4916 lines
159 KiB
C++
4916 lines
159 KiB
C++
#include "rasterizer_scene_gles3.h"
|
|
#include "globals.h"
|
|
#include "os/os.h"
|
|
#include "rasterizer_canvas_gles3.h"
|
|
|
|
static const GLenum _cube_side_enum[6]={
|
|
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_X,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_X,
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_Y,
|
|
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z,
|
|
GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
|
|
|
|
};
|
|
|
|
|
|
static _FORCE_INLINE_ void store_matrix32(const Matrix32& p_mtx, float* p_array) {
|
|
|
|
p_array[ 0]=p_mtx.elements[0][0];
|
|
p_array[ 1]=p_mtx.elements[0][1];
|
|
p_array[ 2]=0;
|
|
p_array[ 3]=0;
|
|
p_array[ 4]=p_mtx.elements[1][0];
|
|
p_array[ 5]=p_mtx.elements[1][1];
|
|
p_array[ 6]=0;
|
|
p_array[ 7]=0;
|
|
p_array[ 8]=0;
|
|
p_array[ 9]=0;
|
|
p_array[10]=1;
|
|
p_array[11]=0;
|
|
p_array[12]=p_mtx.elements[2][0];
|
|
p_array[13]=p_mtx.elements[2][1];
|
|
p_array[14]=0;
|
|
p_array[15]=1;
|
|
}
|
|
|
|
|
|
static _FORCE_INLINE_ void store_transform(const Transform& p_mtx, float* p_array) {
|
|
p_array[ 0]=p_mtx.basis.elements[0][0];
|
|
p_array[ 1]=p_mtx.basis.elements[1][0];
|
|
p_array[ 2]=p_mtx.basis.elements[2][0];
|
|
p_array[ 3]=0;
|
|
p_array[ 4]=p_mtx.basis.elements[0][1];
|
|
p_array[ 5]=p_mtx.basis.elements[1][1];
|
|
p_array[ 6]=p_mtx.basis.elements[2][1];
|
|
p_array[ 7]=0;
|
|
p_array[ 8]=p_mtx.basis.elements[0][2];
|
|
p_array[ 9]=p_mtx.basis.elements[1][2];
|
|
p_array[10]=p_mtx.basis.elements[2][2];
|
|
p_array[11]=0;
|
|
p_array[12]=p_mtx.origin.x;
|
|
p_array[13]=p_mtx.origin.y;
|
|
p_array[14]=p_mtx.origin.z;
|
|
p_array[15]=1;
|
|
}
|
|
|
|
static _FORCE_INLINE_ void store_camera(const CameraMatrix& p_mtx, float* p_array) {
|
|
|
|
for (int i=0;i<4;i++) {
|
|
for (int j=0;j<4;j++) {
|
|
|
|
p_array[i*4+j]=p_mtx.matrix[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* SHADOW ATLAS API */
|
|
|
|
RID RasterizerSceneGLES3::shadow_atlas_create() {
|
|
|
|
ShadowAtlas *shadow_atlas = memnew( ShadowAtlas );
|
|
shadow_atlas->fbo=0;
|
|
shadow_atlas->depth=0;
|
|
shadow_atlas->size=0;
|
|
shadow_atlas->smallest_subdiv=0;
|
|
|
|
for(int i=0;i<4;i++) {
|
|
shadow_atlas->size_order[i]=i;
|
|
}
|
|
|
|
|
|
return shadow_atlas_owner.make_rid(shadow_atlas);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::shadow_atlas_set_size(RID p_atlas,int p_size){
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(p_size<0);
|
|
|
|
p_size = nearest_power_of_2(p_size);
|
|
|
|
if (p_size==shadow_atlas->size)
|
|
return;
|
|
|
|
if (shadow_atlas->fbo) {
|
|
glDeleteTextures(1,&shadow_atlas->depth);
|
|
glDeleteFramebuffers(1,&shadow_atlas->fbo);
|
|
|
|
shadow_atlas->depth=0;
|
|
shadow_atlas->fbo=0;
|
|
|
|
print_line("erasing atlas");
|
|
}
|
|
for(int i=0;i<4;i++) {
|
|
//clear subdivisions
|
|
shadow_atlas->quadrants[i].shadows.resize(0);
|
|
shadow_atlas->quadrants[i].shadows.resize( 1<<shadow_atlas->quadrants[i].subdivision );
|
|
}
|
|
|
|
//erase shadow atlas reference from lights
|
|
for (Map<RID,uint32_t>::Element *E=shadow_atlas->shadow_owners.front();E;E=E->next()) {
|
|
LightInstance *li = light_instance_owner.getornull(E->key());
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
//clear owners
|
|
shadow_atlas->shadow_owners.clear();
|
|
|
|
shadow_atlas->size=p_size;
|
|
|
|
if (shadow_atlas->size) {
|
|
glGenFramebuffers(1, &shadow_atlas->fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, shadow_atlas->fbo);
|
|
|
|
// Create a texture for storing the depth
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glGenTextures(1, &shadow_atlas->depth);
|
|
glBindTexture(GL_TEXTURE_2D, shadow_atlas->depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, shadow_atlas->size, shadow_atlas->size, 0,
|
|
GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
|
|
GL_TEXTURE_2D, shadow_atlas->depth, 0);
|
|
|
|
glViewport(0,0,shadow_atlas->size,shadow_atlas->size);
|
|
glClearDepth(0);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::shadow_atlas_set_quadrant_subdivision(RID p_atlas,int p_quadrant,int p_subdivision){
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_INDEX(p_quadrant,4);
|
|
ERR_FAIL_INDEX(p_subdivision,16384);
|
|
|
|
|
|
uint32_t subdiv = nearest_power_of_2(p_subdivision);
|
|
if (subdiv&0xaaaaaaaa) { //sqrt(subdiv) must be integer
|
|
subdiv<<=1;
|
|
}
|
|
|
|
subdiv=int(Math::sqrt(subdiv));
|
|
|
|
//obtain the number that will be x*x
|
|
|
|
if (shadow_atlas->quadrants[p_quadrant].subdivision==subdiv)
|
|
return;
|
|
|
|
//erase all data from quadrant
|
|
for(int i=0;i<shadow_atlas->quadrants[p_quadrant].shadows.size();i++) {
|
|
|
|
if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
|
|
shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
LightInstance *li = light_instance_owner.getornull(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
|
|
ERR_CONTINUE(!li);
|
|
li->shadow_atlases.erase(p_atlas);
|
|
}
|
|
}
|
|
|
|
shadow_atlas->quadrants[p_quadrant].shadows.resize(0);
|
|
shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv*subdiv);
|
|
shadow_atlas->quadrants[p_quadrant].subdivision=subdiv;
|
|
|
|
//cache the smallest subdiv (for faster allocation in light update)
|
|
|
|
shadow_atlas->smallest_subdiv=1<<30;
|
|
|
|
for(int i=0;i<4;i++) {
|
|
if (shadow_atlas->quadrants[i].subdivision) {
|
|
shadow_atlas->smallest_subdiv=MIN(shadow_atlas->smallest_subdiv,shadow_atlas->quadrants[i].subdivision);
|
|
}
|
|
}
|
|
|
|
if (shadow_atlas->smallest_subdiv==1<<30) {
|
|
shadow_atlas->smallest_subdiv=0;
|
|
}
|
|
|
|
//resort the size orders, simple bublesort for 4 elements..
|
|
|
|
int swaps=0;
|
|
do {
|
|
swaps=0;
|
|
|
|
for(int i=0;i<3;i++) {
|
|
if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i+1]].subdivision) {
|
|
SWAP(shadow_atlas->size_order[i],shadow_atlas->size_order[i+1]);
|
|
swaps++;
|
|
}
|
|
}
|
|
} while(swaps>0);
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas,int *p_in_quadrants,int p_quadrant_count,int p_current_subdiv,uint64_t p_tick,int &r_quadrant,int &r_shadow) {
|
|
|
|
|
|
for(int i=p_quadrant_count-1;i>=0;i--) {
|
|
|
|
int qidx = p_in_quadrants[i];
|
|
|
|
if (shadow_atlas->quadrants[qidx].subdivision==p_current_subdiv) {
|
|
return false;
|
|
}
|
|
|
|
//look for an empty space
|
|
int sc = shadow_atlas->quadrants[qidx].shadows.size();
|
|
ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
|
|
|
|
int found_free_idx=-1; //found a free one
|
|
int found_used_idx=-1; //found existing one, must steal it
|
|
uint64_t min_pass; // pass of the existing one, try to use the least recently used one (LRU fashion)
|
|
|
|
for(int j=0;j<sc;j++) {
|
|
if (!sarr[j].owner.is_valid()) {
|
|
found_free_idx=j;
|
|
break;
|
|
}
|
|
|
|
LightInstance *sli = light_instance_owner.getornull(sarr[j].owner);
|
|
ERR_CONTINUE(!sli);
|
|
|
|
if (sli->last_scene_pass!=scene_pass) {
|
|
|
|
//was just allocated, don't kill it so soon, wait a bit..
|
|
if (p_tick-sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec)
|
|
continue;
|
|
|
|
if (found_used_idx==-1 || sli->last_scene_pass<min_pass) {
|
|
found_used_idx=j;
|
|
min_pass=sli->last_scene_pass;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found_free_idx==-1 && found_used_idx==-1)
|
|
continue; //nothing found
|
|
|
|
if (found_free_idx==-1 && found_used_idx!=-1) {
|
|
found_free_idx=found_used_idx;
|
|
}
|
|
|
|
r_quadrant=qidx;
|
|
r_shadow=found_free_idx;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
bool RasterizerSceneGLES3::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version){
|
|
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_atlas);
|
|
ERR_FAIL_COND_V(!shadow_atlas,false);
|
|
|
|
LightInstance *li = light_instance_owner.getornull(p_light_intance);
|
|
ERR_FAIL_COND_V(!li,false);
|
|
|
|
if (shadow_atlas->size==0 || shadow_atlas->smallest_subdiv==0) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t quad_size = shadow_atlas->size>>1;
|
|
int desired_fit = MIN(quad_size/shadow_atlas->smallest_subdiv,nearest_power_of_2(quad_size*p_coverage));
|
|
|
|
|
|
int valid_quadrants[4];
|
|
int valid_quadrant_count=0;
|
|
int best_size=-1; //best size found
|
|
int best_subdiv=-1; //subdiv for the best size
|
|
|
|
//find the quadrants this fits into, and the best possible size it can fit into
|
|
for(int i=0;i<4;i++) {
|
|
int q = shadow_atlas->size_order[i];
|
|
int sd = shadow_atlas->quadrants[q].subdivision;
|
|
if (sd==0)
|
|
continue; //unused
|
|
|
|
int max_fit = quad_size / sd;
|
|
|
|
if (best_size!=-1 && max_fit>best_size)
|
|
break; //too large
|
|
|
|
valid_quadrants[valid_quadrant_count++]=q;
|
|
best_subdiv=sd;
|
|
|
|
if (max_fit>=desired_fit) {
|
|
best_size=max_fit;
|
|
}
|
|
}
|
|
|
|
ERR_FAIL_COND_V(valid_quadrant_count==0,false);
|
|
|
|
uint64_t tick = OS::get_singleton()->get_ticks_msec();
|
|
|
|
|
|
//see if it already exists
|
|
|
|
if (shadow_atlas->shadow_owners.has(p_light_intance)) {
|
|
//it does!
|
|
uint32_t key = shadow_atlas->shadow_owners[p_light_intance];
|
|
uint32_t q = (key>>ShadowAtlas::QUADRANT_SHIFT)&0x3;
|
|
uint32_t s = key&ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
bool should_realloc=shadow_atlas->quadrants[q].subdivision!=best_subdiv && (shadow_atlas->quadrants[q].shadows[s].alloc_tick-tick > shadow_atlas_realloc_tolerance_msec);
|
|
bool should_redraw=shadow_atlas->quadrants[q].shadows[s].version!=p_light_version;
|
|
|
|
|
|
|
|
if (!should_realloc) {
|
|
shadow_atlas->quadrants[q].shadows[s].version=p_light_version;
|
|
//already existing, see if it should redraw or it's just OK
|
|
return should_redraw;
|
|
}
|
|
|
|
int new_quadrant,new_shadow;
|
|
|
|
//find a better place
|
|
if (_shadow_atlas_find_shadow(shadow_atlas,valid_quadrants,valid_quadrant_count,shadow_atlas->quadrants[q].subdivision,tick,new_quadrant,new_shadow)) {
|
|
//found a better place!
|
|
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows[new_shadow];
|
|
if (sh->owner.is_valid()) {
|
|
//is taken, but is invalid, erasing it
|
|
shadow_atlas->shadow_owners.erase(sh->owner);
|
|
LightInstance *sli = light_instance_owner.get(sh->owner);
|
|
sli->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
//erase previous
|
|
shadow_atlas->quadrants[q].shadows[s].version=0;
|
|
shadow_atlas->quadrants[q].shadows[s].owner=RID();
|
|
|
|
sh->owner=p_light_intance;
|
|
sh->alloc_tick=tick;
|
|
sh->version=p_light_version;
|
|
|
|
//make new key
|
|
key=new_quadrant<<ShadowAtlas::QUADRANT_SHIFT;
|
|
key|=new_shadow;
|
|
//update it in map
|
|
shadow_atlas->shadow_owners[p_light_intance]=key;
|
|
//make it dirty, as it should redraw anyway
|
|
return true;
|
|
}
|
|
|
|
//no better place for this shadow found, keep current
|
|
|
|
//already existing, see if it should redraw or it's just OK
|
|
|
|
shadow_atlas->quadrants[q].shadows[s].version=p_light_version;
|
|
|
|
return should_redraw;
|
|
}
|
|
|
|
int new_quadrant,new_shadow;
|
|
|
|
//find a better place
|
|
if (_shadow_atlas_find_shadow(shadow_atlas,valid_quadrants,valid_quadrant_count,-1,tick,new_quadrant,new_shadow)) {
|
|
//found a better place!
|
|
ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows[new_shadow];
|
|
if (sh->owner.is_valid()) {
|
|
//is taken, but is invalid, erasing it
|
|
shadow_atlas->shadow_owners.erase(sh->owner);
|
|
LightInstance *sli = light_instance_owner.get(sh->owner);
|
|
sli->shadow_atlases.erase(p_atlas);
|
|
}
|
|
|
|
sh->owner=p_light_intance;
|
|
sh->alloc_tick=tick;
|
|
sh->version=p_light_version;
|
|
|
|
//make new key
|
|
uint32_t key=new_quadrant<<ShadowAtlas::QUADRANT_SHIFT;
|
|
key|=new_shadow;
|
|
//update it in map
|
|
shadow_atlas->shadow_owners[p_light_intance]=key;
|
|
//make it dirty, as it should redraw anyway
|
|
|
|
return true;
|
|
}
|
|
|
|
//no place to allocate this light, apologies
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) {
|
|
|
|
directional_shadow.light_count=p_count;
|
|
directional_shadow.current_light=0;
|
|
}
|
|
|
|
int RasterizerSceneGLES3::get_directional_light_shadow_size(RID p_light_intance) {
|
|
|
|
ERR_FAIL_COND_V(directional_shadow.light_count==0,0);
|
|
|
|
int shadow_size;
|
|
|
|
if (directional_shadow.light_count==1) {
|
|
shadow_size = directional_shadow.size;
|
|
} else {
|
|
shadow_size = directional_shadow.size/2; //more than 4 not supported anyway
|
|
}
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_intance);
|
|
ERR_FAIL_COND_V(!light_instance,0);
|
|
|
|
switch(light_instance->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: shadow_size/=2; break;
|
|
}
|
|
|
|
return shadow_size;
|
|
|
|
}
|
|
//////////////////////////////////////////////////////
|
|
|
|
RID RasterizerSceneGLES3::reflection_atlas_create() {
|
|
|
|
ReflectionAtlas *reflection_atlas = memnew( ReflectionAtlas );
|
|
reflection_atlas->subdiv=0;
|
|
reflection_atlas->color=0;
|
|
reflection_atlas->size=0;
|
|
for(int i=0;i<6;i++) {
|
|
reflection_atlas->fbo[i]=0;
|
|
}
|
|
|
|
return reflection_atlas_owner.make_rid(reflection_atlas);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_atlas_set_size(RID p_ref_atlas,int p_size) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
int size = nearest_power_of_2(p_size);
|
|
|
|
if (size==reflection_atlas->size)
|
|
return;
|
|
if (reflection_atlas->size) {
|
|
for(int i=0;i<6;i++) {
|
|
glDeleteFramebuffers(1,&reflection_atlas->fbo[i]);
|
|
reflection_atlas->fbo[i]=0;
|
|
}
|
|
glDeleteTextures(1,&reflection_atlas->color);
|
|
reflection_atlas->color=0;
|
|
}
|
|
|
|
reflection_atlas->size=size;
|
|
|
|
for(int i=0;i<reflection_atlas->reflections.size();i++) {
|
|
//erase probes reference to this
|
|
if (reflection_atlas->reflections[i].owner.is_valid()) {
|
|
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
|
|
reflection_atlas->reflections[i].owner=RID();
|
|
|
|
ERR_CONTINUE(!reflection_probe_instance);
|
|
reflection_probe_instance->reflection_atlas_index=-1;
|
|
reflection_probe_instance->atlas=RID();
|
|
reflection_probe_instance->render_step=-1;
|
|
}
|
|
}
|
|
|
|
|
|
if (reflection_atlas->size) {
|
|
|
|
bool use_float=true;
|
|
|
|
|
|
GLenum internal_format = use_float?GL_RGBA16F:GL_RGB10_A2;
|
|
GLenum format = GL_RGBA;
|
|
GLenum type = use_float?GL_HALF_FLOAT:GL_UNSIGNED_INT_2_10_10_10_REV;
|
|
|
|
|
|
// Create a texture for storing the color
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glGenTextures(1, &reflection_atlas->color);
|
|
glBindTexture(GL_TEXTURE_2D, reflection_atlas->color);
|
|
|
|
int mmsize=reflection_atlas->size;
|
|
|
|
for(int i=0;i<6;i++) {
|
|
glTexImage2D(GL_TEXTURE_2D, i, internal_format, mmsize, mmsize, 0,
|
|
format, type, NULL);
|
|
|
|
mmsize>>=1;
|
|
}
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 5);
|
|
|
|
mmsize=reflection_atlas->size;
|
|
|
|
for(int i=0;i<6;i++) {
|
|
glGenFramebuffers(1, &reflection_atlas->fbo[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, reflection_atlas->fbo[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, reflection_atlas->color, i);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
|
|
|
|
glDisable(GL_SCISSOR_TEST);
|
|
glViewport(0,0,mmsize,mmsize);
|
|
glClearColor(0,0,0,0);
|
|
glClear(GL_COLOR_BUFFER_BIT); //it needs to be cleared, to avoid generating garbage
|
|
|
|
mmsize>>=1;
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
void RasterizerSceneGLES3::reflection_atlas_set_subdivision(RID p_ref_atlas,int p_subdiv) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_ref_atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
uint32_t subdiv = nearest_power_of_2(p_subdiv);
|
|
if (subdiv&0xaaaaaaaa) { //sqrt(subdiv) must be integer
|
|
subdiv<<=1;
|
|
}
|
|
|
|
subdiv=int(Math::sqrt(subdiv));
|
|
|
|
if (reflection_atlas->subdiv==subdiv)
|
|
return;
|
|
|
|
|
|
if (subdiv) {
|
|
|
|
for(int i=0;i<reflection_atlas->reflections.size();i++) {
|
|
//erase probes reference to this
|
|
if (reflection_atlas->reflections[i].owner.is_valid()) {
|
|
ReflectionProbeInstance *reflection_probe_instance = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[i].owner);
|
|
reflection_atlas->reflections[i].owner=RID();
|
|
|
|
ERR_CONTINUE(!reflection_probe_instance);
|
|
reflection_probe_instance->reflection_atlas_index=-1;
|
|
reflection_probe_instance->atlas=RID();
|
|
reflection_probe_instance->render_step=-1;
|
|
}
|
|
}
|
|
}
|
|
|
|
reflection_atlas->subdiv=subdiv;
|
|
|
|
reflection_atlas->reflections.resize(subdiv*subdiv);
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////
|
|
|
|
RID RasterizerSceneGLES3::reflection_probe_instance_create(RID p_probe) {
|
|
|
|
RasterizerStorageGLES3::ReflectionProbe *probe = storage->reflection_probe_owner.getornull(p_probe);
|
|
ERR_FAIL_COND_V(!probe,RID());
|
|
|
|
ReflectionProbeInstance *rpi = memnew( ReflectionProbeInstance );
|
|
|
|
rpi->probe_ptr=probe;
|
|
rpi->self=reflection_probe_instance_owner.make_rid(rpi);
|
|
rpi->probe=p_probe;
|
|
rpi->reflection_atlas_index=-1;
|
|
rpi->render_step=-1;
|
|
rpi->last_pass=0;
|
|
|
|
return rpi->self;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_probe_instance_set_transform(RID p_instance,const Transform& p_transform) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
rpi->transform=p_transform;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::reflection_probe_release_atlas_index(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND(!rpi);
|
|
if (rpi->reflection_atlas_index==-1)
|
|
return;
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
|
|
ERR_FAIL_COND(!reflection_atlas);
|
|
|
|
ERR_FAIL_INDEX(rpi->reflection_atlas_index,reflection_atlas->reflections.size());
|
|
|
|
ERR_FAIL_COND(reflection_atlas->reflections[rpi->reflection_atlas_index].owner!=rpi->self);
|
|
|
|
reflection_atlas->reflections[rpi->reflection_atlas_index].owner=RID();
|
|
|
|
rpi->reflection_atlas_index=-1;
|
|
rpi->atlas=RID();
|
|
rpi->render_step=-1;
|
|
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_needs_redraw(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi,false);
|
|
|
|
return rpi->reflection_atlas_index==-1 || rpi->probe_ptr->update_mode==VS::REFLECTION_PROBE_UPDATE_ALWAYS;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_has_reflection(RID p_instance){
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi,false);
|
|
|
|
return rpi->reflection_atlas_index!=-1;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_begin_render(RID p_instance,RID p_reflection_atlas) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi,false);
|
|
|
|
rpi->render_step=0;
|
|
|
|
if (rpi->reflection_atlas_index!=-1) {
|
|
return true; //got one already
|
|
}
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
ERR_FAIL_COND_V(!reflection_atlas,false);
|
|
|
|
|
|
if (reflection_atlas->size==0 || reflection_atlas->subdiv==0) {
|
|
return false;
|
|
}
|
|
|
|
|
|
int best_free=-1;
|
|
int best_used=-1;
|
|
uint64_t best_used_frame;
|
|
|
|
for(int i=0;i<reflection_atlas->reflections.size();i++) {
|
|
if (reflection_atlas->reflections[i].owner==RID()) {
|
|
best_free=i;
|
|
break;
|
|
}
|
|
|
|
if (rpi->render_step<0 && reflection_atlas->reflections[i].last_frame<storage->frame.count &&
|
|
(best_used==-1 || reflection_atlas->reflections[i].last_frame<best_used_frame)) {
|
|
best_used=i;
|
|
best_used_frame=reflection_atlas->reflections[i].last_frame;
|
|
}
|
|
}
|
|
|
|
if (best_free==-1 && best_used==-1) {
|
|
return false ;// sorry, can not do. Try again next frame.
