godot/thirdparty/bullet/Bullet3OpenCL/RigidBody/b3GpuPgsContactSolver.cpp

1709 lines
50 KiB
C++

bool gUseLargeBatches = false;
bool gCpuBatchContacts = false;
bool gCpuSolveConstraint = false;
bool gCpuRadixSort=false;
bool gCpuSetSortData = false;
bool gCpuSortContactsDeterminism = false;
bool gUseCpuCopyConstraints = false;
bool gUseScanHost = false;
bool gReorderContactsOnCpu = false;
bool optionalSortContactsDeterminism = true;
#include "b3GpuPgsContactSolver.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3BoundSearchCL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3PrefixScanCL.h"
#include <string.h>
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Config.h"
#include "b3Solver.h"
#define B3_SOLVER_SETUP_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup.cl"
#define B3_SOLVER_SETUP2_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverSetup2.cl"
#define B3_SOLVER_CONTACT_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveContact.cl"
#define B3_SOLVER_FRICTION_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solveFriction.cl"
#define B3_BATCHING_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernels.cl"
#define B3_BATCHING_NEW_PATH "src/Bullet3OpenCL/RigidBody/kernels/batchingKernelsNew.cl"
#include "kernels/solverSetup.h"
#include "kernels/solverSetup2.h"
#include "kernels/solveContact.h"
#include "kernels/solveFriction.h"
#include "kernels/batchingKernels.h"
#include "kernels/batchingKernelsNew.h"
struct b3GpuBatchingPgsSolverInternalData
{
cl_context m_context;
cl_device_id m_device;
cl_command_queue m_queue;
int m_pairCapacity;
int m_nIterations;
b3OpenCLArray<b3GpuConstraint4>* m_contactCGPU;
b3OpenCLArray<unsigned int>* m_numConstraints;
b3OpenCLArray<unsigned int>* m_offsets;
b3Solver* m_solverGPU;
cl_kernel m_batchingKernel;
cl_kernel m_batchingKernelNew;
cl_kernel m_solveContactKernel;
cl_kernel m_solveSingleContactKernel;
cl_kernel m_solveSingleFrictionKernel;
cl_kernel m_solveFrictionKernel;
cl_kernel m_contactToConstraintKernel;
cl_kernel m_setSortDataKernel;
cl_kernel m_reorderContactKernel;
cl_kernel m_copyConstraintKernel;
cl_kernel m_setDeterminismSortDataBodyAKernel;
cl_kernel m_setDeterminismSortDataBodyBKernel;
cl_kernel m_setDeterminismSortDataChildShapeAKernel;
cl_kernel m_setDeterminismSortDataChildShapeBKernel;
class b3RadixSort32CL* m_sort32;
class b3BoundSearchCL* m_search;
class b3PrefixScanCL* m_scan;
b3OpenCLArray<b3SortData>* m_sortDataBuffer;
b3OpenCLArray<b3Contact4>* m_contactBuffer;
b3OpenCLArray<b3RigidBodyData>* m_bodyBufferGPU;
b3OpenCLArray<b3InertiaData>* m_inertiaBufferGPU;
b3OpenCLArray<b3Contact4>* m_pBufContactOutGPU;
b3OpenCLArray<b3Contact4>* m_pBufContactOutGPUCopy;
b3OpenCLArray<b3SortData>* m_contactKeyValues;
b3AlignedObjectArray<unsigned int> m_idxBuffer;
b3AlignedObjectArray<b3SortData> m_sortData;
b3AlignedObjectArray<b3Contact4> m_old;
b3AlignedObjectArray<int> m_batchSizes;
b3OpenCLArray<int>* m_batchSizesGpu;
};
b3GpuPgsContactSolver::b3GpuPgsContactSolver(cl_context ctx,cl_device_id device, cl_command_queue q,int pairCapacity)
{
m_debugOutput=0;
m_data = new b3GpuBatchingPgsSolverInternalData;
m_data->m_context = ctx;
m_data->m_device = device;
m_data->m_queue = q;
m_data->m_pairCapacity = pairCapacity;
m_data->m_nIterations = 4;
m_data->m_batchSizesGpu = new b3OpenCLArray<int>(ctx,q);
m_data->m_bodyBufferGPU = new b3OpenCLArray<b3RigidBodyData>(ctx,q);
m_data->m_inertiaBufferGPU = new b3OpenCLArray<b3InertiaData>(ctx,q);
m_data->m_pBufContactOutGPU = new b3OpenCLArray<b3Contact4>(ctx,q);
m_data->m_pBufContactOutGPUCopy = new b3OpenCLArray<b3Contact4>(ctx,q);
m_data->m_contactKeyValues = new b3OpenCLArray<b3SortData>(ctx,q);
m_data->m_solverGPU = new b3Solver(ctx,device,q,512*1024);
m_data->m_sort32 = new b3RadixSort32CL(ctx,device,m_data->m_queue);
m_data->m_scan = new b3PrefixScanCL(ctx,device,m_data->m_queue,B3_SOLVER_N_CELLS);
m_data->m_search = new b3BoundSearchCL(ctx,device,m_data->m_queue,B3_SOLVER_N_CELLS);
const int sortSize = B3NEXTMULTIPLEOF( pairCapacity, 512 );
m_data->m_sortDataBuffer = new b3OpenCLArray<b3SortData>(ctx,m_data->m_queue,sortSize);
m_data->m_contactBuffer = new b3OpenCLArray<b3Contact4>(ctx,m_data->m_queue);
m_data->m_numConstraints = new b3OpenCLArray<unsigned int>(ctx,m_data->m_queue,B3_SOLVER_N_CELLS);
m_data->m_numConstraints->resize(B3_SOLVER_N_CELLS);
m_data->m_contactCGPU = new b3OpenCLArray<b3GpuConstraint4>(ctx,q,pairCapacity);
m_data->m_offsets = new b3OpenCLArray<unsigned int>( ctx,m_data->m_queue,B3_SOLVER_N_CELLS);
m_data->m_offsets->resize(B3_SOLVER_N_CELLS);
const char* additionalMacros = "";
//const char* srcFileNameForCaching="";
cl_int pErrNum;
const char* batchKernelSource = batchingKernelsCL;
const char* batchKernelNewSource = batchingKernelsNewCL;
const char* solverSetupSource = solverSetupCL;
const char* solverSetup2Source = solverSetup2CL;
const char* solveContactSource = solveContactCL;
const char* solveFrictionSource = solveFrictionCL;
{
cl_program solveContactProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solveContactSource, &pErrNum,additionalMacros, B3_SOLVER_CONTACT_KERNEL_PATH);
b3Assert(solveContactProg);
