godot/servers/physics/collision_solver_sw.cpp

404 lines
12 KiB
C++

/*************************************************************************/
/* collision_solver_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_sw.h"
#include "collision_solver_sat.h"
#include "gjk_epa.h"
#include "collision_solver_sat.h"
#define collision_solver sat_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW*>(p_shape_A);
if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(),max_supports,supports,support_count);
bool found=false;
for(int i=0;i<support_count;i++) {
supports[i] = p_transform_B.xform( supports[i] );
if (p.distance_to(supports[i])>=0)
continue;
found=true;
Vector3 support_A = p.project(supports[i]);
if (p_result_callback) {
if (p_swap_result)
p_result_callback(supports[i],support_A,p_userdata);
else
p_result_callback(support_A,supports[i],p_userdata);
}
}
return found;
}
bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
const RayShapeSW *ray = static_cast<const RayShapeSW*>(p_shape_A);
Vector3 from = p_transform_A.origin;
Vector3 to = from+p_transform_A.basis.get_axis(2)*ray->get_length();
Vector3 support_A=to;
Transform ai = p_transform_B.affine_inverse();
from = ai.xform(from);
to = ai.xform(to);
Vector3 p,n;
if (!p_shape_B->intersect_segment(from,to,p,n))
return false;
Vector3 support_B=p_transform_B.xform(p);
if (p_result_callback) {
if (p_swap_result)
p_result_callback(support_B,support_A,p_userdata);
else
p_result_callback(support_A,support_B,p_userdata);
}
return true;
}
struct _ConcaveCollisionInfo {
const Transform *transform_A;
const ShapeSW *shape_A;
const Transform *transform_B;
CollisionSolverSW::CallbackResult result_callback;
void *userdata;
bool swap_result;
bool collided;
int aabb_tests;
int collisions;
bool tested;
float margin_A;
float margin_B;
Vector3 close_A,close_B;
};
void CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo*)(p_userdata);
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex,*cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,NULL,cinfo.margin_A,cinfo.margin_B);
if (!collided)
return;
cinfo.collided=true;
cinfo.collisions++;
}
bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,float p_margin_A,float p_margin_B) {
const ConcaveShapeSW *concave_B=static_cast<const ConcaveShapeSW*>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A=&p_transform_A;
cinfo.shape_A=p_shape_A;
cinfo.transform_B=&p_transform_B;
cinfo.result_callback=p_result_callback;
cinfo.userdata=p_userdata;
cinfo.swap_result=p_swap_result;
cinfo.collided=false;
cinfo.collisions=0;
cinfo.margin_A=p_margin_A;
cinfo.margin_B=p_margin_B;
cinfo.aabb_tests=0;
Transform rel_transform = p_transform_A;
rel_transform.origin-=p_transform_B.origin;
//quickly compute a local AABB
AABB local_aabb;
for(int i=0;i<3;i++) {
Vector3 axis( p_transform_B.basis.get_axis(i) );
float axis_scale = 1.0/axis.length();
axis*=axis_scale;
float smin,smax;
p_shape_A->project_range(axis,rel_transform,smin,smax);
smin-=p_margin_A;
smax+=p_margin_A;
smin*=axis_scale;
smax*=axis_scale;
local_aabb.pos[i]=smin;
local_aabb.size[i]=smax-smin;
}
concave_B->cull(local_aabb,concave_callback,&cinfo);
//print_line("COL AABB TESTS: "+itos(cinfo.aabb_tests));
return cinfo.collided;
}
bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,Vector3 *r_sep_axis,float p_margin_A,float p_margin_B) {
PhysicsServer::ShapeType type_A=p_shape_A->get_type();
PhysicsServer::ShapeType type_B=p_shape_B->get_type();
bool concave_A=p_shape_A->is_concave();
bool concave_B=p_shape_B->is_concave();
bool swap = false;
if (type_A>type_B) {
SWAP(type_A,type_B);
SWAP(concave_A,concave_B);
swap=true;
}
if (type_A==PhysicsServer::SHAPE_PLANE) {
if (type_B==PhysicsServer::SHAPE_PLANE)
return false;
if (type_B==PhysicsServer::SHAPE_RAY) {
return false;
}
if (swap) {
return solve_static_plane(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
} else {