|
|
}
|
|
|
|
if (best_free==-1) {
|
|
//find best from what is used
|
|
best_free=best_used;
|
|
|
|
ReflectionProbeInstance *victim_rpi = reflection_probe_instance_owner.getornull(reflection_atlas->reflections[best_free].owner);
|
|
ERR_FAIL_COND_V(!victim_rpi,false);
|
|
victim_rpi->atlas=RID();
|
|
victim_rpi->reflection_atlas_index=-1;
|
|
|
|
}
|
|
|
|
reflection_atlas->reflections[best_free].owner=p_instance;
|
|
reflection_atlas->reflections[best_free].last_frame=storage->frame.count;
|
|
|
|
rpi->reflection_atlas_index=best_free;
|
|
rpi->atlas=p_reflection_atlas;
|
|
rpi->render_step=0;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::reflection_probe_instance_postprocess_step(RID p_instance) {
|
|
|
|
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
|
|
ERR_FAIL_COND_V(!rpi,true);
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(rpi->atlas);
|
|
ERR_FAIL_COND_V(!reflection_atlas,false);
|
|
|
|
ERR_FAIL_COND_V(rpi->render_step>=6,true);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,reflection_atlas->fbo[rpi->render_step]);
|
|
state.cube_to_dp_shader.bind();
|
|
|
|
int target_size=reflection_atlas->size/reflection_atlas->subdiv;
|
|
|
|
int cubemap_index=reflection_cubemaps.size()-1;
|
|
|
|
for(int i=reflection_cubemaps.size()-1;i>=0;i--) {
|
|
//find appropriate cubemap to render to
|
|
if (reflection_cubemaps[i].size>target_size*2)
|
|
break;
|
|
|
|
cubemap_index=i;
|
|
}
|
|
|
|
glDisable(GL_BLEND);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP,reflection_cubemaps[cubemap_index].cubemap);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DUAL_PARABOLOID,true);
|
|
storage->shaders.cubemap_filter.bind();
|
|
|
|
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
|
|
for(int i=0;i<rpi->render_step;i++) {
|
|
cell_size>>=1; //mipmaps!
|
|
}
|
|
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
|
|
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
|
|
int width=cell_size;
|
|
int height=cell_size;
|
|
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE,rpi->render_step==0);
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY,rpi->probe_ptr->update_mode==VS::REFLECTION_PROBE_UPDATE_ALWAYS);
|
|
for(int i=0;i<2;i++) {
|
|
|
|
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::Z_FLIP,i>0);
|
|
storage->shaders.cubemap_filter.set_uniform(CubemapFilterShaderGLES3::ROUGHNESS,rpi->render_step/5.0);
|
|
|
|
uint32_t local_width=width,local_height=height;
|
|
uint32_t local_x=x,local_y=y;
|
|
|
|
local_height/=2;
|
|
local_y+=i*local_height;
|
|
|
|
glViewport(local_x,local_y,local_width,local_height);
|
|
|
|
_copy_screen();
|
|
}
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::USE_DIRECT_WRITE,false);
|
|
storage->shaders.cubemap_filter.set_conditional(CubemapFilterShaderGLES3::LOW_QUALITY,false);
|
|
|
|
|
|
rpi->render_step++;
|
|
|
|
return rpi->render_step==6;
|
|
}
|
|
|
|
/* ENVIRONMENT API */
|
|
|
|
RID RasterizerSceneGLES3::environment_create(){
|
|
|
|
|
|
Environment *env = memnew( Environment );
|
|
|
|
return environment_owner.make_rid(env);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_background(RID p_env,VS::EnvironmentBG p_bg){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
env->bg_mode=p_bg;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_skybox(RID p_env, RID p_skybox){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->skybox=p_skybox;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_skybox_scale(RID p_env,float p_scale) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->skybox_scale=p_scale;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_bg_color(RID p_env,const Color& p_color){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->bg_color=p_color;
|
|
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_bg_energy(RID p_env,float p_energy) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->bg_energy=p_energy;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_canvas_max_layer(RID p_env,int p_max_layer){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->canvas_max_layer=p_max_layer;
|
|
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_ambient_light(RID p_env, const Color& p_color, float p_energy, float p_skybox_contribution){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ambient_color=p_color;
|
|
env->ambient_energy=p_energy;
|
|
env->ambient_skybox_contribution=p_skybox_contribution;
|
|
|
|
}
|
|
|
|
|
|
|
|
void RasterizerSceneGLES3::environment_set_dof_blur_far(RID p_env,bool p_enable,float p_distance,float p_transition,float p_amount,VS::EnvironmentDOFBlurQuality p_quality){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->dof_blur_far_enabled=p_enable;
|
|
env->dof_blur_far_distance=p_distance;
|
|
env->dof_blur_far_transition=p_transition;
|
|
env->dof_blur_far_amount=p_amount;
|
|
env->dof_blur_far_quality=p_quality;
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_dof_blur_near(RID p_env,bool p_enable,float p_distance,float p_transition,float p_amount,VS::EnvironmentDOFBlurQuality p_quality){
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->dof_blur_near_enabled=p_enable;
|
|
env->dof_blur_near_distance=p_distance;
|
|
env->dof_blur_near_transition=p_transition;
|
|
env->dof_blur_near_amount=p_amount;
|
|
env->dof_blur_near_quality=p_quality;
|
|
|
|
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_glow(RID p_env, bool p_enable, int p_level_flags, float p_intensity, float p_strength, float p_bloom_treshold, VS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_treshold, float p_hdr_bleed_scale, bool p_bicubic_upscale) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->glow_enabled=p_enable;
|
|
env->glow_levels=p_level_flags;
|
|
env->glow_intensity=p_intensity;
|
|
env->glow_strength=p_strength;
|
|
env->glow_bloom=p_bloom_treshold;
|
|
env->glow_blend_mode=p_blend_mode;
|
|
env->glow_hdr_bleed_treshold=p_hdr_bleed_treshold;
|
|
env->glow_hdr_bleed_scale=p_hdr_bleed_scale;
|
|
env->glow_bicubic_upscale=p_bicubic_upscale;
|
|
|
|
}
|
|
void RasterizerSceneGLES3::environment_set_fog(RID p_env,bool p_enable,float p_begin,float p_end,RID p_gradient_texture){
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_ssr(RID p_env,bool p_enable, int p_max_steps,float p_accel,float p_fade,float p_depth_tolerance,bool p_smooth,bool p_roughness) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ssr_enabled=p_enable;
|
|
env->ssr_max_steps=p_max_steps;
|
|
env->ssr_accel=p_accel;
|
|
env->ssr_fade=p_fade;
|
|
env->ssr_depth_tolerance=p_depth_tolerance;
|
|
env->ssr_smooth=p_smooth;
|
|
env->ssr_roughness=p_roughness;
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::environment_set_ssao(RID p_env,bool p_enable, float p_radius, float p_intensity, float p_radius2, float p_intensity2, float p_bias, float p_light_affect,const Color &p_color,bool p_blur) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
env->ssao_enabled=p_enable;
|
|
env->ssao_radius=p_radius;
|
|
env->ssao_intensity=p_intensity;
|
|
env->ssao_radius2=p_radius2;
|
|
env->ssao_intensity2=p_intensity2;
|
|
env->ssao_bias=p_bias;
|
|
env->ssao_light_affect=p_light_affect;
|
|
env->ssao_color=p_color;
|
|
env->ssao_filter=p_blur;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::environment_set_tonemap(RID p_env,VS::EnvironmentToneMapper p_tone_mapper,float p_exposure,float p_white,bool p_auto_exposure,float p_min_luminance,float p_max_luminance,float p_auto_exp_speed,float p_auto_exp_scale) {
|
|
|
|
Environment *env=environment_owner.getornull(p_env);
|
|
ERR_FAIL_COND(!env);
|
|
|
|
|
|
env->tone_mapper=p_tone_mapper;
|
|
env->tone_mapper_exposure=p_exposure;
|
|
env->tone_mapper_exposure_white=p_white;
|
|
env->auto_exposure=p_auto_exposure;
|
|
env->auto_exposure_speed=p_auto_exp_speed;
|
|
env->auto_exposure_min=p_min_luminance;
|
|
env->auto_exposure_max=p_max_luminance;
|
|
env->auto_exposure_grey=p_auto_exp_scale;
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::environment_set_adjustment(RID p_env,bool p_enable,float p_brightness,float p_contrast,float p_saturation,RID p_ramp) {
|
|
|
|
|
|
}
|
|
|
|
|
|
RID RasterizerSceneGLES3::light_instance_create(RID p_light) {
|
|
|
|
|
|
LightInstance *light_instance = memnew( LightInstance );
|
|
|
|
light_instance->last_pass=0;
|
|
light_instance->last_scene_pass=0;
|
|
light_instance->last_scene_shadow_pass=0;
|
|
|
|
light_instance->light=p_light;
|
|
light_instance->light_ptr=storage->light_owner.getornull(p_light);
|
|
|
|
ERR_FAIL_COND_V(!light_instance->light_ptr,RID());
|
|
|
|
light_instance->self=light_instance_owner.make_rid(light_instance);
|
|
|
|
return light_instance->self;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance,const Transform& p_transform){
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->transform=p_transform;
|
|
}
|
|
|
|
void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance,const CameraMatrix& p_projection,const Transform& p_transform,float p_far,float p_split,int p_pass) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
if (light_instance->light_ptr->type!=VS::LIGHT_DIRECTIONAL) {
|
|
p_pass=0;
|
|
}
|
|
|
|
ERR_FAIL_INDEX(p_pass,4);
|
|
|
|
light_instance->shadow_transform[p_pass].camera=p_projection;
|
|
light_instance->shadow_transform[p_pass].transform=p_transform;
|
|
light_instance->shadow_transform[p_pass].farplane=p_far;
|
|
light_instance->shadow_transform[p_pass].split=p_split;
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::light_instance_mark_visible(RID p_light_instance) {
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light_instance);
|
|
ERR_FAIL_COND(!light_instance);
|
|
|
|
light_instance->last_scene_pass=scene_pass;
|
|
}
|
|
|
|
|
|
//////////////////////
|
|
|
|
RID RasterizerSceneGLES3::gi_probe_instance_create() {
|
|
|
|
GIProbeInstance *gipi = memnew(GIProbeInstance);
|
|
|
|
return gi_probe_instance_owner.make_rid(gipi);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_light_data(RID p_probe, RID p_base, RID p_data) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->data=p_data;
|
|
gipi->probe=storage->gi_probe_owner.getornull(p_base);
|
|
if (p_data.is_valid()) {
|
|
RasterizerStorageGLES3::GIProbeData *gipd = storage->gi_probe_data_owner.getornull(p_data);
|
|
ERR_FAIL_COND(!gipd);
|
|
if (gipd) {
|
|
gipi->tex_cache=gipd->tex_id;
|
|
gipi->cell_size_cache.x=1.0/gipd->width;
|
|
gipi->cell_size_cache.y=1.0/gipd->height;
|
|
gipi->cell_size_cache.z=1.0/gipd->depth;
|
|
}
|
|
}
|
|
}
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_transform_to_data(RID p_probe,const Transform& p_xform) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->transform_to_data=p_xform;
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::gi_probe_instance_set_bounds(RID p_probe,const Vector3& p_bounds) {
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_probe);
|
|
ERR_FAIL_COND(!gipi);
|
|
gipi->bounds=p_bounds;
|
|
|
|
}
|
|
|
|
////////////////////////////
|
|
////////////////////////////
|
|
////////////////////////////
|
|
|
|
bool RasterizerSceneGLES3::_setup_material(RasterizerStorageGLES3::Material* p_material,bool p_alpha_pass) {
|
|
|
|
if (p_material->shader->spatial.cull_mode==RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_DISABLED) {
|
|
glDisable(GL_CULL_FACE);
|
|
} else {
|
|
glEnable(GL_CULL_FACE);
|
|
}
|
|
|
|
if (state.current_line_width!=p_material->line_width) {
|
|
//glLineWidth(MAX(p_material->line_width,1.0));
|
|
state.current_line_width=p_material->line_width;
|
|
}
|
|
|
|
if (state.current_depth_draw!=p_material->shader->spatial.depth_draw_mode) {
|
|
switch(p_material->shader->spatial.depth_draw_mode) {
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS:
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_OPAQUE: {
|
|
|
|
glDepthMask(!p_alpha_pass);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALWAYS: {
|
|
glDepthMask(GL_TRUE);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_NEVER: {
|
|
glDepthMask(GL_FALSE);
|
|
} break;
|
|
}
|
|
|
|
state.current_depth_draw=p_material->shader->spatial.depth_draw_mode;
|
|
}
|
|
|
|
//glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
|
|
|
|
/*
|
|
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
|
|
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
|
|
else
|
|
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
|
|
*/
|
|
|
|
//if (p_material->line_width)
|
|
// glLineWidth(p_material->line_width);
|
|
|
|
#if 0
|
|
//blend mode
|
|
if (state.current_blend_mode!=p_material->shader->spatial.blend_mode) {
|
|
|
|
switch(p_material->shader->spatial.blend_mode) {
|
|
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: {
|
|
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE);
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: {
|
|
|
|
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
|
|
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
} break;
|
|
}
|
|
|
|
state.current_blend_mode=p_material->shader->spatial.blend_mode;
|
|
|
|
}
|
|
#endif
|
|
//material parameters
|
|
|
|
|
|
state.scene_shader.set_custom_shader(p_material->shader->custom_code_id);
|
|
bool rebind = state.scene_shader.bind();
|
|
|
|
|
|
if (p_material->ubo_id) {
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,1,p_material->ubo_id);
|
|
}
|
|
|
|
|
|
|
|
int tc = p_material->textures.size();
|
|
RID* textures = p_material->textures.ptr();
|
|
ShaderLanguage::ShaderNode::Uniform::Hint* texture_hints = p_material->shader->texture_hints.ptr();
|
|
|
|
state.current_main_tex=0;
|
|
|
|
for(int i=0;i<tc;i++) {
|
|
|
|
glActiveTexture(GL_TEXTURE0+i);
|
|
|
|
GLenum target;
|
|
GLuint tex;
|
|
|
|
RasterizerStorageGLES3::Texture *t = storage->texture_owner.getornull( textures[i] );
|
|
|
|
if (!t) {
|
|
//check hints
|
|
target=GL_TEXTURE_2D;
|
|
|
|
switch(texture_hints[i]) {
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO:
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_BLACK: {
|
|
tex=storage->resources.black_tex;
|
|
} break;
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISO: {
|
|
tex=storage->resources.aniso_tex;
|
|
} break;
|
|
case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
|
|
tex=storage->resources.normal_tex;
|
|
} break;
|
|
default: {
|
|
tex=storage->resources.white_tex;
|
|
} break;
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
if (storage->config.srgb_decode_supported) {
|
|
//if SRGB decode extension is present, simply switch the texture to whathever is needed
|
|
bool must_srgb=false;
|
|
|
|
if (t->srgb && (texture_hints[i]==ShaderLanguage::ShaderNode::Uniform::HINT_ALBEDO || texture_hints[i]==ShaderLanguage::ShaderNode::Uniform::HINT_BLACK_ALBEDO)) {
|
|
must_srgb=true;
|
|
}
|
|
|
|
if (t->using_srgb!=must_srgb) {
|
|
if (must_srgb) {
|
|
glTexParameteri(t->target,_TEXTURE_SRGB_DECODE_EXT,_DECODE_EXT);
|
|
#ifdef TOOLS_ENABLED
|
|
if (!(t->flags&VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
|
|
t->flags|=VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
|
|
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
|
|
}
|
|
#endif
|
|
|
|
} else {
|
|
glTexParameteri(t->target,_TEXTURE_SRGB_DECODE_EXT,_SKIP_DECODE_EXT);
|
|
}
|
|
t->using_srgb=must_srgb;
|
|
}
|
|
}
|
|
|
|
target=t->target;
|
|
tex = t->tex_id;
|
|
|
|
}
|
|
|
|
glBindTexture(target,tex);
|
|
|
|
if (i==0) {
|
|
state.current_main_tex=tex;
|
|
}
|
|
}
|
|
|
|
|
|
return rebind;
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_setup_geometry(RenderList::Element *e) {
|
|
|
|
switch(e->instance->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
|
|
|
|
if (s->morph_targets.size() && e->instance->morph_values.size()) {
|
|
//blend shapes, use transform feedback
|
|
storage->mesh_render_blend_shapes(s,e->instance->morph_values.ptr());
|
|
//rebind shader
|
|
state.scene_shader.bind();
|
|
} else {
|
|
|
|
glBindVertexArray(s->array_id); // everything is so easy nowadays
|
|
}
|
|
|
|
} break;
|
|
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh*>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
|
|
glBindVertexArray(s->instancing_array_id); // use the instancing array ID
|
|
glBindBuffer(GL_ARRAY_BUFFER,multi_mesh->buffer); //modify the buffer
|
|
|
|
int stride = (multi_mesh->xform_floats+multi_mesh->color_floats)*4;
|
|
glEnableVertexAttribArray(8);
|
|
glVertexAttribPointer(8,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+0);
|
|
glVertexAttribDivisor(8,1);
|
|
glEnableVertexAttribArray(9);
|
|
glVertexAttribPointer(9,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+4*4);
|
|
glVertexAttribDivisor(9,1);
|
|
|
|
int color_ofs;
|
|
|
|
if (multi_mesh->transform_format==VS::MULTIMESH_TRANSFORM_3D) {
|
|
glEnableVertexAttribArray(10);
|
|
glVertexAttribPointer(10,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+8*4);
|
|
glVertexAttribDivisor(10,1);
|
|
color_ofs=12*4;
|
|
} else {
|
|
glDisableVertexAttribArray(10);
|
|
glVertexAttrib4f(10,0,0,1,0);
|
|
color_ofs=8*4;
|
|
}
|
|
|
|
switch(multi_mesh->color_format) {
|
|
|
|
case VS::MULTIMESH_COLOR_NONE: {
|
|
glDisableVertexAttribArray(11);
|
|
glVertexAttrib4f(11,1,1,1,1);
|
|
} break;
|
|
case VS::MULTIMESH_COLOR_8BIT: {
|
|
glEnableVertexAttribArray(11);
|
|
glVertexAttribPointer(11,4,GL_UNSIGNED_BYTE,GL_TRUE,stride,((uint8_t*)NULL)+color_ofs);
|
|
glVertexAttribDivisor(11,1);
|
|
|
|
} break;
|
|
case VS::MULTIMESH_COLOR_FLOAT: {
|
|
glEnableVertexAttribArray(11);
|
|
glVertexAttribPointer(11,4,GL_FLOAT,GL_FALSE,stride,((uint8_t*)NULL)+color_ofs);
|
|
glVertexAttribDivisor(11,1);
|
|
} break;
|
|
}
|
|
|
|
} break;
|
|
}
|
|
|
|
}
|
|
|
|
static const GLenum gl_primitive[]={
|
|
GL_POINTS,
|
|
GL_LINES,
|
|
GL_LINE_STRIP,
|
|
GL_LINE_LOOP,
|
|
GL_TRIANGLES,
|
|
GL_TRIANGLE_STRIP,
|
|
GL_TRIANGLE_FAN
|
|
};
|
|
|
|
|
|
|
|
void RasterizerSceneGLES3::_render_geometry(RenderList::Element *e) {
|
|
|
|
switch(e->instance->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
|
|
|
|
if (s->index_array_len>0) {
|
|
|
|
|
|
glDrawElements(gl_primitive[s->primitive],s->index_array_len, (s->array_len>=(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0);
|
|
|
|
storage->info.render_vertices_count+=s->index_array_len;
|
|
|
|
} else {
|
|
|
|
glDrawArrays(gl_primitive[s->primitive],0,s->array_len);
|
|
|
|
storage->info.render_vertices_count+=s->array_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} break;
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = static_cast<RasterizerStorageGLES3::MultiMesh*>(e->owner);
|
|
RasterizerStorageGLES3::Surface *s = static_cast<RasterizerStorageGLES3::Surface*>(e->geometry);
|
|
|
|
int amount = MAX(multi_mesh->size,multi_mesh->visible_instances);
|
|
|
|
if (s->index_array_len>0) {
|
|
|
|
glDrawElementsInstanced(gl_primitive[s->primitive],s->index_array_len, (s->array_len>=(1<<16))?GL_UNSIGNED_INT:GL_UNSIGNED_SHORT,0,amount);
|
|
|
|
storage->info.render_vertices_count+=s->index_array_len * amount;
|
|
|
|
} else {
|
|
|
|
glDrawArraysInstanced(gl_primitive[s->primitive],0,s->array_len,amount);
|
|
|
|
storage->info.render_vertices_count+=s->array_len * amount;
|
|
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_IMMEDIATE: {
|
|
|
|
bool restore_tex=false;
|
|
const RasterizerStorageGLES3::Immediate *im = static_cast<const RasterizerStorageGLES3::Immediate*>( e->geometry );
|
|
|
|
if (im->building) {
|
|
return;
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
|
|
glBindVertexArray(state.immediate_array);
|
|
|
|
|
|
for(const List< RasterizerStorageGLES3::Immediate::Chunk>::Element *E=im->chunks.front();E;E=E->next()) {
|
|
|
|
const RasterizerStorageGLES3::Immediate::Chunk &c=E->get();
|
|
if (c.vertices.empty()) {
|
|
continue;
|
|
}
|
|
|
|
int vertices = c.vertices.size();
|
|
uint32_t buf_ofs=0;
|
|
|
|
storage->info.render_vertices_count+=vertices;
|
|
|
|
if (c.texture.is_valid() && storage->texture_owner.owns(c.texture)) {
|
|
|
|
const RasterizerStorageGLES3::Texture *t = storage->texture_owner.get(c.texture);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(t->target,t->tex_id);