cl_program solveFrictionProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solveFrictionSource, &pErrNum,additionalMacros, B3_SOLVER_FRICTION_KERNEL_PATH);
b3Assert(solveFrictionProg);
cl_program solverSetup2Prog= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solverSetup2Source, &pErrNum,additionalMacros, B3_SOLVER_SETUP2_KERNEL_PATH);
b3Assert(solverSetup2Prog);
cl_program solverSetupProg= b3OpenCLUtils::compileCLProgramFromString( ctx, device, solverSetupSource, &pErrNum,additionalMacros, B3_SOLVER_SETUP_KERNEL_PATH);
b3Assert(solverSetupProg);
m_data->m_solveFrictionKernel= b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveFrictionSource, "BatchSolveKernelFriction", &pErrNum, solveFrictionProg,additionalMacros );
b3Assert(m_data->m_solveFrictionKernel);
m_data->m_solveContactKernel= b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveContactSource, "BatchSolveKernelContact", &pErrNum, solveContactProg,additionalMacros );
b3Assert(m_data->m_solveContactKernel);
m_data->m_solveSingleContactKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveContactSource, "solveSingleContactKernel", &pErrNum, solveContactProg,additionalMacros );
b3Assert(m_data->m_solveSingleContactKernel);
m_data->m_solveSingleFrictionKernel =b3OpenCLUtils::compileCLKernelFromString( ctx, device, solveFrictionSource, "solveSingleFrictionKernel", &pErrNum, solveFrictionProg,additionalMacros );
b3Assert(m_data->m_solveSingleFrictionKernel);
m_data->m_contactToConstraintKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetupSource, "ContactToConstraintKernel", &pErrNum, solverSetupProg,additionalMacros );
b3Assert(m_data->m_contactToConstraintKernel);
m_data->m_setSortDataKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetSortDataKernel", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_setSortDataKernel);
m_data->m_setDeterminismSortDataBodyAKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetDeterminismSortDataBodyA", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_setDeterminismSortDataBodyAKernel);
m_data->m_setDeterminismSortDataBodyBKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetDeterminismSortDataBodyB", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_setDeterminismSortDataBodyBKernel);
m_data->m_setDeterminismSortDataChildShapeAKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetDeterminismSortDataChildShapeA", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_setDeterminismSortDataChildShapeAKernel);
m_data->m_setDeterminismSortDataChildShapeBKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "SetDeterminismSortDataChildShapeB", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_setDeterminismSortDataChildShapeBKernel);
m_data->m_reorderContactKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "ReorderContactKernel", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_reorderContactKernel);
m_data->m_copyConstraintKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, solverSetup2Source, "CopyConstraintKernel", &pErrNum, solverSetup2Prog,additionalMacros );
b3Assert(m_data->m_copyConstraintKernel);
}
{
cl_program batchingProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, batchKernelSource, &pErrNum,additionalMacros, B3_BATCHING_PATH);
b3Assert(batchingProg);
m_data->m_batchingKernel = b3OpenCLUtils::compileCLKernelFromString( ctx, device, batchKernelSource, "CreateBatches", &pErrNum, batchingProg,additionalMacros );
b3Assert(m_data->m_batchingKernel);
}
{
cl_program batchingNewProg = b3OpenCLUtils::compileCLProgramFromString( ctx, device, batchKernelNewSource, &pErrNum,additionalMacros, B3_BATCHING_NEW_PATH);
b3Assert(batchingNewProg);
m_data->m_batchingKernelNew = b3OpenCLUtils::compileCLKernelFromString( ctx, device, batchKernelNewSource, "CreateBatchesNew", &pErrNum, batchingNewProg,additionalMacros );
b3Assert(m_data->m_batchingKernelNew);
}
}
b3GpuPgsContactSolver::~b3GpuPgsContactSolver()
{
delete m_data->m_batchSizesGpu;
delete m_data->m_bodyBufferGPU;
delete m_data->m_inertiaBufferGPU;
delete m_data->m_pBufContactOutGPU;
delete m_data->m_pBufContactOutGPUCopy;
delete m_data->m_contactKeyValues;
delete m_data->m_contactCGPU;
delete m_data->m_numConstraints;
delete m_data->m_offsets;
delete m_data->m_sortDataBuffer;
delete m_data->m_contactBuffer;
delete m_data->m_sort32;
delete m_data->m_scan;
delete m_data->m_search;
delete m_data->m_solverGPU;
clReleaseKernel(m_data->m_batchingKernel);
clReleaseKernel(m_data->m_batchingKernelNew);
clReleaseKernel(m_data->m_solveSingleContactKernel);
clReleaseKernel(m_data->m_solveSingleFrictionKernel);
clReleaseKernel( m_data->m_solveContactKernel);
clReleaseKernel( m_data->m_solveFrictionKernel);
clReleaseKernel( m_data->m_contactToConstraintKernel);
clReleaseKernel( m_data->m_setSortDataKernel);
clReleaseKernel( m_data->m_reorderContactKernel);
clReleaseKernel( m_data->m_copyConstraintKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataBodyAKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataBodyBKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataChildShapeAKernel);
clReleaseKernel(m_data->m_setDeterminismSortDataChildShapeBKernel);
