTreePlayer::node_get_input_source);
ObjectTypeDB::bind_method(_MD("animation_node_set_animation", "id", "animation:Animation"), &AnimationTreePlayer::animation_node_set_animation);
ObjectTypeDB::bind_method(_MD("animation_node_get_animation:Animation", "id"), &AnimationTreePlayer::animation_node_get_animation);
ObjectTypeDB::bind_method(_MD("animation_node_set_master_animation", "id", "source"), &AnimationTreePlayer::animation_node_set_master_animation);
ObjectTypeDB::bind_method(_MD("animation_node_get_master_animation", "id"), &AnimationTreePlayer::animation_node_get_master_animation);
ObjectTypeDB::bind_method(_MD("animation_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::animation_node_set_filter_path);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_fadein_time", "id", "time_sec"), &AnimationTreePlayer::oneshot_node_set_fadein_time);
ObjectTypeDB::bind_method(_MD("oneshot_node_get_fadein_time", "id"), &AnimationTreePlayer::oneshot_node_get_fadein_time);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_fadeout_time", "id", "time_sec"), &AnimationTreePlayer::oneshot_node_set_fadeout_time);
ObjectTypeDB::bind_method(_MD("oneshot_node_get_fadeout_time", "id"), &AnimationTreePlayer::oneshot_node_get_fadeout_time);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_autorestart", "id", "enable"), &AnimationTreePlayer::oneshot_node_set_autorestart);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_autorestart_delay", "id", "delay_sec"), &AnimationTreePlayer::oneshot_node_set_autorestart_delay);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_autorestart_random_delay", "id", "rand_sec"), &AnimationTreePlayer::oneshot_node_set_autorestart_random_delay);
ObjectTypeDB::bind_method(_MD("oneshot_node_has_autorestart", "id"), &AnimationTreePlayer::oneshot_node_has_autorestart);
ObjectTypeDB::bind_method(_MD("oneshot_node_get_autorestart_delay", "id"), &AnimationTreePlayer::oneshot_node_get_autorestart_delay);
ObjectTypeDB::bind_method(_MD("oneshot_node_get_autorestart_random_delay", "id"), &AnimationTreePlayer::oneshot_node_get_autorestart_random_delay);
ObjectTypeDB::bind_method(_MD("oneshot_node_start", "id"), &AnimationTreePlayer::oneshot_node_start);
ObjectTypeDB::bind_method(_MD("oneshot_node_stop", "id"), &AnimationTreePlayer::oneshot_node_stop);
ObjectTypeDB::bind_method(_MD("oneshot_node_is_active", "id"), &AnimationTreePlayer::oneshot_node_is_active);
ObjectTypeDB::bind_method(_MD("oneshot_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::oneshot_node_set_filter_path);
ObjectTypeDB::bind_method(_MD("mix_node_set_amount", "id", "ratio"), &AnimationTreePlayer::mix_node_set_amount);
ObjectTypeDB::bind_method(_MD("mix_node_get_amount", "id"), &AnimationTreePlayer::mix_node_get_amount);
ObjectTypeDB::bind_method(_MD("blend2_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend2_node_set_amount);
ObjectTypeDB::bind_method(_MD("blend2_node_get_amount", "id"), &AnimationTreePlayer::blend2_node_get_amount);
ObjectTypeDB::bind_method(_MD("blend2_node_set_filter_path", "id", "path", "enable"), &AnimationTreePlayer::blend2_node_set_filter_path);
ObjectTypeDB::bind_method(_MD("blend3_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend3_node_set_amount);
ObjectTypeDB::bind_method(_MD("blend3_node_get_amount", "id"), &AnimationTreePlayer::blend3_node_get_amount);
ObjectTypeDB::bind_method(_MD("blend4_node_set_amount", "id", "blend"), &AnimationTreePlayer::blend4_node_set_amount);
ObjectTypeDB::bind_method(_MD("blend4_node_get_amount", "id"), &AnimationTreePlayer::blend4_node_get_amount);
ObjectTypeDB::bind_method(_MD("timescale_node_set_scale", "id", "scale"), &AnimationTreePlayer::timescale_node_set_scale);
ObjectTypeDB::bind_method(_MD("timescale_node_get_scale", "id"), &AnimationTreePlayer::timescale_node_get_scale);
ObjectTypeDB::bind_method(_MD("timeseek_node_seek", "id", "pos_sec"), &AnimationTreePlayer::timeseek_node_seek);