|
|
restore_tex=true;
|
|
|
|
|
|
} else if (restore_tex) {
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,state.current_main_tex);
|
|
restore_tex=false;
|
|
}
|
|
|
|
|
|
|
|
if (!c.normals.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_NORMAL);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector3)*vertices,c.normals.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_NORMAL, 3, GL_FLOAT, false,sizeof(Vector3)*vertices,((uint8_t*)NULL)+buf_ofs);
|
|
buf_ofs+=sizeof(Vector3)*vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_NORMAL);
|
|
}
|
|
|
|
if (!c.tangents.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TANGENT);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Plane)*vertices,c.tangents.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TANGENT, 4, GL_FLOAT, false,sizeof(Plane)*vertices,((uint8_t*)NULL)+buf_ofs);
|
|
buf_ofs+=sizeof(Plane)*vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TANGENT);
|
|
}
|
|
|
|
if (!c.colors.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_COLOR);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Color)*vertices,c.colors.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_COLOR, 4, GL_FLOAT, false,sizeof(Color),((uint8_t*)NULL)+buf_ofs);
|
|
buf_ofs+=sizeof(Color)*vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_COLOR);
|
|
glVertexAttrib4f(VS::ARRAY_COLOR,1,1,1,1);
|
|
}
|
|
|
|
|
|
if (!c.uvs.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector2)*vertices,c.uvs.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, false,sizeof(Vector2),((uint8_t*)NULL)+buf_ofs);
|
|
buf_ofs+=sizeof(Vector2)*vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
}
|
|
|
|
if (!c.uvs2.empty()) {
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV2);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector2)*vertices,c.uvs2.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV2, 2, GL_FLOAT, false,sizeof(Vector2),((uint8_t*)NULL)+buf_ofs);
|
|
buf_ofs+=sizeof(Vector2)*vertices;
|
|
|
|
} else {
|
|
|
|
glDisableVertexAttribArray(VS::ARRAY_TEX_UV2);
|
|
}
|
|
|
|
|
|
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector3)*vertices,c.vertices.ptr());
|
|
glVertexAttribPointer(VS::ARRAY_VERTEX, 3, GL_FLOAT, false,sizeof(Vector3),((uint8_t*)NULL)+buf_ofs);
|
|
glDrawArrays(gl_primitive[c.primitive],0,c.vertices.size());
|
|
|
|
|
|
}
|
|
|
|
|
|
if (restore_tex) {
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,state.current_main_tex);
|
|
restore_tex=false;
|
|
}
|
|
} break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_light(RenderList::Element *e,const Transform& p_view_transform) {
|
|
|
|
int omni_indices[16];
|
|
int omni_count=0;
|
|
int spot_indices[16];
|
|
int spot_count=0;
|
|
int reflection_indices[16];
|
|
int reflection_count=0;
|
|
|
|
int maxobj = MIN(16,state.max_forward_lights_per_object);
|
|
|
|
int lc = e->instance->light_instances.size();
|
|
if (lc) {
|
|
|
|
const RID* lights=e->instance->light_instances.ptr();
|
|
|
|
for(int i=0;i<lc;i++) {
|
|
LightInstance *li=light_instance_owner.getptr(lights[i]);
|
|
if (li->last_pass!=render_pass) //not visible
|
|
continue;
|
|
|
|
if (li->light_ptr->type==VS::LIGHT_OMNI) {
|
|
if (omni_count<maxobj && e->instance->layer_mask&li->light_ptr->cull_mask) {
|
|
omni_indices[omni_count++]=li->light_index;
|
|
}
|
|
}
|
|
|
|
if (li->light_ptr->type==VS::LIGHT_SPOT) {
|
|
if (spot_count<maxobj && e->instance->layer_mask&li->light_ptr->cull_mask) {
|
|
spot_indices[spot_count++]=li->light_index;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT,omni_count);
|
|
|
|
if (omni_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES),omni_count,omni_indices);
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT,spot_count);
|
|
if (spot_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES),spot_count,spot_indices);
|
|
}
|
|
|
|
|
|
int rc = e->instance->reflection_probe_instances.size();
|
|
|
|
|
|
if (rc) {
|
|
|
|
|
|
const RID* reflections=e->instance->reflection_probe_instances.ptr();
|
|
|
|
for(int i=0;i<rc;i++) {
|
|
ReflectionProbeInstance *rpi=reflection_probe_instance_owner.getptr(reflections[i]);
|
|
if (rpi->last_pass!=render_pass) //not visible
|
|
continue;
|
|
|
|
if (reflection_count<maxobj) {
|
|
reflection_indices[reflection_count++]=rpi->reflection_index;
|
|
}
|
|
}
|
|
}
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::REFLECTION_COUNT,reflection_count);
|
|
if (reflection_count) {
|
|
glUniform1iv(state.scene_shader.get_uniform(SceneShaderGLES3::REFLECTION_INDICES),reflection_count,reflection_indices);
|
|
}
|
|
|
|
int gi_probe_count = e->instance->gi_probe_instances.size();
|
|
if (gi_probe_count) {
|
|
const RID * ridp = e->instance->gi_probe_instances.ptr();
|
|
|
|
GIProbeInstance *gipi = gi_probe_instance_owner.getptr(ridp[0]);
|
|
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-6);
|
|
glBindTexture(GL_TEXTURE_3D,gipi->tex_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM1, gipi->transform_to_data * p_view_transform);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS1, gipi->bounds);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER1, gipi->probe?gipi->probe->dynamic_range*gipi->probe->energy:0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT1, gipi->probe?!gipi->probe->interior:false);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE1, gipi->cell_size_cache);
|
|
if (gi_probe_count>1) {
|
|
|
|
GIProbeInstance *gipi2 = gi_probe_instance_owner.getptr(ridp[1]);
|
|
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-7);
|
|
glBindTexture(GL_TEXTURE_3D,gipi2->tex_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_XFORM2, gipi2->transform_to_data * p_view_transform);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BOUNDS2, gipi2->bounds);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_CELL_SIZE2, gipi2->cell_size_cache);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_MULTIPLIER2, gipi2->probe?gipi2->probe->dynamic_range*gipi2->probe->energy:0.0);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE_BLEND_AMBIENT2, gipi2->probe?!gipi2->probe->interior:false);
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, true );
|
|
} else {
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::GI_PROBE2_ENABLED, false );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_setup_transform(InstanceBase *p_instance,const Transform& p_view_transform,const CameraMatrix& p_projection) {
|
|
|
|
if (p_instance->billboard || p_instance->billboard_y || p_instance->depth_scale) {
|
|
|
|
Transform xf=p_instance->transform;
|
|
if (p_instance->depth_scale) {
|
|
|
|
if (p_projection.matrix[3][3]) {
|
|
//orthogonal matrix, try to do about the same
|
|
//with viewport size
|
|
//real_t w = Math::abs( 1.0/(2.0*(p_projection.matrix[0][0])) );
|
|
real_t h = Math::abs( 1.0/(2.0*p_projection.matrix[1][1]) );
|
|
float sc = (h*2.0); //consistent with Y-fov
|
|
xf.basis.scale( Vector3(sc,sc,sc));
|
|
} else {
|
|
//just scale by depth
|
|
real_t sc = Plane(p_view_transform.origin,-p_view_transform.get_basis().get_axis(2)).distance_to(xf.origin);
|
|
xf.basis.scale( Vector3(sc,sc,sc));
|
|
}
|
|
}
|
|
|
|
if (p_instance->billboard && storage->frame.current_rt) {
|
|
|
|
Vector3 scale = xf.basis.get_scale();
|
|
|
|
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
|
|
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), -p_view_transform.get_basis().get_axis(1));
|
|
} else {
|
|
xf.set_look_at(xf.origin, xf.origin + p_view_transform.get_basis().get_axis(2), p_view_transform.get_basis().get_axis(1));
|
|
}
|
|
|
|
xf.basis.scale(scale);
|
|
}
|
|
|
|
if (p_instance->billboard_y && storage->frame.current_rt) {
|
|
|
|
Vector3 scale = xf.basis.get_scale();
|
|
Vector3 look_at = p_view_transform.get_origin();
|
|
look_at.y = 0.0;
|
|
Vector3 look_at_norm = look_at.normalized();
|
|
|
|
if (storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
|
|
xf.set_look_at(xf.origin,xf.origin + look_at_norm, Vector3(0.0, -1.0, 0.0));
|
|
} else {
|
|
xf.set_look_at(xf.origin,xf.origin + look_at_norm, Vector3(0.0, 1.0, 0.0));
|
|
}
|
|
xf.basis.scale(scale);
|
|
}
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, xf);
|
|
|
|
} else {
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, p_instance->transform);
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_set_cull(bool p_front,bool p_reverse_cull) {
|
|
|
|
bool front = p_front;
|
|
if (p_reverse_cull)
|
|
front=!front;
|
|
|
|
if (front!=state.cull_front) {
|
|
|
|
glCullFace(front?GL_FRONT:GL_BACK);
|
|
state.cull_front=front;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void RasterizerSceneGLES3::_render_list(RenderList::Element **p_elements,int p_element_count,const Transform& p_view_transform,const CameraMatrix& p_projection,GLuint p_base_env,bool p_reverse_cull,bool p_alpha_pass,bool p_shadow,bool p_directional_add,bool p_directional_shadows) {
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP]) {
|
|
//p_reverse_cull=!p_reverse_cull;
|
|
glFrontFace(GL_CCW);
|
|
} else {
|
|
glFrontFace(GL_CW);
|
|
}
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,0,state.scene_ubo); //bind globals ubo
|
|
|
|
|
|
if (!p_shadow && !p_directional_add) {
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,2,state.env_radiance_ubo); //bind environment radiance info
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-1);
|
|
glBindTexture(GL_TEXTURE_2D,state.brdf_texture);
|
|
|
|
if (p_base_env) {
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-2);
|
|
glBindTexture(GL_TEXTURE_2D,p_base_env);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,true);
|
|
} else {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
|
|
|
|
}
|
|
} else {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
|
|
}
|
|
|
|
|
|
state.cull_front=false;
|
|
glCullFace(GL_BACK);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,false);
|
|
|
|
state.current_blend_mode=-1;
|
|
state.current_line_width=-1;
|
|
state.current_depth_draw=-1;
|
|
|
|
RasterizerStorageGLES3::Material* prev_material=NULL;
|
|
RasterizerStorageGLES3::Geometry* prev_geometry=NULL;
|
|
VS::InstanceType prev_base_type = VS::INSTANCE_MAX;
|
|
|
|
int current_blend_mode=-1;
|
|
|
|
int prev_shading=-1;
|
|
RID prev_skeleton;
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true); //by default unshaded (easier to set)
|
|
|
|
bool first=true;
|
|
|
|
storage->info.render_object_count+=p_element_count;
|
|
|
|
for (int i=0;i<p_element_count;i++) {
|
|
|
|
RenderList::Element *e = p_elements[i];
|
|
RasterizerStorageGLES3::Material* material= e->material;
|
|
RID skeleton = e->instance->skeleton;
|
|
|
|
bool rebind=first;
|
|
|
|
int shading = (e->sort_key>>RenderList::SORT_KEY_SHADING_SHIFT)&RenderList::SORT_KEY_SHADING_MASK;
|
|
|
|
if (!p_shadow) {
|
|
|
|
|
|
|
|
if (p_directional_add) {
|
|
if (e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG || !(e->instance->layer_mask&directional_light->light_ptr->cull_mask)) {
|
|
continue;
|
|
}
|
|
|
|
shading&=~1; //ignore the ignore directional for base pass
|
|
}
|
|
|
|
if (shading!=prev_shading) {
|
|
|
|
if (e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG) {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES,false);
|
|
|
|
|
|
|
|
//state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,true);
|
|
} else {
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES,e->instance->gi_probe_instances.size()>0);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,!p_directional_add);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,shadow_filter_mode==SHADOW_FILTER_PCF5);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,shadow_filter_mode==SHADOW_FILTER_PCF13);
|
|
|
|
|
|
if (p_directional_add || (directional_light && (e->sort_key&RenderList::SORT_KEY_NO_DIRECTIONAL_FLAG)==0)) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,true);
|
|
|
|
if (p_directional_shadows && directional_light->light_ptr->shadow) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,true);
|
|
|
|
switch(directional_light->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: break; //none
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,directional_light->light_ptr->directional_blend_splits);
|
|
break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,true);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,directional_light->light_ptr->directional_blend_splits);
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rebind=true;
|
|
}
|
|
|
|
|
|
if (p_alpha_pass || p_directional_add) {
|
|
int desired_blend_mode;
|
|
if (p_directional_add) {
|
|
desired_blend_mode=RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD;
|
|
} else {
|
|
desired_blend_mode=material->shader->spatial.blend_mode;
|
|
}
|
|
|
|
if (desired_blend_mode!=current_blend_mode) {
|
|
|
|
|
|
switch(desired_blend_mode) {
|
|
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_ADD: {
|
|
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(p_alpha_pass?GL_SRC_ALPHA:GL_ONE,GL_ONE);
|
|
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_SUB: {
|
|
|
|
glBlendEquation(GL_FUNC_REVERSE_SUBTRACT);
|
|
glBlendFunc(GL_SRC_ALPHA,GL_ONE);
|
|
} break;
|
|
case RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MUL: {
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
} break;
|
|
|
|
}
|
|
|
|
current_blend_mode=desired_blend_mode;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
if (prev_skeleton!=skeleton) {
|
|
if (prev_skeleton.is_valid() != skeleton.is_valid()) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,skeleton.is_valid());
|
|
rebind=true;
|
|
}
|
|
if (skeleton.is_valid()) {
|
|
RasterizerStorageGLES3::Skeleton *sk = storage->skeleton_owner.getornull(skeleton);
|
|
if (sk->size) {
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,7,sk->ubo);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((prev_base_type==VS::INSTANCE_MULTIMESH) != (e->instance->base_type==VS::INSTANCE_MULTIMESH)) {
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING,e->instance->base_type==VS::INSTANCE_MULTIMESH);
|
|
rebind=true;
|
|
}
|
|
|
|
if (material!=prev_material || rebind) {
|
|
|
|
storage->info.render_material_switch_count++;
|
|
|
|
rebind = _setup_material(material,p_alpha_pass);
|
|
|
|
if (rebind) {
|
|
storage->info.render_shader_rebind_count++;
|
|
}
|
|
}
|
|
|
|
if (!(e->sort_key&RenderList::SORT_KEY_UNSHADED_FLAG) && !p_directional_add && !p_shadow) {
|
|
_setup_light(e,p_view_transform);
|
|
|
|
}
|
|
|
|
|
|
if (prev_base_type != e->instance->base_type || prev_geometry!=e->geometry) {
|
|
|
|
_setup_geometry(e);
|
|
storage->info.render_surface_switch_count++;
|
|
|
|
}
|
|
|
|
_set_cull(e->sort_key&RenderList::SORT_KEY_MIRROR_FLAG,p_reverse_cull);
|
|
|
|
state.scene_shader.set_uniform(SceneShaderGLES3::NORMAL_MULT, e->instance->mirror?-1.0:1.0);
|
|
|
|
_setup_transform(e->instance,p_view_transform,p_projection);
|
|
|
|
_render_geometry(e);
|
|
|
|
prev_material=material;
|
|
prev_base_type=e->instance->base_type;
|
|
prev_geometry=e->geometry;
|
|
prev_shading=shading;
|
|
prev_skeleton=skeleton;
|
|
first=false;
|
|
|
|
}
|
|
|
|
|
|
|
|
glFrontFace(GL_CW);
|
|
glBindVertexArray(0);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_INSTANCING,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_SKELETON,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_RADIANCE_MAP,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_FORWARD_LIGHTING,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_LIGHT_DIRECTIONAL,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_DIRECTIONAL_SHADOW,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM4,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM2,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::LIGHT_USE_PSSM_BLEND,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADELESS,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_5,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::SHADOW_MODE_PCF_13,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_GI_PROBES,false);
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_add_geometry( RasterizerStorageGLES3::Geometry* p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner,int p_material,bool p_shadow) {
|
|
|
|
RasterizerStorageGLES3::Material *m=NULL;
|
|
RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override :(p_material>=0?p_instance->materials[p_material]:p_geometry->material);
|
|
|
|
|
|
/*
|
|
#ifdef DEBUG_ENABLED
|
|
if (current_debug==VS::SCENARIO_DEBUG_OVERDRAW) {
|
|
m_src=overdraw_material;
|
|
}
|
|
|
|
#endif
|
|
*/
|
|
|
|
if (m_src.is_valid()) {
|
|
m=storage->material_owner.getornull( m_src );
|
|
|
|
if (!m->shader) {
|
|
m=NULL;
|
|
}
|
|
}
|
|
|
|
if (!m) {
|
|
m=storage->material_owner.getptr( default_material );
|
|
}
|
|
|
|
ERR_FAIL_COND(!m);
|
|
|
|
|
|
|
|
bool has_base_alpha=(m->shader->spatial.uses_alpha);
|
|
bool has_blend_alpha=m->shader->spatial.blend_mode!=RasterizerStorageGLES3::Shader::Spatial::BLEND_MODE_MIX || m->shader->spatial.ontop;
|
|
bool has_alpha = has_base_alpha || has_blend_alpha;
|
|
bool shadow = false;
|
|
|
|
bool mirror = p_instance->mirror;
|
|
|
|
if (m->shader->spatial.cull_mode==RasterizerStorageGLES3::Shader::Spatial::CULL_MODE_FRONT) {
|
|
mirror=!mirror;
|
|
}
|
|
|
|
if (m->shader->spatial.uses_sss) {
|
|
state.used_sss=true;
|
|
}
|
|
|
|
if (p_shadow) {
|
|
|
|
if (has_blend_alpha || (has_base_alpha && m->shader->spatial.depth_draw_mode!=RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS))
|
|
return; //bye
|
|
|
|
if (!m->shader->spatial.uses_vertex && !m->shader->spatial.uses_discard && m->shader->spatial.depth_draw_mode!=RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
|
|
//shader does not use discard and does not write a vertex position, use generic material
|
|
if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_DOUBLE_SIDED)
|
|
m = storage->material_owner.getptr(default_material_twosided);
|
|
else
|
|
m = storage->material_owner.getptr(default_material);
|
|
}
|
|
|
|
has_alpha=false;
|
|
|
|
}
|
|
|
|
|
|
|
|
RenderList::Element *e = has_alpha ? render_list.add_alpha_element() : render_list.add_element();
|
|
|
|
if (!e)
|
|
return;
|
|
|
|
e->geometry=p_geometry;
|
|
e->material=m;
|
|
e->instance=p_instance;
|
|
e->owner=p_owner;
|
|
e->sort_key=0;
|
|
|
|
if (e->geometry->last_pass!=render_pass) {
|
|
e->geometry->last_pass=render_pass;
|
|
e->geometry->index=current_geometry_index++;
|
|
}
|
|
|
|
if (!p_shadow && directional_light && (directional_light->light_ptr->cull_mask&e->instance->layer_mask)==0) {
|
|
e->sort_key|=RenderList::SORT_KEY_NO_DIRECTIONAL_FLAG;
|
|
}
|
|
|
|
e->sort_key|=uint64_t(e->geometry->index)<<RenderList::SORT_KEY_GEOMETRY_INDEX_SHIFT;
|
|
e->sort_key|=uint64_t(e->instance->base_type)<<RenderList::SORT_KEY_GEOMETRY_TYPE_SHIFT;
|
|
|
|
if (!p_shadow) {
|
|
|
|
|
|
if (e->material->last_pass!=render_pass) {
|
|
e->material->last_pass=render_pass;
|
|
e->material->index=current_material_index++;
|
|
}
|
|
|
|
e->sort_key|=uint64_t(e->material->index)<<RenderList::SORT_KEY_MATERIAL_INDEX_SHIFT;
|
|
e->sort_key|=uint64_t(e->instance->depth_layer)<<RenderList::SORT_KEY_DEPTH_LAYER_SHIFT;
|
|
|
|
if (!has_blend_alpha && has_alpha && m->shader->spatial.depth_draw_mode==RasterizerStorageGLES3::Shader::Spatial::DEPTH_DRAW_ALPHA_PREPASS) {
|
|
|
|
//if nothing exists, add this element as opaque too
|
|
RenderList::Element *oe = render_list.add_element();
|
|
|
|
if (!oe)
|
|
return;
|
|
|
|
copymem(oe,e,sizeof(RenderList::Element));
|
|
}
|
|
|
|
if (e->instance->gi_probe_instances.size()) {
|
|
e->sort_key|=RenderList::SORT_KEY_GI_PROBES_FLAG;
|
|
}
|
|
}
|
|
|
|
//if (e->geometry->type==RasterizerStorageGLES3::Geometry::GEOMETRY_MULTISURFACE)
|
|
// e->sort_flags|=RenderList::SORT_FLAG_INSTANCING;
|
|
|
|
|
|
if (mirror) {
|
|
e->sort_key|=RenderList::SORT_KEY_MIRROR_FLAG;
|
|
}
|
|
|
|
//e->light_type=0xFF; // no lights!