delete m_data;
}
struct b3ConstraintCfg
{
b3ConstraintCfg( float dt = 0.f ): m_positionDrift( 0.005f ), m_positionConstraintCoeff( 0.2f ), m_dt(dt), m_staticIdx(0) {}
float m_positionDrift;
float m_positionConstraintCoeff;
float m_dt;
bool m_enableParallelSolve;
float m_batchCellSize;
int m_staticIdx;
};
void b3GpuPgsContactSolver::solveContactConstraintBatchSizes( const b3OpenCLArray<b3RigidBodyData>* bodyBuf, const b3OpenCLArray<b3InertiaData>* shapeBuf,
b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n ,int maxNumBatches,int numIterations, const b3AlignedObjectArray<int>* batchSizes)//const b3OpenCLArray<int>* gpuBatchSizes)
{
B3_PROFILE("solveContactConstraintBatchSizes");
int numBatches = batchSizes->size()/B3_MAX_NUM_BATCHES;
for(int iter=0; iter<numIterations; iter++)
{
for (int cellId=0;cellId<numBatches;cellId++)
{
int offset = 0;
for (int ii=0;ii<B3_MAX_NUM_BATCHES;ii++)
{
int numInBatch = batchSizes->at(cellId*B3_MAX_NUM_BATCHES+ii);
if (!numInBatch)
break;
{
b3LauncherCL launcher( m_data->m_queue, m_data->m_solveSingleContactKernel,"m_solveSingleContactKernel" );
launcher.setBuffer(bodyBuf->getBufferCL() );
launcher.setBuffer(shapeBuf->getBufferCL() );
launcher.setBuffer( constraint->getBufferCL() );
launcher.setConst(cellId);
launcher.setConst(offset);
launcher.setConst(numInBatch);
launcher.launch1D(numInBatch);
offset+=numInBatch;
}
}
}
}
for(int iter=0; iter<numIterations; iter++)
{
for (int cellId=0;cellId<numBatches;cellId++)
{
int offset = 0;
for (int ii=0;ii<B3_MAX_NUM_BATCHES;ii++)
{
int numInBatch = batchSizes->at(cellId*B3_MAX_NUM_BATCHES+ii);
if (!numInBatch)
break;
{
b3LauncherCL launcher( m_data->m_queue, m_data->m_solveSingleFrictionKernel,"m_solveSingleFrictionKernel" );
launcher.setBuffer(bodyBuf->getBufferCL() );
launcher.setBuffer(shapeBuf->getBufferCL() );
launcher.setBuffer( constraint->getBufferCL() );
launcher.setConst(cellId);
launcher.setConst(offset);
launcher.setConst(numInBatch);
launcher.launch1D(numInBatch);
offset+=numInBatch;
}
}
}
}
}
void b3GpuPgsContactSolver::solveContactConstraint( const b3OpenCLArray<b3RigidBodyData>* bodyBuf, const b3OpenCLArray<b3InertiaData>* shapeBuf,
b3OpenCLArray<b3GpuConstraint4>* constraint, void* additionalData, int n ,int maxNumBatches,int numIterations, const b3AlignedObjectArray<int>* batchSizes)//,const b3OpenCLArray<int>* gpuBatchSizes)
{
//sort the contacts
b3Int4 cdata = b3MakeInt4( n, 0, 0, 0 );
{
const int nn = B3_SOLVER_N_CELLS;
cdata.x = 0;
cdata.y = maxNumBatches;//250;
int numWorkItems = 64*nn/B3_SOLVER_N_BATCHES;
#ifdef DEBUG_ME
SolverDebugInfo* debugInfo = new SolverDebugInfo[numWorkItems];
adl::b3OpenCLArray<SolverDebugInfo> gpuDebugInfo(data->m_device,numWorkItems);
#endif
{
B3_PROFILE("m_batchSolveKernel iterations");
for(int iter=0; iter<numIterations; iter++)
{
for(int ib=0; ib<B3_SOLVER_N_BATCHES; ib++)
{
#ifdef DEBUG_ME
memset(debugInfo,0,sizeof(SolverDebugInfo)*numWorkItems);
gpuDebugInfo.write(debugInfo,numWorkItems);
#endif
cdata.z = ib;
b3LauncherCL launcher( m_data->m_queue, m_data->m_solveContactKernel,"m_solveContactKernel" );
#if 1
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( bodyBuf->getBufferCL() ),
b3BufferInfoCL( shapeBuf->getBufferCL() ),
b3BufferInfoCL( constraint->getBufferCL() ),
b3BufferInfoCL( m_data->m_solverGPU->m_numConstraints->getBufferCL() ),
b3BufferInfoCL( m_data->m_solverGPU->m_offsets->getBufferCL() )
#ifdef DEBUG_ME
, b3BufferInfoCL(&gpuDebugInfo)
#endif
};
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setBuffer( m_data->m_solverGPU->m_batchSizes.getBufferCL());
//launcher.setConst( cdata.x );
launcher.setConst( cdata.y );
launcher.setConst( cdata.z );
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
launcher.setConst( nSplit );
launcher.launch1D( numWorkItems, 64 );
#else
const char* fileName = "m_batchSolveKernel.bin";
FILE* f = fopen(fileName,"rb");
if (f)
{
int sizeInBytes=0;
if (fseek(f, 0, SEEK_END) || (sizeInBytes = ftell(f)) == EOF || fseek(f, 0, SEEK_SET))
{
printf("error, cannot get file size\n");
exit(0);
}
unsigned char* buf = (unsigned char*) malloc(sizeInBytes);
fread(buf,sizeInBytes,1,f);
int serializedBytes = launcher.deserializeArgs(buf, sizeInBytes,m_context);
int num = *(int*)&buf[serializedBytes];
launcher.launch1D( num);
//this clFinish is for testing on errors
clFinish(m_queue);
}
#endif
#ifdef DEBUG_ME
clFinish(m_queue);
gpuDebugInfo.read(debugInfo,numWorkItems);
clFinish(m_queue);
for (int i=0;i<numWorkItems;i++)
{
if (debugInfo[i].m_valInt2>0)
{
printf("debugInfo[i].m_valInt2 = %d\n",i,debugInfo[i].m_valInt2);
}
if (debugInfo[i].m_valInt3>0)
{
printf("debugInfo[i].m_valInt3 = %d\n",i,debugInfo[i].m_valInt3);
}
}
#endif //DEBUG_ME
}
}
clFinish(m_data->m_queue);
}
cdata.x = 1;
bool applyFriction=true;
if (applyFriction)
{
B3_PROFILE("m_batchSolveKernel iterations2");
for(int iter=0; iter<numIterations; iter++)
{
for(int ib=0; ib<B3_SOLVER_N_BATCHES; ib++)
{
cdata.z = ib;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( bodyBuf->getBufferCL() ),
b3BufferInfoCL( shapeBuf->getBufferCL() ),
b3BufferInfoCL( constraint->getBufferCL() ),
b3BufferInfoCL( m_data->m_solverGPU->m_numConstraints->getBufferCL() ),