return solve_static_plane(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
}
} else if (type_A==PhysicsServer::SHAPE_RAY) {
if (type_B==PhysicsServer::SHAPE_RAY)
return false;
if (swap) {
return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
} else {
return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
}
} else if (concave_B) {
if (concave_A)
return false;
if (!swap)
return solve_concave(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,p_margin_A,p_margin_B);
else
return solve_concave(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,p_margin_A,p_margin_B);
} else {
return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback,p_userdata,false,r_sep_axis,p_margin_A,p_margin_B);
}
return false;
}
void CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) {
_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo*)(p_userdata);
cinfo.aabb_tests++;
if (cinfo.collided)
return;
Vector3 close_A,close_B;
cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A,*cinfo.transform_A,p_convex,*cinfo.transform_B,close_A,close_B);
if (cinfo.collided)
return;
if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
cinfo.close_A=close_A;
cinfo.close_B=close_B;
cinfo.tested=true;
}
cinfo.collisions++;
}
bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,Vector3& r_point_A,Vector3& r_point_B) {
const PlaneShapeSW *plane = static_cast<const PlaneShapeSW*>(p_shape_A);
if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE)
return false;
Plane p = p_transform_A.xform(plane->get_plane());
static const int max_supports = 16;
Vector3 supports[max_supports];
int support_count;
p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(),max_supports,supports,support_count);
bool collided=false;
Vector3 closest;
float closest_d;
for(int i=0;i<support_count;i++) {
supports[i] = p_transform_B.xform( supports[i] );
real_t d = p.distance_to(supports[i]);
if (i==0 || d<closest_d) {
closest=supports[i];
closest_d=d;
if (d<=0)
collided=true;
}
}
r_point_A=p.project(closest);
r_point_B=closest;
return collided;
}
bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,Vector3& r_point_A,Vector3& r_point_B,const AABB& p_concave_hint,Vector3 *r_sep_axis) {
if (p_shape_A->is_concave())
return false;
if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE) {
Vector3 a,b;
bool col = solve_distance_plane(p_shape_B,p_transform_B,p_shape_A,p_transform_A,a,b);
r_point_A=b;
r_point_B=a;
return !col;
} else if (p_shape_B->is_concave()) {
if (p_shape_A->is_concave())
return false;
const ConcaveShapeSW *concave_B=static_cast<const ConcaveShapeSW*>(p_shape_B);
_ConcaveCollisionInfo cinfo;
cinfo.transform_A=&p_transform_A;
cinfo.shape_A=p_shape_A;
cinfo.transform_B=&p_transform_B;
cinfo.result_callback=NULL;
cinfo.userdata=NULL;
cinfo.swap_result=false;
cinfo.collided=false;
cinfo.collisions=0;
cinfo.aabb_tests=0;
cinfo.tested=false;
Transform rel_transform = p_transform_A;
rel_transform.origin-=p_transform_B.origin;
//quickly compute a local AABB
bool use_cc_hint=p_concave_hint!=AABB();
AABB cc_hint_aabb;
if (use_cc_hint) {
cc_hint_aabb=p_concave_hint;
cc_hint_aabb.pos-=p_transform_B.origin;
}
AABB local_aabb;
for(int i=0;i<3;i++) {
Vector3 axis( p_transform_B.basis.get_axis(i) );
float axis_scale = 1.0/axis.length();
axis*=axis_scale;
float smin,smax;
if (use_cc_hint) {
cc_hint_aabb.project_range_in_plane(Plane(axis,0),smin,smax);
} else {
p_shape_A->project_range(axis,rel_transform,smin,smax);
}
smin*=axis_scale;
smax*=axis_scale;
local_aabb.pos[i]=smin;
local_aabb.size[i]=smax-smin;
}
concave_B->cull(local_aabb,concave_distance_callback,&cinfo);
if (!cinfo.collided) {
// print_line(itos(cinfo.tested));
r_point_A=cinfo.close_A;
r_point_B=cinfo.close_B;
}
//print_line("DIST AABB TESTS: "+itos(cinfo.aabb_tests));
return !cinfo.collided;
} else {
return gjk_epa_calculate_distance(p_shape_A,p_transform_A,p_shape_B,p_transform_B,r_point_A,r_point_B); //should pass sepaxis..
}
return false;
}