|
|
|
|
if (shadow || m->shader->spatial.unshaded /*|| current_debug==VS::SCENARIO_DEBUG_SHADELESS*/) {
|
|
|
|
e->sort_key|=RenderList::SORT_KEY_UNSHADED_FLAG;
|
|
}
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_draw_skybox(RasterizerStorageGLES3::SkyBox *p_skybox,const CameraMatrix& p_projection,const Transform& p_transform,bool p_vflip,float p_scale) {
|
|
|
|
if (!p_skybox)
|
|
return;
|
|
|
|
RasterizerStorageGLES3::Texture *tex = storage->texture_owner.getornull(p_skybox->cubemap);
|
|
|
|
ERR_FAIL_COND(!tex);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(tex->target,tex->tex_id);
|
|
|
|
|
|
if (storage->config.srgb_decode_supported && tex->srgb && !tex->using_srgb) {
|
|
|
|
glTexParameteri(tex->target,_TEXTURE_SRGB_DECODE_EXT,_DECODE_EXT);
|
|
tex->using_srgb=true;
|
|
#ifdef TOOLS_ENABLED
|
|
if (!(tex->flags&VS::TEXTURE_FLAG_CONVERT_TO_LINEAR)) {
|
|
tex->flags|=VS::TEXTURE_FLAG_CONVERT_TO_LINEAR;
|
|
//notify that texture must be set to linear beforehand, so it works in other platforms when exported
|
|
}
|
|
#endif
|
|
}
|
|
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1,1,1,1);
|
|
|
|
float flip_sign = p_vflip?-1:1;
|
|
|
|
Vector3 vertices[8]={
|
|
Vector3(-1,-1*flip_sign,1),
|
|
Vector3( 0, 1, 0),
|
|
Vector3( 1,-1*flip_sign,1),
|
|
Vector3( 1, 1, 0),
|
|
Vector3( 1, 1*flip_sign,1),
|
|
Vector3( 1, 0, 0),
|
|
Vector3(-1, 1*flip_sign,1),
|
|
Vector3( 0, 0, 0)
|
|
|
|
};
|
|
|
|
|
|
|
|
//skybox uv vectors
|
|
float vw,vh,zn;
|
|
p_projection.get_viewport_size(vw,vh);
|
|
zn=p_projection.get_z_near();
|
|
|
|
float scale=p_scale;
|
|
|
|
for(int i=0;i<4;i++) {
|
|
|
|
Vector3 uv=vertices[i*2+1];
|
|
uv.x=(uv.x*2.0-1.0)*vw*scale;
|
|
uv.y=-(uv.y*2.0-1.0)*vh*scale;
|
|
uv.z=-zn;
|
|
vertices[i*2+1] = p_transform.basis.xform(uv).normalized();
|
|
vertices[i*2+1].z = -vertices[i*2+1].z;
|
|
}
|
|
|
|
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
|
|
glBufferSubData(GL_ARRAY_BUFFER,0,sizeof(Vector3)*8,vertices);
|
|
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
|
|
|
|
glBindVertexArray(state.skybox_array);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_CUBEMAP,true);
|
|
storage->shaders.copy.bind();
|
|
|
|
glDrawArrays(GL_TRIANGLE_FAN,0,4);
|
|
|
|
glBindVertexArray(0);
|
|
glColorMask(1,1,1,1);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::USE_CUBEMAP,false);
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_setup_environment(Environment *env,const CameraMatrix& p_cam_projection,const Transform& p_cam_transform) {
|
|
|
|
|
|
//store camera into ubo
|
|
store_camera(p_cam_projection,state.ubo_data.projection_matrix);
|
|
store_transform(p_cam_transform,state.ubo_data.camera_matrix);
|
|
store_transform(p_cam_transform.affine_inverse(),state.ubo_data.camera_inverse_matrix);
|
|
|
|
//time global variables
|
|
for(int i=0;i<4;i++) {
|
|
state.ubo_data.time[i]=storage->frame.time[i];
|
|
}
|
|
|
|
//bg and ambient
|
|
if (env) {
|
|
state.ubo_data.bg_energy=env->bg_energy;
|
|
state.ubo_data.ambient_energy=env->ambient_energy;
|
|
Color linear_ambient_color = env->ambient_color.to_linear();
|
|
state.ubo_data.ambient_light_color[0]=linear_ambient_color.r;
|
|
state.ubo_data.ambient_light_color[1]=linear_ambient_color.g;
|
|
state.ubo_data.ambient_light_color[2]=linear_ambient_color.b;
|
|
state.ubo_data.ambient_light_color[3]=linear_ambient_color.a;
|
|
|
|
Color bg_color;
|
|
|
|
switch(env->bg_mode) {
|
|
case VS::ENV_BG_CLEAR_COLOR: {
|
|
bg_color=storage->frame.clear_request_color.to_linear();
|
|
} break;
|
|
case VS::ENV_BG_COLOR: {
|
|
bg_color=env->bg_color.to_linear();
|
|
} break;
|
|
default: {
|
|
bg_color=Color(0,0,0,1);
|
|
} break;
|
|
}
|
|
|
|
state.ubo_data.bg_color[0]=bg_color.r;
|
|
state.ubo_data.bg_color[1]=bg_color.g;
|
|
state.ubo_data.bg_color[2]=bg_color.b;
|
|
state.ubo_data.bg_color[3]=bg_color.a;
|
|
|
|
state.env_radiance_data.ambient_contribution=env->ambient_skybox_contribution;
|
|
state.ubo_data.ambient_occlusion_affect_light=env->ssao_light_affect;
|
|
} else {
|
|
state.ubo_data.bg_energy=1.0;
|
|
state.ubo_data.ambient_energy=1.0;
|
|
//use from clear color instead, since there is no ambient
|
|
Color linear_ambient_color = storage->frame.clear_request_color.to_linear();
|
|
state.ubo_data.ambient_light_color[0]=linear_ambient_color.r;
|
|
state.ubo_data.ambient_light_color[1]=linear_ambient_color.g;
|
|
state.ubo_data.ambient_light_color[2]=linear_ambient_color.b;
|
|
state.ubo_data.ambient_light_color[3]=linear_ambient_color.a;
|
|
|
|
state.ubo_data.bg_color[0]=linear_ambient_color.r;
|
|
state.ubo_data.bg_color[1]=linear_ambient_color.g;
|
|
state.ubo_data.bg_color[2]=linear_ambient_color.b;
|
|
state.ubo_data.bg_color[3]=linear_ambient_color.a;
|
|
|
|
state.env_radiance_data.ambient_contribution=0;
|
|
state.ubo_data.ambient_occlusion_affect_light=0;
|
|
|
|
}
|
|
|
|
{
|
|
//directional shadow
|
|
|
|
state.ubo_data.shadow_directional_pixel_size[0]=1.0/directional_shadow.size;
|
|
state.ubo_data.shadow_directional_pixel_size[1]=1.0/directional_shadow.size;
|
|
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-4);
|
|
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
|
|
}
|
|
|
|
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0,sizeof(State::SceneDataUBO), &state.ubo_data);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
//fill up environment
|
|
|
|
store_transform(p_cam_transform,state.env_radiance_data.transform);
|
|
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0,sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_data);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_directional_light(int p_index,const Transform& p_camera_inverse_transform,bool p_use_shadows) {
|
|
|
|
LightInstance *li = directional_lights[p_index];
|
|
|
|
LightDataUBO ubo_data; //used for filling
|
|
|
|
float sign = li->light_ptr->negative?-1:1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[3]=0;
|
|
|
|
//omni, keep at 0
|
|
ubo_data.light_pos_inv_radius[0]=0.0;
|
|
ubo_data.light_pos_inv_radius[1]=0.0;
|
|
ubo_data.light_pos_inv_radius[2]=0.0;
|
|
ubo_data.light_pos_inv_radius[3]=0.0;
|
|
|
|
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0,0,-1))).normalized();
|
|
ubo_data.light_direction_attenuation[0]=direction.x;
|
|
ubo_data.light_direction_attenuation[1]=direction.y;
|
|
ubo_data.light_direction_attenuation[2]=direction.z;
|
|
ubo_data.light_direction_attenuation[3]=1.0;
|
|
|
|
ubo_data.light_params[0]=0;
|
|
ubo_data.light_params[1]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[2]=0;
|
|
ubo_data.light_params[3]=0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color[0]=shadow_color.r;
|
|
ubo_data.light_shadow_color[1]=shadow_color.g;
|
|
ubo_data.light_shadow_color[2]=shadow_color.b;
|
|
ubo_data.light_shadow_color[3]=1.0;
|
|
|
|
|
|
if (p_use_shadows && li->light_ptr->shadow) {
|
|
|
|
int shadow_count=0;
|
|
|
|
switch(li->light_ptr->directional_shadow_mode) {
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL: {
|
|
shadow_count=1;
|
|
} break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS: {
|
|
shadow_count=2;
|
|
} break;
|
|
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS: {
|
|
shadow_count=4;
|
|
} break;
|
|
|
|
}
|
|
|
|
for(int j=0;j<shadow_count;j++) {
|
|
|
|
|
|
uint32_t x=li->directional_rect.pos.x;
|
|
uint32_t y=li->directional_rect.pos.y;
|
|
uint32_t width=li->directional_rect.size.x;
|
|
uint32_t height=li->directional_rect.size.y;
|
|
|
|
|
|
|
|
if (li->light_ptr->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
|
|
|
|
|
|
width/=2;
|
|
height/=2;
|
|
|
|
if (j==0) {
|
|
|
|
} else if (j==1) {
|
|
x+=width;
|
|
} else if (j==2) {
|
|
y+=height;
|
|
} else if (j==3) {
|
|
x+=width;
|
|
y+=height;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (li->light_ptr->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
|
|
|
|
height/=2;
|
|
|
|
if (j==0) {
|
|
|
|
} else {
|
|
y+=height;
|
|
}
|
|
|
|
}
|
|
|
|
ubo_data.shadow_split_offsets[j]=1.0/li->shadow_transform[j].split;
|
|
|
|
Transform modelview = (p_camera_inverse_transform * li->shadow_transform[j].transform).inverse();
|
|
|
|
CameraMatrix bias;
|
|
bias.set_light_bias();
|
|
CameraMatrix rectm;
|
|
Rect2 atlas_rect = Rect2(float(x)/directional_shadow.size,float(y)/directional_shadow.size,float(width)/directional_shadow.size,float(height)/directional_shadow.size);
|
|
rectm.set_light_atlas_rect(atlas_rect);
|
|
|
|
|
|
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[j].camera * modelview;
|
|
|
|
store_camera(shadow_mtx,&ubo_data.shadow_matrix1[16*j]);
|
|
|
|
ubo_data.light_clamp[0]=atlas_rect.pos.x;
|
|
ubo_data.light_clamp[1]=atlas_rect.pos.y;
|
|
ubo_data.light_clamp[2]=atlas_rect.size.x;
|
|
ubo_data.light_clamp[3]=atlas_rect.size.y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightDataUBO), &ubo_data);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
directional_light=li;
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,3,state.directional_ubo);
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_lights(RID *p_light_cull_result,int p_light_cull_count,const Transform& p_camera_inverse_transform,const CameraMatrix& p_camera_projection,RID p_shadow_atlas) {
|
|
|
|
|
|
state.omni_light_count=0;
|
|
state.spot_light_count=0;
|
|
state.directional_light_count=0;
|
|
|
|
directional_light=NULL;
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
|
|
|
|
for(int i=0;i<p_light_cull_count;i++) {
|
|
|
|
ERR_BREAK( i>=RenderList::MAX_LIGHTS );
|
|
|
|
LightInstance *li = light_instance_owner.getptr(p_light_cull_result[i]);
|
|
|
|
LightDataUBO ubo_data; //used for filling
|
|
|
|
switch(li->light_ptr->type) {
|
|
|
|
case VS::LIGHT_DIRECTIONAL: {
|
|
|
|
if (state.directional_light_count<RenderList::MAX_DIRECTIONAL_LIGHTS) {
|
|
directional_lights[state.directional_light_count++]=li;
|
|
}
|
|
|
|
|
|
} break;
|
|
case VS::LIGHT_OMNI: {
|
|
|
|
float sign = li->light_ptr->negative?-1:1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[3]=0;
|
|
|
|
|
|
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
|
|
|
|
//directional, keep at 0
|
|
ubo_data.light_pos_inv_radius[0]=pos.x;
|
|
ubo_data.light_pos_inv_radius[1]=pos.y;
|
|
ubo_data.light_pos_inv_radius[2]=pos.z;
|
|
ubo_data.light_pos_inv_radius[3]=1.0/MAX(0.001,li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
|
|
|
|
ubo_data.light_direction_attenuation[0]=0;
|
|
ubo_data.light_direction_attenuation[1]=0;
|
|
ubo_data.light_direction_attenuation[2]=0;
|
|
ubo_data.light_direction_attenuation[3]=li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
|
|
|
|
ubo_data.light_params[0]=0;
|
|
ubo_data.light_params[1]=0;
|
|
ubo_data.light_params[2]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[3]=0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color[0]=shadow_color.r;
|
|
ubo_data.light_shadow_color[1]=shadow_color.g;
|
|
ubo_data.light_shadow_color[2]=shadow_color.b;
|
|
ubo_data.light_shadow_color[3]=1.0;
|
|
|
|
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
|
|
// fill in the shadow information
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[li->self];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_CONTINUE(shadow>=shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t atlas_size = shadow_atlas->size;
|
|
uint32_t quadrant_size = atlas_size>>1;
|
|
|
|
uint32_t x=(quadrant&1)*quadrant_size;
|
|
uint32_t y=(quadrant>>1)*quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
uint32_t width=shadow_size;
|
|
uint32_t height=shadow_size;
|
|
|
|
|
|
if (li->light_ptr->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
height/=2;
|
|
} else {
|
|
width/=2;
|
|
|
|
}
|
|
|
|
Transform proj = (p_camera_inverse_transform * li->transform).inverse();
|
|
|
|
store_transform(proj,ubo_data.shadow_matrix1);
|
|
|
|
ubo_data.light_params[3]=1.0; //means it has shadow
|
|
ubo_data.light_clamp[0]=float(x)/atlas_size;
|
|
ubo_data.light_clamp[1]=float(y)/atlas_size;
|
|
ubo_data.light_clamp[2]=float(width)/atlas_size;
|
|
ubo_data.light_clamp[3]=float(height)/atlas_size;
|
|
|
|
}
|
|
|
|
|
|
li->light_index=state.omni_light_count;
|
|
copymem(&state.omni_array_tmp[li->light_index*state.ubo_light_size],&ubo_data,state.ubo_light_size);
|
|
state.omni_light_count++;
|
|
|
|
|
|
|
|
#if 0
|
|
if (li->light_ptr->shadow_enabled) {
|
|
li->shadow_projection[0] = Transform(camera_transform_inverse * li->transform).inverse();
|
|
lights_use_shadow=true;
|
|
}
|
|
#endif
|
|
} break;
|
|
case VS::LIGHT_SPOT: {
|
|
|
|
float sign = li->light_ptr->negative?-1:1;
|
|
|
|
Color linear_col = li->light_ptr->color.to_linear();
|
|
ubo_data.light_color_energy[0]=linear_col.r*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[1]=linear_col.g*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[2]=linear_col.b*sign*li->light_ptr->param[VS::LIGHT_PARAM_ENERGY];;
|
|
ubo_data.light_color_energy[3]=0;
|
|
|
|
Vector3 pos = p_camera_inverse_transform.xform(li->transform.origin);
|
|
|
|
//directional, keep at 0
|
|
ubo_data.light_pos_inv_radius[0]=pos.x;
|
|
ubo_data.light_pos_inv_radius[1]=pos.y;
|
|
ubo_data.light_pos_inv_radius[2]=pos.z;
|
|
ubo_data.light_pos_inv_radius[3]=1.0/MAX(0.001,li->light_ptr->param[VS::LIGHT_PARAM_RANGE]);
|
|
|
|
Vector3 direction = p_camera_inverse_transform.basis.xform(li->transform.basis.xform(Vector3(0,0,-1))).normalized();
|
|
ubo_data.light_direction_attenuation[0]=direction.x;
|
|
ubo_data.light_direction_attenuation[1]=direction.y;
|
|
ubo_data.light_direction_attenuation[2]=direction.z;
|
|
ubo_data.light_direction_attenuation[3]=li->light_ptr->param[VS::LIGHT_PARAM_ATTENUATION];
|
|
|
|
ubo_data.light_params[0]=li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ATTENUATION];
|
|
ubo_data.light_params[1]=Math::cos(Math::deg2rad(li->light_ptr->param[VS::LIGHT_PARAM_SPOT_ANGLE]));
|
|
ubo_data.light_params[2]=li->light_ptr->param[VS::LIGHT_PARAM_SPECULAR];
|
|
ubo_data.light_params[3]=0;
|
|
|
|
Color shadow_color = li->light_ptr->shadow_color.to_linear();
|
|
ubo_data.light_shadow_color[0]=shadow_color.r;
|
|
ubo_data.light_shadow_color[1]=shadow_color.g;
|
|
ubo_data.light_shadow_color[2]=shadow_color.b;
|
|
ubo_data.light_shadow_color[3]=1.0;
|
|
|
|
if (li->light_ptr->shadow && shadow_atlas && shadow_atlas->shadow_owners.has(li->self)) {
|
|
// fill in the shadow information
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[li->self];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_CONTINUE(shadow>=shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t atlas_size = shadow_atlas->size;
|
|
uint32_t quadrant_size = atlas_size>>1;
|
|
|
|
uint32_t x=(quadrant&1)*quadrant_size;
|
|
uint32_t y=(quadrant>>1)*quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
uint32_t width=shadow_size;
|
|
uint32_t height=shadow_size;
|
|
|
|
Rect2 rect(float(x)/atlas_size,float(y)/atlas_size,float(width)/atlas_size,float(height)/atlas_size);
|
|
|
|
ubo_data.light_params[3]=1.0; //means it has shadow
|
|
ubo_data.light_clamp[0]=rect.pos.x;
|
|
ubo_data.light_clamp[1]=rect.pos.y;
|
|
ubo_data.light_clamp[2]=rect.size.x;
|
|
ubo_data.light_clamp[3]=rect.size.y;
|
|
|
|
Transform modelview = (p_camera_inverse_transform * li->transform).inverse();
|
|
|
|
CameraMatrix bias;
|
|
bias.set_light_bias();
|
|
CameraMatrix rectm;
|
|
rectm.set_light_atlas_rect(rect);
|
|
|
|
CameraMatrix shadow_mtx = rectm * bias * li->shadow_transform[0].camera * modelview;
|
|
|
|
store_camera(shadow_mtx,ubo_data.shadow_matrix1);
|
|
|
|
|
|
}
|
|
|
|
li->light_index=state.spot_light_count;
|
|
copymem(&state.spot_array_tmp[li->light_index*state.ubo_light_size],&ubo_data,state.ubo_light_size);
|
|
state.spot_light_count++;
|
|
|
|
#if 0
|
|
if (li->light_ptr->shadow_enabled) {
|
|
CameraMatrix bias;
|
|
bias.set_light_bias();
|
|
Transform modelview=Transform(camera_transform_inverse * li->transform).inverse();
|
|
li->shadow_projection[0] = bias * li->projection * modelview;
|
|
lights_use_shadow=true;
|
|
}
|
|
#endif
|
|
} break;
|
|
|
|
}
|
|
|
|
|
|
li->last_pass=render_pass;
|
|
|
|
//update UBO for forward rendering, blit to texture for clustered
|
|
|
|
}
|
|
|
|
|
|
|
|
if (state.omni_light_count) {
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.omni_light_count*state.ubo_light_size, state.omni_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,4,state.omni_array_ubo);
|
|
}
|
|
|
|
if (state.spot_light_count) {
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.spot_light_count*state.ubo_light_size, state.spot_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,5,state.spot_array_ubo);
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_setup_reflections(RID *p_reflection_probe_cull_result,int p_reflection_probe_cull_count,const Transform& p_camera_inverse_transform,const CameraMatrix& p_camera_projection,RID p_reflection_atlas,Environment *p_env) {
|
|
|
|
state.reflection_probe_count=0;
|
|
|
|
for(int i=0;i<p_reflection_probe_cull_count;i++) {
|
|
|
|
ReflectionProbeInstance *rpi=reflection_probe_instance_owner.getornull(p_reflection_probe_cull_result[i]);
|
|
ERR_CONTINUE(!rpi);
|
|
|
|
ReflectionAtlas *reflection_atlas=reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
ERR_CONTINUE(!reflection_atlas);
|
|
|
|
ERR_CONTINUE(rpi->reflection_atlas_index<0);
|
|
|
|
|
|
if (state.reflection_probe_count>=state.max_ubo_reflections)
|
|
break;
|
|
|
|
rpi->last_pass=render_pass;
|
|
|
|
|
|
ReflectionProbeDataUBO reflection_ubo;
|
|
|
|
reflection_ubo.box_extents[0]=rpi->probe_ptr->extents.x;
|
|
reflection_ubo.box_extents[1]=rpi->probe_ptr->extents.y;
|
|
reflection_ubo.box_extents[2]=rpi->probe_ptr->extents.z;
|
|
reflection_ubo.box_extents[3]=0;
|
|
|
|
|
|
|
|
reflection_ubo.box_ofs[0]=rpi->probe_ptr->origin_offset.x;
|
|
reflection_ubo.box_ofs[1]=rpi->probe_ptr->origin_offset.y;
|
|
reflection_ubo.box_ofs[2]=rpi->probe_ptr->origin_offset.z;
|
|
reflection_ubo.box_ofs[3]=0;
|
|
|
|
reflection_ubo.params[0]=rpi->probe_ptr->intensity;
|
|
reflection_ubo.params[1]=0;
|
|
reflection_ubo.params[2]=rpi->probe_ptr->interior?1.0:0.0;
|
|
reflection_ubo.params[3]=rpi->probe_ptr->box_projection?1.0:0.0;
|
|
|
|
if (rpi->probe_ptr->interior) {
|
|
Color ambient_linear = rpi->probe_ptr->interior_ambient.to_linear();
|
|
reflection_ubo.ambient[0]=ambient_linear.r*rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[1]=ambient_linear.g*rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[2]=ambient_linear.b*rpi->probe_ptr->interior_ambient_energy;
|
|
reflection_ubo.ambient[3]=rpi->probe_ptr->interior_ambient_probe_contrib;
|
|
} else {
|
|
Color ambient_linear;
|
|
float contrib=0;
|
|
if (p_env) {
|
|
ambient_linear=p_env->ambient_color.to_linear();
|
|
ambient_linear.r*=p_env->ambient_energy;
|
|
ambient_linear.g*=p_env->ambient_energy;
|
|
ambient_linear.b*=p_env->ambient_energy;
|
|
contrib=p_env->ambient_skybox_contribution;
|
|
}
|
|
|
|
reflection_ubo.ambient[0]=ambient_linear.r;
|
|
reflection_ubo.ambient[1]=ambient_linear.g;
|
|
reflection_ubo.ambient[2]=ambient_linear.b;
|
|
reflection_ubo.ambient[3]=0;
|
|
}
|
|
|
|
int cell_size = reflection_atlas->size / reflection_atlas->subdiv;
|
|
int x = (rpi->reflection_atlas_index % reflection_atlas->subdiv) * cell_size;
|
|
int y = (rpi->reflection_atlas_index / reflection_atlas->subdiv) * cell_size;
|
|
int width=cell_size;
|
|
int height=cell_size;
|
|
|
|
reflection_ubo.atlas_clamp[0]=float(x)/reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[1]=float(y)/reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[2]=float(width)/reflection_atlas->size;
|
|
reflection_ubo.atlas_clamp[3]=float(height/2)/reflection_atlas->size;
|
|
|
|
Transform proj = (p_camera_inverse_transform * rpi->transform).inverse();
|
|
store_transform(proj,reflection_ubo.local_matrix);
|
|
|
|
rpi->reflection_index=state.reflection_probe_count;
|
|
copymem(&state.reflection_array_tmp[rpi->reflection_index*sizeof(ReflectionProbeDataUBO)],&reflection_ubo,sizeof(ReflectionProbeDataUBO));
|
|
state.reflection_probe_count++;
|
|
|
|
}
|
|
|
|
|
|
if (state.reflection_probe_count) {
|
|
|
|
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
|
|
glBufferSubData(GL_UNIFORM_BUFFER, 0, state.reflection_probe_count*sizeof(ReflectionProbeDataUBO), state.reflection_array_tmp);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glBindBufferBase(GL_UNIFORM_BUFFER,6,state.reflection_array_ubo);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_copy_screen() {
|
|
|
|
glBindVertexArray( storage->resources.quadie_array);
|
|
glDrawArrays(GL_TRIANGLE_FAN,0,4);
|
|
glBindVertexArray(0);
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_copy_to_front_buffer(Environment *env) {
|
|
|
|
//copy to front buffer
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo);
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1,1,1,1);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,true);
|
|
|
|
if (!env) {
|
|
//no environment, simply convert from linear to srgb
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,true);
|
|
} else {
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,true);
|
|
|
|
}
|
|
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen();
|
|
|
|
|
|
//turn off everything used
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,false);
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_copy_texture_to_front_buffer(GLuint p_texture) {
|
|
|
|
//copy to front buffer
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo);
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1,1,1,1);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,p_texture);
|
|
|
|
glViewport(0,0,storage->frame.current_rt->width*0.5,storage->frame.current_rt->height*0.5);
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,true);
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen();
|
|
|
|
//turn off everything used
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,false);
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_fill_render_list(InstanceBase** p_cull_result,int p_cull_count,bool p_shadow){
|
|
|
|
current_geometry_index=0;
|
|
current_material_index=0;
|
|
state.used_sss=false;
|
|
|
|
//fill list
|
|
|
|
for(int i=0;i<p_cull_count;i++) {
|
|
|
|
InstanceBase *inst = p_cull_result[i];
|
|
switch(inst->base_type) {
|
|
|
|
case VS::INSTANCE_MESH: {
|
|
|
|
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!mesh);
|
|
|
|
int ssize = mesh->surfaces.size();
|
|
|
|
for (int i=0;i<ssize;i++) {
|
|
|
|
int mat_idx = inst->materials[i].is_valid() ? i : -1;
|
|
RasterizerStorageGLES3::Surface *s = mesh->surfaces[i];
|
|
_add_geometry(s,inst,NULL,mat_idx,p_shadow);
|
|
}
|
|
|
|
//mesh->last_pass=frame;
|
|
|
|
} break;
|
|
case VS::INSTANCE_MULTIMESH: {
|
|
|
|
RasterizerStorageGLES3::MultiMesh *multi_mesh = storage->multimesh_owner.getptr(inst->base);
|
|
ERR_CONTINUE(!multi_mesh);
|
|
|
|
if (multi_mesh->size==0 || multi_mesh->visible_instances==0)
|
|
continue;
|
|
|
|
RasterizerStorageGLES3::Mesh *mesh = storage->mesh_owner.getptr(multi_mesh->mesh);
|
|
if (!mesh)
|
|
continue; //mesh not assigned
|
|
|
|
int ssize = mesh->surfaces.size();
|
|
|
|
for (int i=0;i<ssize;i++) {
|
|
|
|
RasterizerStorageGLES3::Surface *s = mesh->surfaces[i];
|
|
_add_geometry(s,inst,multi_mesh,-1,p_shadow);
|
|
}
|
|
|
|
} break;
|
|
case VS::INSTANCE_IMMEDIATE: {
|
|
|
|
} break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void RasterizerSceneGLES3::_render_mrts(Environment *env,const CameraMatrix &p_cam_projection) {
|
|
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
|
|
bool diffuse_copied=false;
|
|
|
|
if (env->ssao_enabled) {
|
|
//ssao
|
|
|
|
//copy from depth, convert to linear
|
|
GLint ss[2];
|
|
ss[0]=storage->frame.current_rt->width;
|
|
ss[1]=storage->frame.current_rt->height;
|
|
|
|
for(int i=0;i<storage->frame.current_rt->effects.ssao.depth_mipmap_fbos.size();i++) {
|
|
|
|
state.ssao_minify_shader.set_conditional(SsaoMinifyShaderGLES3::MINIFY_START,i==0);
|
|
state.ssao_minify_shader.bind();
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.ssao_minify_shader.set_uniform(SsaoMinifyShaderGLES3::SOURCE_MIPMAP,MAX(0,i-1));
|
|
glUniform2iv(state.ssao_minify_shader.get_uniform(SsaoMinifyShaderGLES3::FROM_SIZE),1,ss);
|
|
ss[0]>>=1;
|
|
ss[1]>>=1;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
if (i==0) {
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.ssao.linear_depth);
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.ssao.depth_mipmap_fbos[i]); //copy to front first
|
|
glViewport(0,0,ss[0],ss[1]);
|
|
|
|
_copy_screen();
|
|
|
|
}
|
|
ss[0]=storage->frame.current_rt->width;
|
|
ss[1]=storage->frame.current_rt->height;
|
|
|
|
glViewport(0,0,ss[0],ss[1]);
|
|
|
|
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDepthFunc(GL_GREATER);
|
|
// do SSAO!