b3BufferInfoCL( m_data->m_solverGPU->m_offsets->getBufferCL() )
#ifdef DEBUG_ME
,b3BufferInfoCL(&gpuDebugInfo)
#endif //DEBUG_ME
};
b3LauncherCL launcher( m_data->m_queue, m_data->m_solveFrictionKernel,"m_solveFrictionKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setBuffer( m_data->m_solverGPU->m_batchSizes.getBufferCL());
//launcher.setConst( cdata.x );
launcher.setConst( cdata.y );
launcher.setConst( cdata.z );
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
launcher.setConst( nSplit );
launcher.launch1D( 64*nn/B3_SOLVER_N_BATCHES, 64 );
}
}
clFinish(m_data->m_queue);
}
#ifdef DEBUG_ME
delete[] debugInfo;
#endif //DEBUG_ME
}
}
static bool sortfnc(const b3SortData& a,const b3SortData& b)
{
return (a.m_key<b.m_key);
}
static bool b3ContactCmp(const b3Contact4& p, const b3Contact4& q)
{
return ((p.m_bodyAPtrAndSignBit<q.m_bodyAPtrAndSignBit) ||
((p.m_bodyAPtrAndSignBit==q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit<q.m_bodyBPtrAndSignBit)) ||
((p.m_bodyAPtrAndSignBit==q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit==q.m_bodyBPtrAndSignBit) && p.m_childIndexA<q.m_childIndexA ) ||
((p.m_bodyAPtrAndSignBit==q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit==q.m_bodyBPtrAndSignBit) && p.m_childIndexA<q.m_childIndexA ) ||
((p.m_bodyAPtrAndSignBit==q.m_bodyAPtrAndSignBit) && (p.m_bodyBPtrAndSignBit==q.m_bodyBPtrAndSignBit) && p.m_childIndexA==q.m_childIndexA && p.m_childIndexB<q.m_childIndexB)
);
}
#define USE_SPATIAL_BATCHING 1
#define USE_4x4_GRID 1
#ifndef USE_SPATIAL_BATCHING
static const int gridTable4x4[] =
{
0,1,17,16,
1,2,18,19,
17,18,32,3,
16,19,3,34
};
static const int gridTable8x8[] =
{
0, 2, 3, 16, 17, 18, 19, 1,
66, 64, 80, 67, 82, 81, 65, 83,
131,144,128,130,147,129,145,146,
208,195,194,192,193,211,210,209,
21, 22, 23, 5, 4, 6, 7, 20,
86, 85, 69, 87, 70, 68, 84, 71,
151,133,149,150,135,148,132,134,
197,27,214,213,212,199,198,196
};
#endif
void SetSortDataCPU(b3Contact4* gContact, b3RigidBodyData* gBodies, b3SortData* gSortDataOut, int nContacts,float scale,const b3Int4& nSplit,int staticIdx)
{
for (int gIdx=0;gIdx<nContacts;gIdx++)
{
if( gIdx < nContacts )
{
int aPtrAndSignBit = gContact[gIdx].m_bodyAPtrAndSignBit;
int bPtrAndSignBit = gContact[gIdx].m_bodyBPtrAndSignBit;
int aIdx = abs(aPtrAndSignBit );
int bIdx = abs(bPtrAndSignBit);
bool aStatic = (aPtrAndSignBit<0) ||(aPtrAndSignBit==staticIdx);
#if USE_SPATIAL_BATCHING
int idx = (aStatic)? bIdx: aIdx;
b3Vector3 p = gBodies[idx].m_pos;
int xIdx = (int)((p.x-((p.x<0.f)?1.f:0.f))*scale) & (nSplit.x-1);
int yIdx = (int)((p.y-((p.y<0.f)?1.f:0.f))*scale) & (nSplit.y-1);
int zIdx = (int)((p.z-((p.z<0.f)?1.f:0.f))*scale) & (nSplit.z-1);
int newIndex = (xIdx+yIdx*nSplit.x+zIdx*nSplit.x*nSplit.y);
#else//USE_SPATIAL_BATCHING
bool bStatic = (bPtrAndSignBit<0) ||(bPtrAndSignBit==staticIdx);
#if USE_4x4_GRID
int aa = aIdx&3;
int bb = bIdx&3;
if (aStatic)
aa = bb;
if (bStatic)
bb = aa;
int gridIndex = aa + bb*4;
int newIndex = gridTable4x4[gridIndex];
#else//USE_4x4_GRID
int aa = aIdx&7;
int bb = bIdx&7;
if (aStatic)
aa = bb;
if (bStatic)
bb = aa;
int gridIndex = aa + bb*8;
int newIndex = gridTable8x8[gridIndex];
#endif//USE_4x4_GRID
#endif//USE_SPATIAL_BATCHING
gSortDataOut[gIdx].x = newIndex;
gSortDataOut[gIdx].y = gIdx;
}
else
{
gSortDataOut[gIdx].x = 0xffffffff;
}
}
}
void b3GpuPgsContactSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const b3Config& config, int static0Index)
{
B3_PROFILE("solveContacts");
m_data->m_bodyBufferGPU->setFromOpenCLBuffer(bodyBuf,numBodies);
m_data->m_inertiaBufferGPU->setFromOpenCLBuffer(inertiaBuf,numBodies);
m_data->m_pBufContactOutGPU->setFromOpenCLBuffer(contactBuf,numContacts);
if (optionalSortContactsDeterminism)
{
if (!gCpuSortContactsDeterminism)
{
B3_PROFILE("GPU Sort contact constraints (determinism)");
m_data->m_pBufContactOutGPUCopy->resize(numContacts);
m_data->m_contactKeyValues->resize(numContacts);
m_data->m_pBufContactOutGPU->copyToCL(m_data->m_pBufContactOutGPUCopy->getBufferCL(),numContacts,0,0);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataChildShapeBKernel,"m_setDeterminismSortDataChildShapeBKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D( numContacts, 64 );
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataChildShapeAKernel,"m_setDeterminismSortDataChildShapeAKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D( numContacts, 64 );
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataBodyBKernel,"m_setDeterminismSortDataBodyBKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D( numContacts, 64 );
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
b3LauncherCL launcher(m_data->m_queue, m_data->m_setDeterminismSortDataBodyAKernel,"m_setDeterminismSortDataBodyAKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst(numContacts);
launcher.launch1D( numContacts, 64 );
}
m_data->m_solverGPU->m_sort32->execute(*m_data->m_contactKeyValues);
{
B3_PROFILE("gpu reorderContactKernel (determinism)");
b3Int4 cdata;
cdata.x = numContacts;
//b3BufferInfoCL bInfo[] = { b3BufferInfoCL( m_data->m_pBufContactOutGPU->getBufferCL() ), b3BufferInfoCL( m_data->m_solverGPU->m_contactBuffer2->getBufferCL())