ObjectTypeDB::bind_method(_MD("transition_node_set_input_count", "id", "count"), &AnimationTreePlayer::transition_node_set_input_count);
ObjectTypeDB::bind_method(_MD("transition_node_get_input_count", "id"), &AnimationTreePlayer::transition_node_get_input_count);
ObjectTypeDB::bind_method(_MD("transition_node_delete_input", "id", "input_idx"), &AnimationTreePlayer::transition_node_delete_input);
ObjectTypeDB::bind_method(_MD("transition_node_set_input_auto_advance", "id", "input_idx", "enable"), &AnimationTreePlayer::transition_node_set_input_auto_advance);
ObjectTypeDB::bind_method(_MD("transition_node_has_input_auto_advance", "id", "input_idx"), &AnimationTreePlayer::transition_node_has_input_auto_advance);
ObjectTypeDB::bind_method(_MD("transition_node_set_xfade_time", "id", "time_sec"), &AnimationTreePlayer::transition_node_set_xfade_time);
ObjectTypeDB::bind_method(_MD("transition_node_get_xfade_time", "id"), &AnimationTreePlayer::transition_node_get_xfade_time);
ObjectTypeDB::bind_method(_MD("transition_node_set_current", "id", "input_idx"), &AnimationTreePlayer::transition_node_set_current);
ObjectTypeDB::bind_method(_MD("transition_node_get_current", "id"), &AnimationTreePlayer::transition_node_get_current);
ObjectTypeDB::bind_method(_MD("node_set_pos", "id", "screen_pos"), &AnimationTreePlayer::node_set_pos);
ObjectTypeDB::bind_method(_MD("node_get_pos", "id"), &AnimationTreePlayer::node_get_pos);
ObjectTypeDB::bind_method(_MD("remove_node", "id"), &AnimationTreePlayer::remove_node);
ObjectTypeDB::bind_method(_MD("connect", "id", "dst_id", "dst_input_idx"), &AnimationTreePlayer::connect);
ObjectTypeDB::bind_method(_MD("is_connected", "id", "dst_id", "dst_input_idx"), &AnimationTreePlayer::is_connected);
ObjectTypeDB::bind_method(_MD("disconnect", "id", "dst_input_idx"), &AnimationTreePlayer::disconnect);
ObjectTypeDB::bind_method(_MD("set_active", "enabled"), &AnimationTreePlayer::set_active);
ObjectTypeDB::bind_method(_MD("is_active"), &AnimationTreePlayer::is_active);
ObjectTypeDB::bind_method(_MD("set_base_path", "path"), &AnimationTreePlayer::set_base_path);
ObjectTypeDB::bind_method(_MD("get_base_path"), &AnimationTreePlayer::get_base_path);
ObjectTypeDB::bind_method(_MD("set_master_player", "nodepath"), &AnimationTreePlayer::set_master_player);
ObjectTypeDB::bind_method(_MD("get_master_player"), &AnimationTreePlayer::get_master_player);
ObjectTypeDB::bind_method(_MD("get_node_list"), &AnimationTreePlayer::_get_node_list);
ObjectTypeDB::bind_method(_MD("set_animation_process_mode", "mode"), &AnimationTreePlayer::set_animation_process_mode);
ObjectTypeDB::bind_method(_MD("get_animation_process_mode"), &AnimationTreePlayer::get_animation_process_mode);
ObjectTypeDB::bind_method(_MD("advance", "delta"), &AnimationTreePlayer::advance);
ObjectTypeDB::bind_method(_MD("reset"), &AnimationTreePlayer::reset);
ObjectTypeDB::bind_method(_MD("recompute_caches"), &AnimationTreePlayer::recompute_caches);
ADD_PROPERTY(PropertyInfo(Variant::INT, "playback/process_mode", PROPERTY_HINT_ENUM, "Fixed,Idle"), _SCS("set_animation_process_mode"), _SCS("get_animation_process_mode"));
BIND_CONSTANT(NODE_OUTPUT);
BIND_CONSTANT(NODE_ANIMATION);
BIND_CONSTANT(NODE_ONESHOT);
BIND_CONSTANT(NODE_MIX);
BIND_CONSTANT(NODE_BLEND2);
BIND_CONSTANT(NODE_BLEND3);
BIND_CONSTANT(NODE_BLEND4);
BIND_CONSTANT(NODE_TIMESCALE);
BIND_CONSTANT(NODE_TIMESEEK);
BIND_CONSTANT(NODE_TRANSITION);
}
AnimationTreePlayer::AnimationTreePlayer() {
active_list = NULL;
out = memnew(NodeOut);
out_name = "out";
out->pos = Point2(40, 40);
node_map.insert(out_name, out);
animation_process_mode = ANIMATION_PROCESS_IDLE;
processing = false;
active = false;
dirty_caches = true;
reset_request = true;
last_error = CONNECT_INCOMPLETE;
base_path = String("..");
}
AnimationTreePlayer::~AnimationTreePlayer() {
while (node_map.size()) {
memdelete(node_map.front()->get());
node_map.erase(node_map.front());
}
}