|
|
state.ssao_shader.set_conditional(SsaoShaderGLES3::ENABLE_RADIUS2,env->ssao_radius2>0.001);
|
|
state.ssao_shader.bind();
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
glUniform2iv(state.ssao_shader.get_uniform(SsaoShaderGLES3::SCREEN_SIZE),1,ss);
|
|
float radius = env->ssao_radius;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS,radius);
|
|
float intensity = env->ssao_intensity;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R6,intensity / pow(radius, 6.0f));
|
|
|
|
if (env->ssao_radius2>0.001) {
|
|
|
|
float radius2 = env->ssao_radius2;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::RADIUS2,radius2);
|
|
float intensity2 = env->ssao_intensity2;
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::INTENSITY_DIV_R62,intensity2 / pow(radius2, 6.0f));
|
|
|
|
}
|
|
|
|
float proj_info[4]={
|
|
-2.0f / (ss[0]*p_cam_projection.matrix[0][0]),
|
|
-2.0f / (ss[1]*p_cam_projection.matrix[1][1]),
|
|
( 1.0f - p_cam_projection.matrix[0][2]) / p_cam_projection.matrix[0][0],
|
|
( 1.0f + p_cam_projection.matrix[1][2]) / p_cam_projection.matrix[1][1]
|
|
};
|
|
|
|
glUniform4fv(state.ssao_shader.get_uniform(SsaoShaderGLES3::PROJ_INFO),1,proj_info);
|
|
float pixels_per_meter = float(p_cam_projection.get_pixels_per_meter(ss[0]));
|
|
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::PROJ_SCALE,pixels_per_meter);
|
|
state.ssao_shader.set_uniform(SsaoShaderGLES3::BIAS,env->ssao_bias);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.ssao.linear_depth);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.normal_rough);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.ssao.blur_fbo[0]); //copy to front first
|
|
Color white(1,1,1,1);
|
|
glClearBufferfv(GL_COLOR,0,white.components); // specular
|
|
|
|
_copy_screen();
|
|
|
|
//do the batm, i mean blur
|
|
|
|
state.ssao_blur_shader.bind();
|
|
|
|
if (env->ssao_filter) {
|
|
for(int i=0;i<2;i++) {
|
|
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
state.ssao_blur_shader.set_uniform(SsaoBlurShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
GLint axis[2]={i,1-i};
|
|
glUniform2iv(state.ssao_blur_shader.get_uniform(SsaoBlurShaderGLES3::AXIS),1,axis);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.ssao.blur_red[i]);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.ssao.blur_fbo[1-i]);
|
|
if (i==0) {
|
|
glClearBufferfv(GL_COLOR,0,white.components); // specular
|
|
}
|
|
_copy_screen();
|
|
|
|
}
|
|
}
|
|
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDepthFunc(GL_LEQUAL);
|
|
|
|
// just copy diffuse while applying SSAO
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::SSAO_COLOR,env->ssao_color);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse); //previous level, since mipmaps[0] starts one level bigger
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.ssao.blur_red[0]); //previous level, since mipmaps[0] starts one level bigger
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SSAO_MERGE,false);
|
|
|
|
|
|
|
|
|
|
diffuse_copied=true;
|
|
}
|
|
|
|
|
|
if (state.used_sss) {//sss enabled
|
|
//copy diffuse while performing sss
|
|
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_11_SAMPLES,subsurface_scatter_quality==SSS_QUALITY_LOW);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_17_SAMPLES,subsurface_scatter_quality==SSS_QUALITY_MEDIUM);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::USE_25_SAMPLES,subsurface_scatter_quality==SSS_QUALITY_HIGH);
|
|
state.sss_shader.set_conditional(SubsurfScatteringShaderGLES3::ENABLE_FOLLOW_SURFACE,subsurface_scatter_follow_surface);
|
|
state.sss_shader.bind();
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::MAX_RADIUS,subsurface_scatter_size);
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::FOVY,p_cam_projection.get_fov());
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR,Vector2(1,0));
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
if (diffuse_copied) {
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color);
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
diffuse_copied=true;
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.motion_sss);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen();
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->color);
|
|
state.sss_shader.set_uniform(SubsurfScatteringShaderGLES3::DIR,Vector2(0,1));
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen();
|
|
|
|
}
|
|
|
|
|
|
if (!diffuse_copied) {
|
|
// just copy diffuse
|
|
storage->shaders.copy.bind();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (env->ssr_enabled) {
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
for(int i=0;i<storage->frame.current_rt->effects.mip_maps[1].sizes.size();i++) {
|
|
|
|
|
|
int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width;
|
|
int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height;
|
|
glViewport(0,0,vp_w,vp_h);
|
|
//horizontal pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD,float(i));
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo);
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_HORIZONTAL,false);
|
|
|
|
//vertical pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD,float(i));
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[1].color);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[i+1].fbo); //next level, since mipmaps[0] starts one level bigger
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GAUSSIAN_VERTICAL,false);
|
|
}
|
|
|
|
|
|
//perform SSR
|
|
|
|
state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::SMOOTH_ACCEL,env->ssr_accel>0 && env->ssr_smooth);
|
|
state.ssr_shader.set_conditional(ScreenSpaceReflectionShaderGLES3::REFLECT_ROUGHNESS,env->ssr_accel>0 && env->ssr_roughness);
|
|
|
|
state.ssr_shader.bind();
|
|
|
|
int ssr_w = storage->frame.current_rt->effects.mip_maps[1].sizes[0].width;
|
|
int ssr_h = storage->frame.current_rt->effects.mip_maps[1].sizes[0].height;
|
|
|
|
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PIXEL_SIZE,Vector2(1.0/(ssr_w*0.5),1.0/(ssr_h*0.5)));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::PROJECTION,p_cam_projection);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::INVERSE_PROJECTION,p_cam_projection.inverse());
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::VIEWPORT_SIZE,Size2(ssr_w,ssr_h));
|
|
//state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FRAME_INDEX,int(render_pass));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::FILTER_MIPMAP_LEVELS,float(storage->frame.current_rt->effects.mip_maps[0].sizes.size()));
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::NUM_STEPS,env->ssr_max_steps);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::ACCELERATION,env->ssr_accel);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DEPTH_TOLERANCE,env->ssr_depth_tolerance);
|
|
state.ssr_shader.set_uniform(ScreenSpaceReflectionShaderGLES3::DISTANCE_FADE,env->ssr_fade);
|
|
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.normal_rough);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
glActiveTexture(GL_TEXTURE3);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[1].sizes[0].fbo);
|
|
glViewport(0,0,ssr_w,ssr_h);
|
|
|
|
_copy_screen();
|
|
glViewport(0,0,storage->frame.current_rt->width,storage->frame.current_rt->height);
|
|
|
|
}
|
|
|
|
|
|
//copy reflection over diffuse, resolving SSR if needed
|
|
state.resolve_shader.set_conditional(ResolveShaderGLES3::USE_SSR,env->ssr_enabled);
|
|
state.resolve_shader.bind();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.specular);
|
|
if (env->ssr_enabled) {
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[1].color);
|
|
}
|
|
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo);
|
|
glEnable(GL_BLEND);
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(GL_ONE,GL_ONE); //use additive to accumulate one over the other
|
|
|
|
_copy_screen();
|
|
|
|
glDisable(GL_BLEND); //end additive
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD,float(0));
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color);
|
|
|
|
_copy_screen();
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::SIMPLE_COPY,false);
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_post_process(Environment *env,const CameraMatrix &p_cam_projection){
|
|
|
|
//copy to front buffer
|
|
|
|
glDepthMask(GL_FALSE);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_BLEND);
|
|
glDepthFunc(GL_LEQUAL);
|
|
glColorMask(1,1,1,1);
|
|
|
|
//turn off everything used
|
|
|
|
if (!env) {
|
|
//no environment, simply return and convert to SRGB
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,true);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,true);
|
|
storage->shaders.copy.bind();
|
|
|
|
_copy_screen();
|
|
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::LINEAR_TO_SRGB,false);
|
|
storage->shaders.copy.set_conditional(CopyShaderGLES3::DISABLE_ALPHA,false); //compute luminance
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
//order of operation
|
|
//1) DOF Blur (first blur, then copy to buffer applying the blur)
|
|
//2) Motion Blur
|
|
//3) Bloom
|
|
//4) Tonemap
|
|
//5) Adjustments
|
|
|
|
GLuint composite_from = storage->frame.current_rt->buffers.diffuse;
|
|
|
|
|
|
if (env->dof_blur_far_enabled) {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
int vp_h = storage->frame.current_rt->height;
|
|
int vp_w = storage->frame.current_rt->width;
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR,true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW,env->dof_blur_far_quality==VS::ENV_DOF_BLUR_QUALITY_LOW);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM,env->dof_blur_far_quality==VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH,env->dof_blur_far_quality==VS::ENV_DOF_BLUR_QUALITY_HIGH);
|
|
|
|
state.effect_blur_shader.bind();
|
|
int qsteps[3]={4,10,20};
|
|
|
|
float radius = (env->dof_blur_far_amount*env->dof_blur_far_amount) / qsteps[env->dof_blur_far_quality];
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN,env->dof_blur_far_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END,env->dof_blur_far_distance+env->dof_blur_far_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR,Vector2(1,0));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS,radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,composite_from);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen();
|
|
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->color);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR,Vector2(0,1));
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
_copy_screen();
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_FAR_BLUR,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH,false);
|
|
|
|
|
|
composite_from=storage->frame.current_rt->effects.mip_maps[0].color;
|
|
|
|
}
|
|
|
|
if (env->dof_blur_near_enabled) {
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
int vp_h = storage->frame.current_rt->height;
|
|
int vp_w = storage->frame.current_rt->width;
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR,true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP,true);
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW,env->dof_blur_near_quality==VS::ENV_DOF_BLUR_QUALITY_LOW);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM,env->dof_blur_near_quality==VS::ENV_DOF_BLUR_QUALITY_MEDIUM);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH,env->dof_blur_near_quality==VS::ENV_DOF_BLUR_QUALITY_HIGH);
|
|
|
|
state.effect_blur_shader.bind();
|
|
int qsteps[3]={4,10,20};
|
|
|
|
float radius = (env->dof_blur_near_amount*env->dof_blur_near_amount) / qsteps[env->dof_blur_near_quality];
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN,env->dof_blur_near_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END,env->dof_blur_near_distance-env->dof_blur_near_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR,Vector2(1,0));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS,radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->depth);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,composite_from);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo); //copy to front first
|
|
|
|
_copy_screen();
|
|
//manually do the blend if this is the first operation resolving from the diffuse buffer
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE,composite_from == storage->frame.current_rt->buffers.diffuse);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP,false);
|
|
state.effect_blur_shader.bind();
|
|
|
|
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_BEGIN,env->dof_blur_near_distance);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_END,env->dof_blur_near_distance-env->dof_blur_near_transition);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_DIR,Vector2(0,1));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::DOF_RADIUS,radius);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_NEAR,p_cam_projection.get_z_near());
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::CAMERA_Z_FAR,p_cam_projection.get_z_far());
|
|
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->color);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[0].fbo); // copy to base level
|
|
|
|
if (composite_from != storage->frame.current_rt->buffers.diffuse) {
|
|
|
|
glEnable(GL_BLEND);
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
|
|
} else {
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
|
|
}
|
|
|
|
_copy_screen();
|
|
|
|
if (composite_from != storage->frame.current_rt->buffers.diffuse) {
|
|
|
|
glDisable(GL_BLEND);
|
|
}
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_FIRST_TAP,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_NEAR_BLUR_MERGE,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_LOW,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_MEDIUM,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::DOF_QUALITY_HIGH,false);
|
|
|
|
|
|
composite_from=storage->frame.current_rt->effects.mip_maps[0].color;
|
|
|
|
}
|
|
|
|
if ( env->auto_exposure) {
|
|
|
|
//compute auto exposure
|
|
//first step, copy from image to luminance buffer
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN,true);
|
|
state.exposure_shader.bind();
|
|
int ss[2]={
|
|
storage->frame.current_rt->width,
|
|
storage->frame.current_rt->height,
|
|
};
|
|
int ds[2]={
|
|
exposure_shrink_size,
|
|
exposure_shrink_size,
|
|
};
|
|
|
|
glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::SOURCE_RENDER_SIZE),1,ss);
|
|
glUniform2iv(state.exposure_shader.get_uniform(ExposureShaderGLES3::TARGET_SIZE),1,ds);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->buffers.diffuse);
|
|
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,exposure_shrink[0].fbo);
|
|
glViewport(0,0,exposure_shrink_size,exposure_shrink_size);
|
|
|
|
_copy_screen();
|
|
|
|
|
|
|
|
|
|
|
|
//second step, shrink to 2x2 pixels
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_BEGIN,false);
|
|
state.exposure_shader.bind();
|
|
//shrink from second to previous to last level
|
|
|
|
int s_size=exposure_shrink_size/3;
|
|
for(int i=1;i<exposure_shrink.size()-1;i++) {
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,exposure_shrink[i].fbo);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,exposure_shrink[i-1].color);
|
|
|
|
_copy_screen();
|
|
|
|
glViewport(0,0,s_size,s_size);
|
|
|
|
s_size/=3;
|
|
|
|
}
|
|
//third step, shrink to 1x1 pixel taking in consideration the previous exposure
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END,true);
|
|
|
|
uint64_t tick = OS::get_singleton()->get_ticks_usec();
|
|
uint64_t tick_diff = storage->frame.current_rt->last_exposure_tick==0?0:tick-storage->frame.current_rt->last_exposure_tick;
|
|
storage->frame.current_rt->last_exposure_tick=tick;
|
|
|
|
if (tick_diff==0 || tick_diff>1000000) {
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET,true);
|
|
|
|
}
|
|
|
|
state.exposure_shader.bind();
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,exposure_shrink[exposure_shrink.size()-1].fbo);