// , b3BufferInfoCL( m_data->m_solverGPU->m_sortDataBuffer->getBufferCL()) };
b3LauncherCL launcher(m_data->m_queue,m_data->m_solverGPU->m_reorderContactKernel,"m_reorderContactKernel");
launcher.setBuffer(m_data->m_pBufContactOutGPUCopy->getBufferCL());
launcher.setBuffer(m_data->m_pBufContactOutGPU->getBufferCL());
launcher.setBuffer(m_data->m_contactKeyValues->getBufferCL());
launcher.setConst( cdata );
launcher.launch1D( numContacts, 64 );
}
} else
{
B3_PROFILE("CPU Sort contact constraints (determinism)");
b3AlignedObjectArray<b3Contact4> cpuConstraints;
m_data->m_pBufContactOutGPU->copyToHost(cpuConstraints);
bool sort = true;
if (sort)
{
cpuConstraints.quickSort(b3ContactCmp);
for (int i=0;i<cpuConstraints.size();i++)
{
cpuConstraints[i].m_batchIdx = i;
}
}
m_data->m_pBufContactOutGPU->copyFromHost(cpuConstraints);
if (m_debugOutput==100)
{
for (int i=0;i<cpuConstraints.size();i++)
{
printf("c[%d].m_bodyA = %d, m_bodyB = %d, batchId = %d\n",i,cpuConstraints[i].m_bodyAPtrAndSignBit,cpuConstraints[i].m_bodyBPtrAndSignBit, cpuConstraints[i].m_batchIdx);
}
}
m_debugOutput++;
}
}
int nContactOut = m_data->m_pBufContactOutGPU->size();
bool useSolver = true;
if (useSolver)
{
float dt=1./60.;
b3ConstraintCfg csCfg( dt );
csCfg.m_enableParallelSolve = true;
csCfg.m_batchCellSize = 6;
csCfg.m_staticIdx = static0Index;
b3OpenCLArray<b3RigidBodyData>* bodyBuf = m_data->m_bodyBufferGPU;
void* additionalData = 0;//m_data->m_frictionCGPU;
const b3OpenCLArray<b3InertiaData>* shapeBuf = m_data->m_inertiaBufferGPU;
b3OpenCLArray<b3GpuConstraint4>* contactConstraintOut = m_data->m_contactCGPU;
int nContacts = nContactOut;
int maxNumBatches = 0;
if (!gUseLargeBatches)
{
if( m_data->m_solverGPU->m_contactBuffer2)
{
m_data->m_solverGPU->m_contactBuffer2->resize(nContacts);
}
if( m_data->m_solverGPU->m_contactBuffer2 == 0 )
{
m_data->m_solverGPU->m_contactBuffer2 = new b3OpenCLArray<b3Contact4>(m_data->m_context,m_data->m_queue, nContacts );
m_data->m_solverGPU->m_contactBuffer2->resize(nContacts);
}
//clFinish(m_data->m_queue);
{
B3_PROFILE("batching");
//@todo: just reserve it, without copy of original contact (unless we use warmstarting)
//const b3OpenCLArray<b3RigidBodyData>* bodyNative = bodyBuf;
{
//b3OpenCLArray<b3RigidBodyData>* bodyNative = b3OpenCLArrayUtils::map<adl::TYPE_CL, true>( data->m_device, bodyBuf );
//b3OpenCLArray<b3Contact4>* contactNative = b3OpenCLArrayUtils::map<adl::TYPE_CL, true>( data->m_device, contactsIn );
const int sortAlignment = 512; // todo. get this out of sort
if( csCfg.m_enableParallelSolve )
{
int sortSize = B3NEXTMULTIPLEOF( nContacts, sortAlignment );
b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
if (!gCpuSetSortData)
{ // 2. set cell idx
B3_PROFILE("GPU set cell idx");
struct CB
{
int m_nContacts;
int m_staticIdx;
float m_scale;
b3Int4 m_nSplit;
};
b3Assert( sortSize%64 == 0 );
CB cdata;
cdata.m_nContacts = nContacts;
cdata.m_staticIdx = csCfg.m_staticIdx;
cdata.m_scale = 1.f/csCfg.m_batchCellSize;
cdata.m_nSplit.x = B3_SOLVER_N_SPLIT_X;
cdata.m_nSplit.y = B3_SOLVER_N_SPLIT_Y;
cdata.m_nSplit.z = B3_SOLVER_N_SPLIT_Z;
m_data->m_solverGPU->m_sortDataBuffer->resize(nContacts);
b3BufferInfoCL bInfo[] = { b3BufferInfoCL( m_data->m_pBufContactOutGPU->getBufferCL() ), b3BufferInfoCL( bodyBuf->getBufferCL()), b3BufferInfoCL( m_data->m_solverGPU->m_sortDataBuffer->getBufferCL()) };
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_setSortDataKernel,"m_setSortDataKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata.m_nContacts );
launcher.setConst( cdata.m_scale );
launcher.setConst(cdata.m_nSplit);
launcher.setConst(cdata.m_staticIdx);
launcher.launch1D( sortSize, 64 );
} else
{
m_data->m_solverGPU->m_sortDataBuffer->resize(nContacts);
b3AlignedObjectArray<b3SortData> sortDataCPU;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataCPU);
b3AlignedObjectArray<b3Contact4> contactCPU;
m_data->m_pBufContactOutGPU->copyToHost(contactCPU);
b3AlignedObjectArray<b3RigidBodyData> bodiesCPU;
bodyBuf->copyToHost(bodiesCPU);
float scale = 1.f/csCfg.m_batchCellSize;
b3Int4 nSplit;
nSplit.x = B3_SOLVER_N_SPLIT_X;
nSplit.y = B3_SOLVER_N_SPLIT_Y;
nSplit.z = B3_SOLVER_N_SPLIT_Z;
SetSortDataCPU(&contactCPU[0], &bodiesCPU[0], &sortDataCPU[0], nContacts,scale,nSplit,csCfg.m_staticIdx);
m_data->m_solverGPU->m_sortDataBuffer->copyFromHost(sortDataCPU);
}
if (!gCpuRadixSort)
{ // 3. sort by cell idx
B3_PROFILE("gpuRadixSort");
//int n = B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT;
//int sortBit = 32;
//if( n <= 0xffff ) sortBit = 16;
//if( n <= 0xff ) sortBit = 8;
//adl::RadixSort<adl::TYPE_CL>::execute( data->m_sort, *data->m_sortDataBuffer, sortSize );
//adl::RadixSort32<adl::TYPE_CL>::execute( data->m_sort32, *data->m_sortDataBuffer, sortSize );
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
this->m_data->m_solverGPU->m_sort32->execute(keyValuesInOut);
} else
{
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
b3AlignedObjectArray<b3SortData> hostValues;
keyValuesInOut.copyToHost(hostValues);
hostValues.quickSort(sortfnc);
keyValuesInOut.copyFromHost(hostValues);
}
if (gUseScanHost)