|
|
glViewport(0,0,1,1);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,exposure_shrink[exposure_shrink.size()-2].color);
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color); //read from previous
|
|
|
|
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::EXPOSURE_ADJUST,env->auto_exposure_speed*(tick_diff/1000000.0));
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::MAX_LUMINANCE,env->auto_exposure_max);
|
|
state.exposure_shader.set_uniform(ExposureShaderGLES3::MIN_LUMINANCE,env->auto_exposure_min);
|
|
|
|
_copy_screen();
|
|
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_FORCE_SET,false);
|
|
state.exposure_shader.set_conditional(ExposureShaderGLES3::EXPOSURE_END,false);
|
|
|
|
//last step, swap with the framebuffer exposure, so the right exposure is kept int he framebuffer
|
|
SWAP(exposure_shrink[exposure_shrink.size()-1].fbo,storage->frame.current_rt->exposure.fbo);
|
|
SWAP(exposure_shrink[exposure_shrink.size()-1].color,storage->frame.current_rt->exposure.color);
|
|
|
|
|
|
glViewport(0,0,storage->frame.current_rt->width,storage->frame.current_rt->height);
|
|
|
|
}
|
|
|
|
|
|
int max_glow_level=-1;
|
|
int glow_mask=0;
|
|
|
|
|
|
if (env->glow_enabled) {
|
|
|
|
|
|
for(int i=0;i<VS::MAX_GLOW_LEVELS;i++) {
|
|
if (env->glow_levels&(1<<i)) {
|
|
|
|
if (i>=storage->frame.current_rt->effects.mip_maps[1].sizes.size()) {
|
|
max_glow_level=storage->frame.current_rt->effects.mip_maps[1].sizes.size()-1;
|
|
glow_mask|=1<<max_glow_level;
|
|
|
|
} else {
|
|
max_glow_level=i;
|
|
glow_mask|=(1<<i);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
//blur diffuse into effect mipmaps using separatable convolution
|
|
//storage->shaders.copy.set_conditional(CopyShaderGLES3::GAUSSIAN_HORIZONTAL,true);
|
|
|
|
for(int i=0;i<(max_glow_level+1);i++) {
|
|
|
|
|
|
int vp_w = storage->frame.current_rt->effects.mip_maps[1].sizes[i].width;
|
|
int vp_h = storage->frame.current_rt->effects.mip_maps[1].sizes[i].height;
|
|
glViewport(0,0,vp_w,vp_h);
|
|
//horizontal pass
|
|
if (i==0) {
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS,true);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE,env->auto_exposure);
|
|
}
|
|
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD,float(i));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH,env->glow_strength);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
if (i==0) {
|
|
glBindTexture(GL_TEXTURE_2D,composite_from);
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::EXPOSURE,env->tone_mapper_exposure);
|
|
if (env->auto_exposure) {
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::AUTO_EXPOSURE_GREY,env->auto_exposure_grey);
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color);
|
|
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_BLOOM,env->glow_bloom);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_TRESHOLD,env->glow_hdr_bleed_treshold);
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_HDR_SCALE,env->glow_hdr_bleed_scale);
|
|
|
|
} else {
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color); //previous level, since mipmaps[0] starts one level bigger
|
|
}
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[1].sizes[i].fbo);
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_HORIZONTAL,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_FIRST_PASS,false);
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_USE_AUTO_EXPOSURE,false);
|
|
|
|
//vertical pass
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL,true);
|
|
state.effect_blur_shader.bind();
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::PIXEL_SIZE,Vector2(1.0/vp_w,1.0/vp_h));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::LOD,float(i));
|
|
state.effect_blur_shader.set_uniform(EffectBlurShaderGLES3::GLOW_STRENGTH,env->glow_strength);
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[1].color);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->effects.mip_maps[0].sizes[i+1].fbo); //next level, since mipmaps[0] starts one level bigger
|
|
_copy_screen();
|
|
state.effect_blur_shader.set_conditional(EffectBlurShaderGLES3::GLOW_GAUSSIAN_VERTICAL,false);
|
|
}
|
|
|
|
glViewport(0,0,storage->frame.current_rt->width,storage->frame.current_rt->height);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->fbo);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,composite_from);
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER,env->tone_mapper==VS::ENV_TONE_MAPPER_FILMIC);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER,env->tone_mapper==VS::ENV_TONE_MAPPER_ACES);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINDHART_TONEMAPPER,env->tone_mapper==VS::ENV_TONE_MAPPER_REINHARDT);
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE,env->auto_exposure);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC,env->glow_bicubic_upscale);
|
|
|
|
|
|
|
|
if (max_glow_level>=0) {
|
|
|
|
|
|
for(int i=0;i<(max_glow_level+1);i++) {
|
|
|
|
if (glow_mask&(1<<i)) {
|
|
if (i==0) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1,true);
|
|
}
|
|
if (i==1) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2,true);
|
|
}
|
|
if (i==2) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3,true);
|
|
}
|
|
if (i==3) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4,true);
|
|
}
|
|
if (i==4) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5,true);
|
|
}
|
|
if (i==5) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6,true);
|
|
}
|
|
if (i==6) {
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7,true);
|
|
}
|
|
}
|
|
}
|
|
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN,env->glow_blend_mode==VS::GLOW_BLEND_MODE_SCREEN);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT,env->glow_blend_mode==VS::GLOW_BLEND_MODE_SOFTLIGHT);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE,env->glow_blend_mode==VS::GLOW_BLEND_MODE_REPLACE);
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->effects.mip_maps[0].color);
|
|
|
|
}
|
|
|
|
state.tonemap_shader.bind();
|
|
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::EXPOSURE,env->tone_mapper_exposure);
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::WHITE,env->tone_mapper_exposure_white);
|
|
|
|
if (max_glow_level>=0) {
|
|
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::GLOW_INTENSITY,env->glow_intensity);
|
|
int ss[2]={
|
|
storage->frame.current_rt->width,
|
|
storage->frame.current_rt->height,
|
|
};
|
|
glUniform2iv(state.tonemap_shader.get_uniform(TonemapShaderGLES3::GLOW_TEXTURE_SIZE),1,ss);
|
|
|
|
}
|
|
|
|
if (env->auto_exposure) {
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color);
|
|
state.tonemap_shader.set_uniform(TonemapShaderGLES3::AUTO_EXPOSURE_GREY,env->auto_exposure_grey);
|
|
|
|
}
|
|
|
|
|
|
|
|
_copy_screen();
|
|
|
|
//turn off everything used
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_AUTO_EXPOSURE,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_FILMIC_TONEMAPPER,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_ACES_TONEMAPPER,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_REINDHART_TONEMAPPER,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL1,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL2,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL3,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL4,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL5,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL6,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_LEVEL7,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_REPLACE,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SCREEN,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_SOFTLIGHT,false);
|
|
state.tonemap_shader.set_conditional(TonemapShaderGLES3::USE_GLOW_FILTER_BICUBIC,false);
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::render_scene(const Transform& p_cam_transform,const CameraMatrix& p_cam_projection,bool p_cam_ortogonal,InstanceBase** p_cull_result,int p_cull_count,RID* p_light_cull_result,int p_light_cull_count,RID* p_reflection_probe_cull_result,int p_reflection_probe_cull_count,RID p_environment,RID p_shadow_atlas,RID p_reflection_atlas,RID p_reflection_probe,int p_reflection_probe_pass){
|
|
|
|
//first of all, make a new render pass
|
|
render_pass++;
|
|
|
|
|
|
//fill up ubo
|
|
|
|
Environment *env = environment_owner.getornull(p_environment);
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.getornull(p_reflection_atlas);
|
|
|
|
if (shadow_atlas && shadow_atlas->size) {
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-3);
|
|
glBindTexture(GL_TEXTURE_2D,shadow_atlas->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_REF_TO_TEXTURE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LESS);
|
|
state.ubo_data.shadow_atlas_pixel_size[0]=1.0/shadow_atlas->size;
|
|
state.ubo_data.shadow_atlas_pixel_size[1]=1.0/shadow_atlas->size;
|
|
}
|
|
|
|
|
|
if (reflection_atlas && reflection_atlas->size) {
|
|
glActiveTexture(GL_TEXTURE0+storage->config.max_texture_image_units-5);
|
|
glBindTexture(GL_TEXTURE_2D,reflection_atlas->color);
|
|
}
|
|
|
|
if (p_reflection_probe.is_valid()) {
|
|
state.ubo_data.reflection_multiplier=0.0;
|
|
} else {
|
|
state.ubo_data.reflection_multiplier=1.0;
|
|
}
|
|
|
|
state.ubo_data.subsurface_scatter_width=subsurface_scatter_size;
|
|
|
|
|
|
|
|
_setup_environment(env,p_cam_projection,p_cam_transform);
|
|
|
|
_setup_lights(p_light_cull_result,p_light_cull_count,p_cam_transform.affine_inverse(),p_cam_projection,p_shadow_atlas);
|
|
_setup_reflections(p_reflection_probe_cull_result,p_reflection_probe_cull_count,p_cam_transform.affine_inverse(),p_cam_projection,p_reflection_atlas,env);
|
|
|
|
render_list.clear();
|
|
|
|
|
|
bool use_mrt=false;
|
|
|
|
|
|
_fill_render_list(p_cull_result,p_cull_count,false);
|
|
//
|
|
|
|
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
//rendering to a probe cubemap side
|
|
ReflectionProbeInstance *probe = reflection_probe_instance_owner.getornull(p_reflection_probe);
|
|
GLuint current_fbo;
|
|
|
|
|
|
|
|
if (probe) {
|
|
|
|
ReflectionAtlas *ref_atlas = reflection_atlas_owner.getptr(probe->atlas);
|
|
ERR_FAIL_COND(!ref_atlas);
|
|
|
|
int target_size=ref_atlas->size/ref_atlas->subdiv;
|
|
|
|
int cubemap_index=reflection_cubemaps.size()-1;
|
|
|
|
for(int i=reflection_cubemaps.size()-1;i>=0;i--) {
|
|
//find appropriate cubemap to render to
|
|
if (reflection_cubemaps[i].size>target_size*2)
|
|
break;
|
|
|
|
cubemap_index=i;
|
|
}
|
|
|
|
current_fbo=reflection_cubemaps[cubemap_index].fbo_id[p_reflection_probe_pass];
|
|
use_mrt=false;
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
|
|
|
|
glViewport(0,0,reflection_cubemaps[cubemap_index].size,reflection_cubemaps[cubemap_index].size);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,current_fbo);
|
|
|
|
} else {
|
|
|
|
use_mrt = state.used_sss || (env && (env->ssao_enabled || env->ssr_enabled)); //only enable MRT rendering if any of these is enabled
|
|
|
|
glViewport(0,0,storage->frame.current_rt->width,storage->frame.current_rt->height);
|
|
|
|
if (use_mrt) {
|
|
|
|
current_fbo=storage->frame.current_rt->buffers.fbo;
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.fbo);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,true);
|
|
|
|
|
|
Vector<GLenum> draw_buffers;
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT0);
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT1);
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT2);
|
|
if (state.used_sss) {
|
|
draw_buffers.push_back(GL_COLOR_ATTACHMENT3);
|
|
}
|
|
glDrawBuffers(draw_buffers.size(),draw_buffers.ptr());
|
|
|
|
Color black(0,0,0,0);
|
|
glClearBufferfv(GL_COLOR,1,black.components); // specular
|
|
glClearBufferfv(GL_COLOR,2,black.components); // normal metal rough
|
|
if (state.used_sss) {
|
|
glClearBufferfv(GL_COLOR,3,black.components); // normal metal rough
|
|
}
|
|
|
|
} else {
|
|
|
|
current_fbo = storage->frame.current_rt->buffers.alpha_fbo;
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
|
|
|
|
|
|
}
|
|
}
|
|
|
|
|
|
glClearDepth(1.0);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
|
|
Color clear_color(0,0,0,0);
|
|
|
|
RasterizerStorageGLES3::SkyBox *skybox=NULL;
|
|
GLuint env_radiance_tex=0;
|
|
|
|
if (!env || env->bg_mode==VS::ENV_BG_CLEAR_COLOR) {
|
|
|
|
if (storage->frame.clear_request) {
|
|
|
|
clear_color = storage->frame.clear_request_color.to_linear();
|
|
storage->frame.clear_request=false;
|
|
|
|
}
|
|
|
|
} else if (env->bg_mode==VS::ENV_BG_COLOR) {
|
|
|
|
clear_color = env->bg_color.to_linear();
|
|
storage->frame.clear_request=false;
|
|
} else if (env->bg_mode==VS::ENV_BG_SKYBOX) {
|
|
|
|
skybox = storage->skybox_owner.getornull(env->skybox);
|
|
|
|
if (skybox) {
|
|
env_radiance_tex=skybox->radiance;
|
|
}
|
|
storage->frame.clear_request=false;
|
|
|
|
} else {
|
|
storage->frame.clear_request=false;
|
|
}
|
|
|
|
glClearBufferfv(GL_COLOR,0,clear_color.components); // specular
|
|
|
|
|
|
state.texscreen_copied=false;
|
|
|
|
glBlendEquation(GL_FUNC_ADD);
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
glDisable(GL_BLEND);
|
|
|
|
render_list.sort_by_key(false);
|
|
|
|
if (storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_TRANSPARENT]) {
|
|
glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
|
} else {
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
}
|
|
|
|
|
|
|
|
if (state.directional_light_count==0) {
|
|
directional_light=NULL;
|
|
_render_list(render_list.elements,render_list.element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,false,false,false,shadow_atlas!=NULL);
|
|
} else {
|
|
for(int i=0;i<state.directional_light_count;i++) {
|
|
directional_light=directional_lights[i];
|
|
if (i>0) {
|
|
glEnable(GL_BLEND);
|
|
}
|
|
_setup_directional_light(i,p_cam_transform.affine_inverse(),shadow_atlas!=NULL);
|
|
_render_list(render_list.elements,render_list.element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,false,false,i>0,shadow_atlas!=NULL);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_MULTIPLE_RENDER_TARGETS,false);
|
|
|
|
if (use_mrt) {
|
|
GLenum gldb = GL_COLOR_ATTACHMENT0;
|
|
glDrawBuffers(1,&gldb);
|
|
}
|
|
|
|
if (env && env->bg_mode==VS::ENV_BG_SKYBOX) {
|
|
|
|
if (use_mrt) {
|
|
glBindFramebuffer(GL_FRAMEBUFFER,storage->frame.current_rt->buffers.alpha_fbo); //switch to alpha fbo for skybox, only diffuse/ambient matters
|
|
}
|
|
|
|
_draw_skybox(skybox,p_cam_projection,p_cam_transform,storage->frame.current_rt && storage->frame.current_rt->flags[RasterizerStorage::RENDER_TARGET_VFLIP],env->skybox_scale);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//_render_list_forward(&alpha_render_list,camera_transform,camera_transform_inverse,camera_projection,false,fragment_lighting,true);
|
|
//glColorMask(1,1,1,1);
|
|
|
|
// state.scene_shader.set_conditional( SceneShaderGLES3::USE_FOG,false);
|
|
|
|
|
|
if (use_mrt) {
|
|
_render_mrts(env,p_cam_projection);
|
|
}
|
|
|
|
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
|
|
glEnable(GL_BLEND);
|
|
glDepthMask(GL_TRUE);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
render_list.sort_by_depth(true);
|
|
|
|
if (state.directional_light_count==0) {
|
|
directional_light=NULL;
|
|
_render_list(&render_list.elements[render_list.max_elements-render_list.alpha_element_count],render_list.alpha_element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,true,false,false,shadow_atlas!=NULL);
|
|
} else {
|
|
for(int i=0;i<state.directional_light_count;i++) {
|
|
directional_light=directional_lights[i];
|
|
_setup_directional_light(i,p_cam_transform.affine_inverse(),shadow_atlas!=NULL);
|
|
_render_list(&render_list.elements[render_list.max_elements-render_list.alpha_element_count],render_list.alpha_element_count,p_cam_transform,p_cam_projection,env_radiance_tex,false,true,false,i>0,shadow_atlas!=NULL);
|
|
|
|
}
|
|
}
|
|
|
|
if (probe) {
|
|
//rendering a probe, do no more!
|
|
return;
|
|
}
|
|
|
|
|
|
_post_process(env,p_cam_projection);
|
|
|
|
|
|
if (false && shadow_atlas) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,shadow_atlas->depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
|
|
|
|
}
|
|
|
|
if (false && storage->frame.current_rt) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,exposure_shrink[4].color);
|
|
// glBindTexture(GL_TEXTURE_2D,storage->frame.current_rt->exposure.color);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/16,storage->frame.current_rt->height/16),Rect2(0,0,1,1));
|
|
|
|
}
|
|
|
|
if (false && reflection_atlas && storage->frame.current_rt) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,reflection_atlas->color);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
|
|
|
|
}
|
|
|
|
if (false && directional_shadow.fbo) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
|
|
|
|
}
|
|
|
|
if (false && env_radiance_tex) {
|
|
|
|
//_copy_texture_to_front_buffer(shadow_atlas->depth);
|
|
storage->canvas->canvas_begin();
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,env_radiance_tex);
|
|
storage->canvas->draw_generic_textured_rect(Rect2(0,0,storage->frame.current_rt->width/2,storage->frame.current_rt->height/2),Rect2(0,0,1,1));
|
|
|
|
}
|
|
|
|
|
|
#if 0
|
|
if (use_fb) {
|
|
|
|
|
|
|
|
for(int i=0;i<VS::ARRAY_MAX;i++) {
|
|
glDisableVertexAttribArray(i);
|
|
}
|
|
glBindBuffer(GL_ARRAY_BUFFER,0);
|
|
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,0);
|
|
glDisable(GL_BLEND);
|
|
glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_CULL_FACE);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
glDepthMask(false);
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
|
|
|
|
int hdr_tm = current_env->fx_param[VS::ENV_FX_PARAM_HDR_TONEMAPPER];
|
|
switch(hdr_tm) {
|
|
case VS::ENV_FX_HDR_TONE_MAPPER_LINEAR: {
|
|
|
|
|
|
} break;
|
|
case VS::ENV_FX_HDR_TONE_MAPPER_LOG: {
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,true);
|
|
|
|
} break;
|
|
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT: {
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
|
|
} break;
|
|
case VS::ENV_FX_HDR_TONE_MAPPER_REINHARDT_AUTOWHITE: {
|
|
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,true);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,true);
|
|
} break;
|
|
}
|
|
|
|
|
|
_process_hdr();
|
|
}
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
|
|
_process_glow_bloom();
|
|
int glow_transfer_mode=current_env->fx_param[VS::ENV_FX_PARAM_GLOW_BLUR_BLEND_MODE];
|
|
if (glow_transfer_mode==1)
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,true);
|
|
if (glow_transfer_mode==2)
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,true);
|
|
}
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER, current_rt?current_rt->fbo:base_framebuffer);
|
|
|
|
Size2 size;
|
|
if (current_rt) {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, current_rt->fbo);
|
|
glViewport( 0,0,viewport.width,viewport.height);
|
|
size=Size2(viewport.width,viewport.height);
|
|
} else {
|
|
glBindFramebuffer(GL_FRAMEBUFFER, base_framebuffer);
|
|
glViewport( viewport.x, window_size.height-(viewport.height+viewport.y), viewport.width,viewport.height );
|
|
size=Size2(viewport.width,viewport.height);
|
|
}
|
|
|
|
//time to copy!!!
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,current_env && current_env->fx_enabled[VS::ENV_FX_BCS]);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,current_env && current_env->fx_enabled[VS::ENV_FX_SRGB]);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,current_env && current_env->fx_enabled[VS::ENV_FX_HDR]);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,true);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,current_env && current_env->fx_enabled[VS::ENV_FX_FXAA]);
|
|
|
|
copy_shader.bind();
|
|
//copy_shader.set_uniform(CopyShaderGLES2::SOURCE,0);
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_GLOW]) {
|
|
|
|
glActiveTexture(GL_TEXTURE1);
|
|
glBindTexture(GL_TEXTURE_2D, framebuffer.blur[0].color );
|
|
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::GLOW_SOURCE),1);
|
|
|
|
}
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR]) {
|
|
|
|
glActiveTexture(GL_TEXTURE2);
|
|
glBindTexture(GL_TEXTURE_2D, current_vd->lum_color );
|
|
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::HDR_SOURCE),2);
|
|
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_EXPOSURE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_EXPOSURE]));
|
|
copy_shader.set_uniform(CopyShaderGLES2::TONEMAP_WHITE,float(current_env->fx_param[VS::ENV_FX_PARAM_HDR_WHITE]));
|
|
|
|
}
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_FXAA])
|
|
copy_shader.set_uniform(CopyShaderGLES2::PIXEL_SIZE,Size2(1.0/size.x,1.0/size.y));
|
|
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_BCS]) {
|
|
|
|
Vector3 bcs;
|
|
bcs.x=current_env->fx_param[VS::ENV_FX_PARAM_BCS_BRIGHTNESS];
|
|
bcs.y=current_env->fx_param[VS::ENV_FX_PARAM_BCS_CONTRAST];
|
|
bcs.z=current_env->fx_param[VS::ENV_FX_PARAM_BCS_SATURATION];
|
|
copy_shader.set_uniform(CopyShaderGLES2::BCS,bcs);
|
|
}
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D, framebuffer.color );
|
|
glUniform1i(copy_shader.get_uniform_location(CopyShaderGLES2::SOURCE),0);
|
|
|
|
_copy_screen_quad();
|
|
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_BCS,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_SRGB,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_HDR,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_NO_ALPHA,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_FXAA,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SCREEN,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_GLOW_SOFTLIGHT,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_REINHARDT_TONEMAPPER,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_AUTOWHITE,false);
|
|
copy_shader.set_conditional(CopyShaderGLES2::USE_LOG_TONEMAPPER,false);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::USE_8BIT_HDR,false);
|
|
|
|
|
|
if (current_env && current_env->fx_enabled[VS::ENV_FX_HDR] && GLOBAL_DEF("rasterizer/debug_hdr",false)) {
|
|
_debug_luminances();
|
|
}
|
|
}
|
|
|
|
current_env=NULL;
|
|
current_debug=VS::SCENARIO_DEBUG_DISABLED;
|
|
if (GLOBAL_DEF("rasterizer/debug_shadow_maps",false)) {
|
|
_debug_shadows();
|
|
}
|
|
// _debug_luminances();
|
|
// _debug_samplers();
|
|
|
|
if (using_canvas_bg) {
|
|
using_canvas_bg=false;
|
|
glColorMask(1,1,1,1); //don't touch alpha
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void RasterizerSceneGLES3::render_shadow(RID p_light,RID p_shadow_atlas,int p_pass,InstanceBase** p_cull_result,int p_cull_count) {
|
|
|
|
render_pass++;
|
|
|
|
directional_light=NULL;
|
|
|
|
LightInstance *light_instance = light_instance_owner.getornull(p_light);
|
|
ERR_FAIL_COND(!light_instance);
|
|
RasterizerStorageGLES3::Light *light = storage->light_owner.getornull(light_instance->light);
|
|
ERR_FAIL_COND(!light);
|
|
|
|
uint32_t x,y,width,height,vp_height;
|
|
|
|
|
|
float dp_direction=0.0;
|
|
float zfar=0;
|
|
bool flip_facing=false;
|
|
int custom_vp_size=0;
|
|
GLuint fbo;
|
|
int current_cubemap=-1;
|
|
float bias=0;
|
|
float normal_bias=0;
|
|
|
|
CameraMatrix light_projection;
|
|
Transform light_transform;
|
|
|
|
|
|
if (light->type==VS::LIGHT_DIRECTIONAL) {
|
|
//set pssm stuff
|
|
if (light_instance->last_scene_shadow_pass!=scene_pass) {
|
|
//assign rect if unassigned
|
|
light_instance->light_directional_index = directional_shadow.current_light;
|
|
light_instance->last_scene_shadow_pass=scene_pass;
|
|
directional_shadow.current_light++;
|
|
|
|
if (directional_shadow.light_count==1) {
|
|
light_instance->directional_rect=Rect2(0,0,directional_shadow.size,directional_shadow.size);
|
|
} else if (directional_shadow.light_count==2) {
|
|
light_instance->directional_rect=Rect2(0,0,directional_shadow.size,directional_shadow.size/2);
|
|
if (light_instance->light_directional_index==1) {
|
|
light_instance->directional_rect.pos.x+=light_instance->directional_rect.size.x;
|
|
}
|
|
} else { //3 and 4
|
|
light_instance->directional_rect=Rect2(0,0,directional_shadow.size/2,directional_shadow.size/2);
|
|
if (light_instance->light_directional_index&1) {
|
|
light_instance->directional_rect.pos.x+=light_instance->directional_rect.size.x;
|
|
}
|
|
if (light_instance->light_directional_index/2) {
|
|
light_instance->directional_rect.pos.y+=light_instance->directional_rect.size.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
light_projection=light_instance->shadow_transform[p_pass].camera;
|
|
light_transform=light_instance->shadow_transform[p_pass].transform;
|
|
|
|
x=light_instance->directional_rect.pos.x;
|
|
y=light_instance->directional_rect.pos.y;
|
|
width=light_instance->directional_rect.size.x;
|
|
height=light_instance->directional_rect.size.y;
|
|
|
|
|
|
|
|
if (light->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
|
|
|
|
|
|
width/=2;
|
|
height/=2;
|
|
|
|
if (p_pass==0) {
|
|
|
|
} else if (p_pass==1) {
|
|
x+=width;
|
|
} else if (p_pass==2) {
|
|
y+=height;
|
|
} else if (p_pass==3) {
|
|
x+=width;
|
|
y+=height;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (light->directional_shadow_mode==VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
|
|
|
|
height/=2;
|
|
|
|
if (p_pass==0) {
|
|
|
|
} else {
|
|
y+=height;
|
|
}
|
|
|
|
}
|
|
|
|
zfar=light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
|
|
normal_bias=light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
|
|
fbo=directional_shadow.fbo;
|
|
vp_height=directional_shadow.size;
|
|
|
|
} else {
|
|
//set from shadow atlas
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas);
|
|
ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
|
|
|
|
fbo=shadow_atlas->fbo;
|
|
vp_height=shadow_atlas->size;
|
|
|
|
uint32_t key = shadow_atlas->shadow_owners[p_light];
|
|
|
|
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT)&0x3;
|
|
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
ERR_FAIL_INDEX(shadow,shadow_atlas->quadrants[quadrant].shadows.size());
|
|
|
|
uint32_t quadrant_size = shadow_atlas->size>>1;
|
|
|
|
x=(quadrant&1)*quadrant_size;
|
|
y=(quadrant>>1)*quadrant_size;
|
|
|
|
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
|
|
x+=(shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
y+=(shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
|
|
|
|
width=shadow_size;
|
|
height=shadow_size;
|
|
|
|
if (light->type==VS::LIGHT_OMNI) {
|
|
|
|
|
|
if (light->omni_shadow_mode==VS::LIGHT_OMNI_SHADOW_CUBE) {
|
|
|
|
int cubemap_index=shadow_cubemaps.size()-1;
|
|
|
|
for(int i=shadow_cubemaps.size()-1;i>=0;i--) {
|
|
//find appropriate cubemap to render to
|
|
if (shadow_cubemaps[i].size>shadow_size*2)
|
|
break;
|
|
|
|
cubemap_index=i;
|
|
}
|
|
|
|
fbo=shadow_cubemaps[cubemap_index].fbo_id[p_pass];
|
|
light_projection=light_instance->shadow_transform[0].camera;
|
|
light_transform=light_instance->shadow_transform[0].transform;
|
|
custom_vp_size=shadow_cubemaps[cubemap_index].size;
|
|
zfar=light->param[VS::LIGHT_PARAM_RANGE];
|
|
|
|
current_cubemap=cubemap_index;
|
|
|
|
|
|
} else {
|
|
|
|
light_projection=light_instance->shadow_transform[0].camera;
|
|
light_transform=light_instance->shadow_transform[0].transform;
|
|
|
|
if (light->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
height/=2;
|
|
y+=p_pass*height;
|
|
} else {
|
|
width/=2;
|
|
x+=p_pass*width;
|
|
|
|
}
|
|
|
|
dp_direction = p_pass==0?1.0:-1.0;
|
|
flip_facing = (p_pass == 1);
|
|
zfar=light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW_DUAL_PARABOLOID,true);
|
|
}
|
|
|
|
} else if (light->type==VS::LIGHT_SPOT) {
|
|
|
|
light_projection=light_instance->shadow_transform[0].camera;
|
|
light_transform=light_instance->shadow_transform[0].transform;
|
|
|
|
dp_direction = 1.0;
|
|
flip_facing = false;
|
|
zfar=light->param[VS::LIGHT_PARAM_RANGE];
|
|
bias=light->param[VS::LIGHT_PARAM_SHADOW_BIAS];
|
|
normal_bias=light->param[VS::LIGHT_PARAM_SHADOW_NORMAL_BIAS];
|
|
}
|
|
|
|
}
|
|
|
|
//todo hacer que se redibuje cuando corresponde
|
|
|
|
|
|
render_list.clear();
|
|
_fill_render_list(p_cull_result,p_cull_count,true);
|
|
|
|
render_list.sort_by_depth(false); //shadow is front to back for performance
|
|
|
|
glDepthMask(true);
|
|
glColorMask(1,1,1,1);
|
|
glDisable(GL_BLEND);
|
|
glDisable(GL_DITHER);
|
|
glEnable(GL_DEPTH_TEST);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,fbo);
|
|
|
|
if (custom_vp_size) {
|
|
glViewport(0,0,custom_vp_size,custom_vp_size);
|
|
glScissor(0,0,custom_vp_size,custom_vp_size);
|
|
|
|
|
|
} else {
|
|
glViewport(x,y,width,height);
|
|
glScissor(x,y,width,height);
|
|
}
|
|
|
|
glEnable(GL_SCISSOR_TEST);
|
|
glClearDepth(1.0);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
|
|
state.ubo_data.shadow_z_offset=bias;
|
|
state.ubo_data.shadow_slope_scale=normal_bias;
|
|
state.ubo_data.shadow_dual_paraboloid_render_side=dp_direction;
|
|
state.ubo_data.shadow_dual_paraboloid_render_zfar=zfar;
|
|
|
|
_setup_environment(NULL,light_projection,light_transform);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW,true);
|
|
|
|
_render_list(render_list.elements,render_list.element_count,light_transform,light_projection,0,!flip_facing,false,true,false,false);
|
|
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW,false);
|
|
state.scene_shader.set_conditional(SceneShaderGLES3::RENDER_SHADOW_DUAL_PARABOLOID,false);
|
|
|
|
|
|
if (light->type==VS::LIGHT_OMNI && light->omni_shadow_mode==VS::LIGHT_OMNI_SHADOW_CUBE && p_pass==5) {
|
|
//convert the chosen cubemap to dual paraboloid!