{
// 4. find entries
B3_PROFILE("cpuBoundSearch");
b3AlignedObjectArray<unsigned int> countsHost;
countsNative->copyToHost(countsHost);
b3AlignedObjectArray<b3SortData> sortDataHost;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataHost);
//m_data->m_solverGPU->m_search->executeHost(*m_data->m_solverGPU->m_sortDataBuffer,nContacts,*countsNative,B3_SOLVER_N_CELLS,b3BoundSearchCL::COUNT);
m_data->m_solverGPU->m_search->executeHost(sortDataHost,nContacts,countsHost,B3_SOLVER_N_CELLS,b3BoundSearchCL::COUNT);
countsNative->copyFromHost(countsHost);
//adl::BoundSearch<adl::TYPE_CL>::execute( data->m_search, *data->m_sortDataBuffer, nContacts, *countsNative,
// B3_SOLVER_N_SPLIT*B3_SOLVER_N_SPLIT, adl::BoundSearchBase::COUNT );
//unsigned int sum;
//m_data->m_solverGPU->m_scan->execute(*countsNative,*offsetsNative, B3_SOLVER_N_CELLS);//,&sum );
b3AlignedObjectArray<unsigned int> offsetsHost;
offsetsHost.resize(offsetsNative->size());
m_data->m_solverGPU->m_scan->executeHost(countsHost,offsetsHost, B3_SOLVER_N_CELLS);//,&sum );
offsetsNative->copyFromHost(offsetsHost);
//printf("sum = %d\n",sum);
} else
{
// 4. find entries
B3_PROFILE("gpuBoundSearch");
m_data->m_solverGPU->m_search->execute(*m_data->m_solverGPU->m_sortDataBuffer,nContacts,*countsNative,B3_SOLVER_N_CELLS,b3BoundSearchCL::COUNT);
m_data->m_solverGPU->m_scan->execute(*countsNative,*offsetsNative, B3_SOLVER_N_CELLS);//,&sum );
}
if (nContacts)
{ // 5. sort constraints by cellIdx
if (gReorderContactsOnCpu)
{
B3_PROFILE("cpu m_reorderContactKernel");
b3AlignedObjectArray<b3SortData> sortDataHost;
m_data->m_solverGPU->m_sortDataBuffer->copyToHost(sortDataHost);
b3AlignedObjectArray<b3Contact4> inContacts;
b3AlignedObjectArray<b3Contact4> outContacts;
m_data->m_pBufContactOutGPU->copyToHost(inContacts);
outContacts.resize(inContacts.size());
for (int i=0;i<nContacts;i++)
{
int srcIdx = sortDataHost[i].y;
outContacts[i] = inContacts[srcIdx];
}
m_data->m_solverGPU->m_contactBuffer2->copyFromHost(outContacts);
/* "void ReorderContactKernel(__global struct b3Contact4Data* in, __global struct b3Contact4Data* out, __global int2* sortData, int4 cb )\n"
"{\n"
" int nContacts = cb.x;\n"
" int gIdx = GET_GLOBAL_IDX;\n"
" if( gIdx < nContacts )\n"
" {\n"
" int srcIdx = sortData[gIdx].y;\n"
" out[gIdx] = in[srcIdx];\n"
" }\n"
"}\n"
*/
} else
{
B3_PROFILE("gpu m_reorderContactKernel");
b3Int4 cdata;
cdata.x = nContacts;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( m_data->m_pBufContactOutGPU->getBufferCL() ),
b3BufferInfoCL( m_data->m_solverGPU->m_contactBuffer2->getBufferCL())
, b3BufferInfoCL( m_data->m_solverGPU->m_sortDataBuffer->getBufferCL()) };
b3LauncherCL launcher(m_data->m_queue,m_data->m_solverGPU->m_reorderContactKernel,"m_reorderContactKernel");
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( nContacts, 64 );
}
}
}
}
//clFinish(m_data->m_queue);
// {
// b3AlignedObjectArray<unsigned int> histogram;
// m_data->m_solverGPU->m_numConstraints->copyToHost(histogram);
// printf(",,,\n");
// }
if (nContacts)
{
if (gUseCpuCopyConstraints)
{
for (int i=0;i<nContacts;i++)
{
m_data->m_pBufContactOutGPU->copyFromOpenCLArray(*m_data->m_solverGPU->m_contactBuffer2);
// m_data->m_solverGPU->m_contactBuffer2->getBufferCL();
// m_data->m_pBufContactOutGPU->getBufferCL()
}
} else
{
B3_PROFILE("gpu m_copyConstraintKernel");
b3Int4 cdata; cdata.x = nContacts;
b3BufferInfoCL bInfo[] = {
b3BufferInfoCL( m_data->m_solverGPU->m_contactBuffer2->getBufferCL() ),
b3BufferInfoCL( m_data->m_pBufContactOutGPU->getBufferCL() )
};
b3LauncherCL launcher(m_data->m_queue, m_data->m_solverGPU->m_copyConstraintKernel,"m_copyConstraintKernel" );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) );
launcher.setConst( cdata );
launcher.launch1D( nContacts, 64 );
//we use the clFinish for proper benchmark/profile
clFinish(m_data->m_queue);
}
}
// bool compareGPU = false;
if (nContacts)
{
if (!gCpuBatchContacts)
{
B3_PROFILE("gpu batchContacts");
maxNumBatches = 250;//250;
m_data->m_solverGPU->batchContacts( m_data->m_pBufContactOutGPU, nContacts, m_data->m_solverGPU->m_numConstraints, m_data->m_solverGPU->m_offsets, csCfg.m_staticIdx );
clFinish(m_data->m_queue);
} else
{
B3_PROFILE("cpu batchContacts");
static b3AlignedObjectArray<b3Contact4> cpuContacts;
b3OpenCLArray<b3Contact4>* contactsIn = m_data->m_solverGPU->m_contactBuffer2;
{
B3_PROFILE("copyToHost");
contactsIn->copyToHost(cpuContacts);
}
b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
b3AlignedObjectArray<unsigned int> nNativeHost;
b3AlignedObjectArray<unsigned int> offsetsNativeHost;
{
B3_PROFILE("countsNative/offsetsNative copyToHost");
countsNative->copyToHost(nNativeHost);
offsetsNative->copyToHost(offsetsNativeHost);
}
int numNonzeroGrid=0;
if (gUseLargeBatches)
{
m_data->m_batchSizes.resize(B3_MAX_NUM_BATCHES);
int totalNumConstraints = cpuContacts.size();
//int simdWidth =numBodies+1;//-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3( &cpuContacts[0], totalNumConstraints, totalNumConstraints+1,csCfg.m_staticIdx ,numBodies,&m_data->m_batchSizes[0]); // on GPU
maxNumBatches = b3Max(numBatches,maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches>globalMaxBatch )