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
|
|
|
|
glBindFramebuffer(GL_FRAMEBUFFER,shadow_atlas->fbo);
|
|
state.cube_to_dp_shader.bind();
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP,shadow_cubemaps[current_cubemap].cubemap);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_COMPARE_MODE, GL_NONE);
|
|
glDisable(GL_CULL_FACE);
|
|
|
|
for(int i=0;i<2;i++) {
|
|
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FLIP,i==1);
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_NEAR,light_projection.get_z_near());
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::Z_FAR,light_projection.get_z_far());
|
|
state.cube_to_dp_shader.set_uniform(CubeToDpShaderGLES3::BIAS,light->param[VS::LIGHT_PARAM_SHADOW_BIAS]);
|
|
|
|
uint32_t local_width=width,local_height=height;
|
|
uint32_t local_x=x,local_y=y;
|
|
if (light->omni_shadow_detail==VS::LIGHT_OMNI_SHADOW_DETAIL_HORIZONTAL) {
|
|
|
|
local_height/=2;
|
|
local_y+=i*local_height;
|
|
} else {
|
|
local_width/=2;
|
|
local_x+=i*local_width;
|
|
}
|
|
|
|
glViewport(local_x,local_y,local_width,local_height);
|
|
glScissor(local_x,local_y,local_width,local_height);
|
|
glEnable(GL_SCISSOR_TEST);
|
|
glClearDepth(1.0);
|
|
glClear(GL_DEPTH_BUFFER_BIT);
|
|
glDisable(GL_SCISSOR_TEST);
|
|
//glDisable(GL_DEPTH_TEST);
|
|
glDisable(GL_BLEND);
|
|
|
|
_copy_screen();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
glColorMask(1,1,1,1);
|
|
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::set_scene_pass(uint64_t p_pass) {
|
|
scene_pass=p_pass;
|
|
}
|
|
|
|
bool RasterizerSceneGLES3::free(RID p_rid) {
|
|
|
|
if (light_instance_owner.owns(p_rid)) {
|
|
|
|
|
|
LightInstance *light_instance = light_instance_owner.getptr(p_rid);
|
|
|
|
//remove from shadow atlases..
|
|
for(Set<RID>::Element *E=light_instance->shadow_atlases.front();E;E=E->next()) {
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(E->get());
|
|
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
|
|
uint32_t key = shadow_atlas->shadow_owners[p_rid];
|
|
uint32_t q = (key>>ShadowAtlas::QUADRANT_SHIFT)&0x3;
|
|
uint32_t s = key&ShadowAtlas::SHADOW_INDEX_MASK;
|
|
|
|
shadow_atlas->quadrants[q].shadows[s].owner=RID();
|
|
shadow_atlas->shadow_owners.erase(p_rid);
|
|
}
|
|
|
|
|
|
light_instance_owner.free(p_rid);
|
|
memdelete(light_instance);
|
|
|
|
} else if (shadow_atlas_owner.owns(p_rid)) {
|
|
|
|
ShadowAtlas *shadow_atlas = shadow_atlas_owner.get(p_rid);
|
|
shadow_atlas_set_size(p_rid,0);
|
|
shadow_atlas_owner.free(p_rid);
|
|
memdelete(shadow_atlas);
|
|
} else if (reflection_atlas_owner.owns(p_rid)) {
|
|
|
|
ReflectionAtlas *reflection_atlas = reflection_atlas_owner.get(p_rid);
|
|
reflection_atlas_set_size(p_rid,0);
|
|
reflection_atlas_owner.free(p_rid);
|
|
memdelete(reflection_atlas);
|
|
} else if (reflection_probe_instance_owner.owns(p_rid)) {
|
|
|
|
ReflectionProbeInstance *reflection_instance = reflection_probe_instance_owner.get(p_rid);
|
|
|
|
reflection_probe_release_atlas_index(p_rid);
|
|
reflection_probe_instance_owner.free(p_rid);
|
|
memdelete(reflection_instance);
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
|
|
static _FORCE_INLINE_ float radicalInverse_VdC(uint32_t bits) {
|
|
bits = (bits << 16u) | (bits >> 16u);
|
|
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
|
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
|
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
|
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
|
return float(bits) * 2.3283064365386963e-10f; // / 0x100000000
|
|
}
|
|
|
|
static _FORCE_INLINE_ Vector2 Hammersley(uint32_t i, uint32_t N) {
|
|
return Vector2(float(i) / float(N), radicalInverse_VdC(i));
|
|
}
|
|
|
|
static _FORCE_INLINE_ Vector3 ImportanceSampleGGX(Vector2 Xi, float Roughness, Vector3 N) {
|
|
float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph]
|
|
|
|
// Compute distribution direction
|
|
float Phi = 2.0f * Math_PI * Xi.x;
|
|
float CosTheta = Math::sqrt((1.0f - Xi.y) / (1.0f + (a*a - 1.0f) * Xi.y));
|
|
float SinTheta = Math::sqrt((float)Math::abs(1.0f - CosTheta * CosTheta));
|
|
|
|
// Convert to spherical direction
|
|
Vector3 H;
|
|
H.x = SinTheta * Math::cos(Phi);
|
|
H.y = SinTheta * Math::sin(Phi);
|
|
H.z = CosTheta;
|
|
|
|
Vector3 UpVector = Math::abs(N.z) < 0.999 ? Vector3(0.0, 0.0, 1.0) : Vector3(1.0, 0.0, 0.0);
|
|
Vector3 TangentX = UpVector.cross(N);
|
|
TangentX.normalize();
|
|
Vector3 TangentY = N.cross(TangentX);
|
|
|
|
// Tangent to world space
|
|
return TangentX * H.x + TangentY * H.y + N * H.z;
|
|
}
|
|
|
|
static _FORCE_INLINE_ float GGX(float NdotV, float a) {
|
|
float k = a / 2.0;
|
|
return NdotV / (NdotV * (1.0 - k) + k);
|
|
}
|
|
|
|
// http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html
|
|
float _FORCE_INLINE_ G_Smith(float a, float nDotV, float nDotL)
|
|
{
|
|
return GGX(nDotL, a * a) * GGX(nDotV, a * a);
|
|
}
|
|
|
|
void RasterizerSceneGLES3::_generate_brdf() {
|
|
|
|
int brdf_size=GLOBAL_DEF("rendering/gles3/brdf_texture_size",64);
|
|
|
|
|
|
|
|
DVector<uint8_t> brdf;
|
|
brdf.resize(brdf_size*brdf_size*2);
|
|
|
|
DVector<uint8_t>::Write w = brdf.write();
|
|
|
|
|
|
for(int i=0;i<brdf_size;i++) {
|
|
for(int j=0;j<brdf_size;j++) {
|
|
|
|
float Roughness = float(j)/(brdf_size-1);
|
|
float NoV = float(i+1)/(brdf_size); //avoid storing nov0
|
|
|
|
Vector3 V;
|
|
V.x = Math::sqrt( 1.0 - NoV * NoV );
|
|
V.y = 0.0;
|
|
V.z = NoV;
|
|
|
|
Vector3 N = Vector3(0.0, 0.0, 1.0);
|
|
|
|
float A = 0;
|
|
float B = 0;
|
|
|
|
for(int s=0;s<512;s++) {
|
|
|
|
|
|
Vector2 xi = Hammersley(s,512);
|
|
Vector3 H = ImportanceSampleGGX( xi, Roughness, N );
|
|
Vector3 L = 2.0 * V.dot(H) * H - V;
|
|
|
|
float NoL = CLAMP( L.z, 0.0, 1.0 );
|
|
float NoH = CLAMP( H.z, 0.0, 1.0 );
|
|
float VoH = CLAMP( V.dot(H), 0.0, 1.0 );
|
|
|
|
if ( NoL > 0.0 ) {
|
|
float G = G_Smith( Roughness, NoV, NoL );
|
|
float G_Vis = G * VoH / (NoH * NoV);
|
|
float Fc = pow(1.0 - VoH, 5.0);
|
|
|
|
A += (1.0 - Fc) * G_Vis;
|
|
B += Fc * G_Vis;
|
|
}
|
|
}
|
|
|
|
A/=512.0;
|
|
B/=512.0;
|
|
|
|
int tofs = ((brdf_size-j-1)*brdf_size+i)*2;
|
|
w[tofs+0]=CLAMP(A*255,0,255);
|
|
w[tofs+1]=CLAMP(B*255,0,255);
|
|
}
|
|
}
|
|
|
|
|
|
//set up brdf texture
|
|
|
|
|
|
glGenTextures(1, &state.brdf_texture);
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
glBindTexture(GL_TEXTURE_2D,state.brdf_texture);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG8, brdf_size, brdf_size, 0, GL_RG, GL_UNSIGNED_BYTE,w.ptr());
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glBindTexture(GL_TEXTURE_2D,0);
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::initialize() {
|
|
|
|
|
|
render_pass=0;
|
|
|
|
state.scene_shader.init();
|
|
|
|
default_shader = storage->shader_create(VS::SHADER_SPATIAL);
|
|
default_material = storage->material_create();
|
|
storage->material_set_shader(default_material,default_shader);
|
|
|
|
default_shader_twosided = storage->shader_create(VS::SHADER_SPATIAL);
|
|
default_material_twosided = storage->material_create();
|
|
storage->shader_set_code(default_shader_twosided,"render_mode cull_disabled;\n");
|
|
storage->material_set_shader(default_material_twosided,default_shader_twosided);
|
|
|
|
|
|
glGenBuffers(1, &state.scene_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.scene_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::SceneDataUBO), &state.scene_ubo, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.env_radiance_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.env_radiance_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(State::EnvironmentRadianceUBO), &state.env_radiance_ubo, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
|
|
render_list.max_elements=GLOBAL_DEF("rendering/gles3/max_renderable_elements",(int)RenderList::DEFAULT_MAX_ELEMENTS);
|
|
if (render_list.max_elements>1000000)
|
|
render_list.max_elements=1000000;
|
|
if (render_list.max_elements<1024)
|
|
render_list.max_elements=1024;
|
|
|
|
|
|
|
|
{
|
|
//quad buffers
|
|
|
|
glGenBuffers(1,&state.skybox_verts);
|
|
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
|
|
glBufferData(GL_ARRAY_BUFFER,sizeof(Vector3)*8,NULL,GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
|
|
|
|
|
|
glGenVertexArrays(1,&state.skybox_array);
|
|
glBindVertexArray(state.skybox_array);
|
|
glBindBuffer(GL_ARRAY_BUFFER,state.skybox_verts);
|
|
glVertexAttribPointer(VS::ARRAY_VERTEX,3,GL_FLOAT,GL_FALSE,sizeof(Vector3)*2,0);
|
|
glEnableVertexAttribArray(VS::ARRAY_VERTEX);
|
|
glVertexAttribPointer(VS::ARRAY_TEX_UV,3,GL_FLOAT,GL_FALSE,sizeof(Vector3)*2,((uint8_t*)NULL)+sizeof(Vector3));
|
|
glEnableVertexAttribArray(VS::ARRAY_TEX_UV);
|
|
glBindVertexArray(0);
|
|
glBindBuffer(GL_ARRAY_BUFFER,0); //unbind
|
|
}
|
|
render_list.init();
|
|
state.cube_to_dp_shader.init();
|
|
_generate_brdf();
|
|
|
|
shadow_atlas_realloc_tolerance_msec=500;
|
|
|
|
|
|
|
|
|
|
|
|
int max_shadow_cubemap_sampler_size=512;
|
|
|
|
int cube_size = max_shadow_cubemap_sampler_size;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
|
|
while(cube_size>=32) {
|
|
|
|
ShadowCubeMap cube;
|
|
cube.size=cube_size;
|
|
|
|
glGenTextures(1,&cube.cubemap);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP,cube.cubemap);
|
|
//gen cubemap first
|
|
for(int i=0;i<6;i++) {
|
|
|
|
glTexImage2D(_cube_side_enum[i], 0, GL_DEPTH_COMPONENT, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
}
|
|
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
// Remove artifact on the edges of the shadowmap
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
|
|
//gen renderbuffers second, because it needs a complete cubemap
|
|
for(int i=0;i<6;i++) {
|
|
|
|
glGenFramebuffers(1, &cube.fbo_id[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,_cube_side_enum[i], cube.cubemap, 0);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
|
|
}
|
|
|
|
shadow_cubemaps.push_back(cube);
|
|
|
|
cube_size>>=1;
|
|
}
|
|
|
|
{
|
|
//directional light shadow
|
|
directional_shadow.light_count=0;
|
|
directional_shadow.size=nearest_power_of_2(GLOBAL_DEF("renderer/directional_shadow_size",2048));
|
|
glGenFramebuffers(1,&directional_shadow.fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER,directional_shadow.fbo);
|
|
glGenTextures(1,&directional_shadow.depth);
|
|
glBindTexture(GL_TEXTURE_2D,directional_shadow.depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, directional_shadow.size, directional_shadow.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D, directional_shadow.depth, 0);
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
if (status!=GL_FRAMEBUFFER_COMPLETE) {
|
|
ERR_PRINT("Directional shadow framebuffer status invalid");
|
|
}
|
|
}
|
|
|
|
{
|
|
//spot and omni ubos
|
|
|
|
int max_ubo_size;
|
|
glGetIntegerv(GL_MAX_UNIFORM_BLOCK_SIZE,&max_ubo_size);
|
|
const int ubo_light_size=160;
|
|
state.ubo_light_size=ubo_light_size;
|
|
state.max_ubo_lights=MIN(RenderList::MAX_LIGHTS,max_ubo_size/ubo_light_size);
|
|
print_line("max ubo light: "+itos(state.max_ubo_lights));
|
|
|
|
state.spot_array_tmp = (uint8_t*)memalloc(ubo_light_size*state.max_ubo_lights);
|
|
state.omni_array_tmp = (uint8_t*)memalloc(ubo_light_size*state.max_ubo_lights);
|
|
|
|
|
|
glGenBuffers(1, &state.spot_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.spot_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size*state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.omni_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.omni_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, ubo_light_size*state.max_ubo_lights, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
glGenBuffers(1, &state.directional_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.directional_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(LightDataUBO), NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
state.max_forward_lights_per_object=8;
|
|
|
|
|
|
state.scene_shader.add_custom_define("#define MAX_LIGHT_DATA_STRUCTS "+itos(state.max_ubo_lights)+"\n");
|
|
state.scene_shader.add_custom_define("#define MAX_FORWARD_LIGHTS "+itos(state.max_forward_lights_per_object)+"\n");
|
|
|
|
state.max_ubo_reflections=MIN(RenderList::MAX_REFLECTIONS,max_ubo_size/sizeof(ReflectionProbeDataUBO));
|
|
print_line("max ubo reflections: "+itos(state.max_ubo_reflections)+" ubo size: "+itos(sizeof(ReflectionProbeDataUBO)));
|
|
|
|
state.reflection_array_tmp = (uint8_t*)memalloc(sizeof(ReflectionProbeDataUBO)*state.max_ubo_reflections);
|
|
|
|
glGenBuffers(1, &state.reflection_array_ubo);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, state.reflection_array_ubo);
|
|
glBufferData(GL_UNIFORM_BUFFER, sizeof(ReflectionProbeDataUBO)*state.max_ubo_reflections, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_UNIFORM_BUFFER, 0);
|
|
|
|
state.scene_shader.add_custom_define("#define MAX_REFLECTION_DATA_STRUCTS "+itos(state.max_ubo_reflections)+"\n");
|
|
|
|
state.max_skeleton_bones=MIN(2048,max_ubo_size/(12*sizeof(float)));
|
|
state.scene_shader.add_custom_define("#define MAX_SKELETON_BONES "+itos(state.max_skeleton_bones)+"\n");
|
|
|
|
|
|
}
|
|
|
|
GLOBAL_DEF("rendering/gles3/shadow_filter_mode",1);
|
|
Globals::get_singleton()->set_custom_property_info("rendering/gles3/shadow_filter_mode",PropertyInfo(Variant::INT,"rendering/gles3/shadow_filter_mode",PROPERTY_HINT_ENUM,"Disabled,PCF5,PCF13"));
|
|
shadow_filter_mode=SHADOW_FILTER_NEAREST;
|
|
|
|
{ //reflection cubemaps
|
|
int max_reflection_cubemap_sampler_size=512;
|
|
|
|
int cube_size = max_reflection_cubemap_sampler_size;
|
|
|
|
glActiveTexture(GL_TEXTURE0);
|
|
|
|
bool use_float=true;
|
|
|
|
GLenum internal_format = use_float?GL_RGBA16F:GL_RGB10_A2;
|
|
GLenum format = GL_RGBA;
|
|
GLenum type = use_float?GL_HALF_FLOAT:GL_UNSIGNED_INT_2_10_10_10_REV;
|
|
|
|
while(cube_size>=32) {
|
|
|
|
ReflectionCubeMap cube;
|
|
cube.size=cube_size;
|
|
|
|
glGenTextures(1,&cube.depth);
|
|
glBindTexture(GL_TEXTURE_2D,cube.depth);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, cube.size, cube.size, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, NULL);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
|
|
glGenTextures(1,&cube.cubemap);
|
|
glBindTexture(GL_TEXTURE_CUBE_MAP,cube.cubemap);
|
|
//gen cubemap first
|
|
for(int i=0;i<6;i++) {
|
|
|
|
glTexImage2D(_cube_side_enum[i], 0, internal_format, cube.size, cube.size, 0, format, type, NULL);
|
|
}
|
|
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
// Remove artifact on the edges of the reflectionmap
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
|
|
|
//gen renderbuffers second, because it needs a complete cubemap
|
|
for(int i=0;i<6;i++) {
|
|
|
|
glGenFramebuffers(1, &cube.fbo_id[i]);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, cube.fbo_id[i]);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,_cube_side_enum[i], cube.cubemap, 0);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,GL_TEXTURE_2D, cube.depth, 0);
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
|
|
}
|
|
|
|
reflection_cubemaps.push_back(cube);
|
|
|
|
cube_size>>=1;
|
|
}
|
|
}
|
|
|
|
{
|
|
|
|
|
|
uint32_t immediate_buffer_size=GLOBAL_DEF("rendering/gles3/immediate_buffer_size_kb",2048);
|
|
|
|
glGenBuffers(1, &state.immediate_buffer);
|
|
glBindBuffer(GL_ARRAY_BUFFER, state.immediate_buffer);
|
|
glBufferData(GL_ARRAY_BUFFER, immediate_buffer_size*1024, NULL, GL_DYNAMIC_DRAW);
|
|
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
|
|
|
glGenVertexArrays(1,&state.immediate_array);
|
|
|
|
|
|
|
|
}
|
|
|
|
#ifdef GLES_OVER_GL
|
|
//"desktop" opengl needs this.
|
|
glEnable(GL_PROGRAM_POINT_SIZE);
|
|
|
|
#endif
|
|
|
|
state.resolve_shader.init();
|
|
state.ssr_shader.init();
|
|
state.effect_blur_shader.init();
|
|
state.sss_shader.init();
|
|
state.ssao_minify_shader.init();
|
|
state.ssao_shader.init();
|
|
state.ssao_blur_shader.init();
|
|
state.exposure_shader.init();
|
|
state.tonemap_shader.init();
|
|
|
|
|
|
{
|
|
GLOBAL_DEF("rendering/gles3/subsurface_scattering/quality",1);
|
|
Globals::get_singleton()->set_custom_property_info("rendering/gles3/subsurface_scattering/quality",PropertyInfo(Variant::INT,"rendering/gles3/subsurface_scattering/quality",PROPERTY_HINT_ENUM,"Low,Medium,High"));
|
|
GLOBAL_DEF("rendering/gles3/subsurface_scattering/max_size",1.0);
|
|
Globals::get_singleton()->set_custom_property_info("rendering/gles3/subsurface_scattering/max_size",PropertyInfo(Variant::INT,"rendering/gles3/subsurface_scattering/max_size",PROPERTY_HINT_RANGE,"0.01,8,0.01"));
|
|
GLOBAL_DEF("rendering/gles3/subsurface_scattering/follow_surface",false);
|
|
}
|
|
|
|
exposure_shrink_size=243;
|
|
int max_exposure_shrink_size=exposure_shrink_size;
|
|
|
|
while(max_exposure_shrink_size>0) {
|
|
|
|
RasterizerStorageGLES3::RenderTarget::Exposure e;
|
|
|
|
glGenFramebuffers(1, &e.fbo);
|
|
glBindFramebuffer(GL_FRAMEBUFFER, e.fbo);
|
|
|
|
glGenTextures(1, &e.color);
|
|
glBindTexture(GL_TEXTURE_2D, e.color);
|
|
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, max_exposure_shrink_size, max_exposure_shrink_size, 0, GL_RED, GL_FLOAT, NULL);
|
|
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, e.color, 0);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
|
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
|
|
|
exposure_shrink.push_back(e);
|
|
max_exposure_shrink_size/=3;
|
|
|
|
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
|
ERR_CONTINUE(status!=GL_FRAMEBUFFER_COMPLETE);
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void RasterizerSceneGLES3::iteration() {
|
|
|
|
shadow_filter_mode=ShadowFilterMode(int(Globals::get_singleton()->get("rendering/gles3/shadow_filter_mode")));
|
|
subsurface_scatter_follow_surface=Globals::get_singleton()->get("rendering/gles3/subsurface_scattering/follow_surface");
|
|
subsurface_scatter_quality=SubSurfaceScatterQuality(int(Globals::get_singleton()->get("rendering/gles3/subsurface_scattering/quality")));
|
|
subsurface_scatter_size=Globals::get_singleton()->get("rendering/gles3/subsurface_scattering/max_size");
|
|
}
|
|
|
|
void RasterizerSceneGLES3::finalize(){
|
|
|
|
|
|
}
|
|
|
|
|
|
RasterizerSceneGLES3::RasterizerSceneGLES3()
|
|
{
|
|
|
|
}
|