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n",maxNumBatches);
}
} else
{
m_data->m_batchSizes.resize(B3_SOLVER_N_CELLS*B3_MAX_NUM_BATCHES);
B3_PROFILE("cpu batch grid");
for(int i=0; i<B3_SOLVER_N_CELLS; i++)
{
int n = (nNativeHost)[i];
int offset = (offsetsNativeHost)[i];
if( n )
{
numNonzeroGrid++;
int simdWidth =numBodies+1;//-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3( &cpuContacts[0]+offset, n, simdWidth,csCfg.m_staticIdx ,numBodies,&m_data->m_batchSizes[i*B3_MAX_NUM_BATCHES]); // on GPU
maxNumBatches = b3Max(numBatches,maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches>globalMaxBatch )
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n",maxNumBatches);
}
//we use the clFinish for proper benchmark/profile
}
}
//clFinish(m_data->m_queue);
}
{
B3_PROFILE("m_contactBuffer->copyFromHost");
m_data->m_solverGPU->m_contactBuffer2->copyFromHost((b3AlignedObjectArray<b3Contact4>&)cpuContacts);
}
}
}
}
}
//printf("maxNumBatches = %d\n", maxNumBatches);
if (gUseLargeBatches)
{
if (nContacts)
{
B3_PROFILE("cpu batchContacts");
static b3AlignedObjectArray<b3Contact4> cpuContacts;
// b3OpenCLArray<b3Contact4>* contactsIn = m_data->m_solverGPU->m_contactBuffer2;
{
B3_PROFILE("copyToHost");
m_data->m_pBufContactOutGPU->copyToHost(cpuContacts);
}
// b3OpenCLArray<unsigned int>* countsNative = m_data->m_solverGPU->m_numConstraints;
// b3OpenCLArray<unsigned int>* offsetsNative = m_data->m_solverGPU->m_offsets;
// int numNonzeroGrid=0;
{
m_data->m_batchSizes.resize(B3_MAX_NUM_BATCHES);
int totalNumConstraints = cpuContacts.size();
// int simdWidth =numBodies+1;//-1;//64;//-1;//32;
int numBatches = sortConstraintByBatch3( &cpuContacts[0], totalNumConstraints, totalNumConstraints+1,csCfg.m_staticIdx ,numBodies,&m_data->m_batchSizes[0]); // on GPU
maxNumBatches = b3Max(numBatches,maxNumBatches);
static int globalMaxBatch = 0;
if (maxNumBatches>globalMaxBatch )
{
globalMaxBatch = maxNumBatches;
b3Printf("maxNumBatches = %d\n",maxNumBatches);
}
}
{
B3_PROFILE("m_contactBuffer->copyFromHost");
m_data->m_solverGPU->m_contactBuffer2->copyFromHost((b3AlignedObjectArray<b3Contact4>&)cpuContacts);
}
}
}
if (nContacts)
{
B3_PROFILE("gpu convertToConstraints");
m_data->m_solverGPU->convertToConstraints( bodyBuf,
shapeBuf, m_data->m_solverGPU->m_contactBuffer2,
contactConstraintOut,
additionalData, nContacts,
(b3SolverBase::ConstraintCfg&) csCfg );
clFinish(m_data->m_queue);
}
if (1)
{
int numIter = 4;
m_data->m_solverGPU->m_nIterations = numIter;//10
if (!gCpuSolveConstraint)
{
B3_PROFILE("GPU solveContactConstraint");
/*m_data->m_solverGPU->solveContactConstraint(
m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU,0,
nContactOut ,
maxNumBatches);
*/
//m_data->m_batchSizesGpu->copyFromHost(m_data->m_batchSizes);
if (gUseLargeBatches)
{
solveContactConstraintBatchSizes(m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU,0,
nContactOut ,
maxNumBatches,numIter,&m_data->m_batchSizes);
} else
{
solveContactConstraint(
m_data->m_bodyBufferGPU,
m_data->m_inertiaBufferGPU,
m_data->m_contactCGPU,0,
nContactOut ,
maxNumBatches,numIter,&m_data->m_batchSizes);//m_data->m_batchSizesGpu);
}
}
else
{
B3_PROFILE("Host solveContactConstraint");
m_data->m_solverGPU->solveContactConstraintHost(m_data->m_bodyBufferGPU, m_data->m_inertiaBufferGPU, m_data->m_contactCGPU,0, nContactOut ,maxNumBatches,&m_data->m_batchSizes);
}
}
#if 0
if (0)
{
B3_PROFILE("read body velocities back to CPU");
//read body updated linear/angular velocities back to CPU
m_data->m_bodyBufferGPU->read(
m_data->m_bodyBufferCPU->m_ptr,numOfConvexRBodies);
adl::DeviceUtils::waitForCompletion( m_data->m_deviceCL );
}
#endif
}
}
void b3GpuPgsContactSolver::batchContacts( b3OpenCLArray<b3Contact4>* contacts, int nContacts, b3OpenCLArray<unsigned int>* n, b3OpenCLArray<unsigned int>* offsets, int staticIdx )
{
}
b3AlignedObjectArray<unsigned int> idxBuffer;
b3AlignedObjectArray<b3SortData> sortData;
b3AlignedObjectArray<b3Contact4> old;
inline int b3GpuPgsContactSolver::sortConstraintByBatch( b3Contact4* cs, int n, int simdWidth , int staticIdx, int numBodies)
{
B3_PROFILE("sortConstraintByBatch");
int numIter = 0;
sortData.resize(n);
idxBuffer.resize(n);
old.resize(n);
unsigned int* idxSrc = &idxBuffer[0];
unsigned int* idxDst = &idxBuffer[0];
int nIdxSrc, nIdxDst;
const int N_FLG = 256;
const int FLG_MASK = N_FLG-1;
unsigned int flg[N_FLG/32];
#if defined(_DEBUG)
for(int i=0; i<n; i++)
cs[i].getBatchIdx() = -1;
#endif
for(int i=0; i<n; i++)
idxSrc[i] = i;
nIdxSrc = n;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while( nIdxSrc )
{
numIter++;
nIdxDst = 0;
int nCurrentBatch = 0;
// clear flag
for(int i=0; i<N_FLG/32; i++) flg[i] = 0;
for(int i=0; i<nIdxSrc; i++)
{
int idx = idxSrc[i];
b3Assert( idx < n );
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
int aIdx = bodyA & FLG_MASK;
int bIdx = bodyB & FLG_MASK;
unsigned int aUnavailable = flg[ aIdx/32 ] & (1<<(aIdx&31));
unsigned int bUnavailable = flg[ bIdx/32 ] & (1<<(bIdx&31));
bool aIsStatic = (bodyAS<0) || bodyAS==staticIdx;
bool bIsStatic = (bodyBS<0) || bodyBS==staticIdx;
//use inv_mass!
aUnavailable = !aIsStatic? aUnavailable:0;//
bUnavailable = !bIsStatic? bUnavailable:0;
if( aUnavailable==0 && bUnavailable==0 ) // ok
{
if (!aIsStatic)
flg[ aIdx/32 ] |= (1<<(aIdx&31));
if (!bIsStatic)
flg[ bIdx/32 ] |= (1<<(bIdx&31));
cs[idx].getBatchIdx() = batchIdx;
sortData[idx].m_key = batchIdx;
sortData[idx].m_value = idx;
{
nCurrentBatch++;
if( nCurrentBatch == simdWidth )
{
nCurrentBatch = 0;
for(int i=0; i<N_FLG/32; i++) flg[i] = 0;
}
}
}
else
{
idxDst[nIdxDst++] = idx;
}
}
b3Swap( idxSrc, idxDst );
b3Swap( nIdxSrc, nIdxDst );
batchIdx ++;
}
}
{
B3_PROFILE("quickSort");
sortData.quickSort(sortfnc);
}
{
B3_PROFILE("reorder");
// reorder
memcpy( &old[0], cs, sizeof(b3Contact4)*n);
for(int i=0; i<n; i++)
{
int idx = sortData[i].m_value;
cs[i] = old[idx];
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for(int i=0; i<n; i++)
{
b3Assert( cs[i].getBatchIdx() != -1 );
}
#endif
return batchIdx;
}
b3AlignedObjectArray<int> bodyUsed2;
inline int b3GpuPgsContactSolver::sortConstraintByBatch2( b3Contact4* cs, int numConstraints, int simdWidth , int staticIdx, int numBodies)
{
B3_PROFILE("sortConstraintByBatch2");
bodyUsed2.resize(2*simdWidth);
for (int q=0;q<2*simdWidth;q++)
bodyUsed2[q]=0;
int curBodyUsed = 0;
int numIter = 0;
m_data->m_sortData.resize(numConstraints);
m_data->m_idxBuffer.resize(numConstraints);
m_data->m_old.resize(numConstraints);
unsigned int* idxSrc = &m_data->m_idxBuffer[0];
#if defined(_DEBUG)
for(int i=0; i<numConstraints; i++)
cs[i].getBatchIdx() = -1;
#endif
for(int i=0; i<numConstraints; i++)
idxSrc[i] = i;
int numValidConstraints = 0;
// int unprocessedConstraintIndex = 0;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while( numValidConstraints < numConstraints)
{
numIter++;
int nCurrentBatch = 0;
// clear flag
for(int i=0; i<curBodyUsed; i++)
bodyUsed2[i] = 0;
curBodyUsed = 0;
for(int i=numValidConstraints; i<numConstraints; i++)
{
int idx = idxSrc[i];
b3Assert( idx < numConstraints );
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
bool aIsStatic = (bodyAS<0) || bodyAS==staticIdx;
bool bIsStatic = (bodyBS<0) || bodyBS==staticIdx;
int aUnavailable = 0;
int bUnavailable = 0;
if (!aIsStatic)
{
for (int j=0;j<curBodyUsed;j++)
{
if (bodyA == bodyUsed2[j])
{
aUnavailable=1;
break;
}
}
}
if (!aUnavailable)
if (!bIsStatic)
{
for (int j=0;j<curBodyUsed;j++)
{
if (bodyB == bodyUsed2[j])
{
bUnavailable=1;
break;
}
}
}
if( aUnavailable==0 && bUnavailable==0 ) // ok
{
if (!aIsStatic)
{
bodyUsed2[curBodyUsed++] = bodyA;
}
if (!bIsStatic)
{
bodyUsed2[curBodyUsed++] = bodyB;
}
cs[idx].getBatchIdx() = batchIdx;
m_data->m_sortData[idx].m_key = batchIdx;
m_data->m_sortData[idx].m_value = idx;
if (i!=numValidConstraints)
{
b3Swap(idxSrc[i], idxSrc[numValidConstraints]);
}
numValidConstraints++;
{
nCurrentBatch++;
if( nCurrentBatch == simdWidth )
{
nCurrentBatch = 0;
for(int i=0; i<curBodyUsed; i++)
bodyUsed2[i] = 0;
curBodyUsed = 0;
}
}
}
}
batchIdx ++;
}
}
{
B3_PROFILE("quickSort");
//m_data->m_sortData.quickSort(sortfnc);
}
{
B3_PROFILE("reorder");
// reorder
memcpy( &m_data->m_old[0], cs, sizeof(b3Contact4)*numConstraints);
for(int i=0; i<numConstraints; i++)
{
b3Assert(m_data->m_sortData[idxSrc[i]].m_value == idxSrc[i]);
int idx = m_data->m_sortData[idxSrc[i]].m_value;
cs[i] = m_data->m_old[idx];
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for(int i=0; i<numConstraints; i++)
{
b3Assert( cs[i].getBatchIdx() != -1 );
}
#endif
return batchIdx;
}
b3AlignedObjectArray<int> bodyUsed;
b3AlignedObjectArray<int> curUsed;
inline int b3GpuPgsContactSolver::sortConstraintByBatch3( b3Contact4* cs, int numConstraints, int simdWidth , int staticIdx, int numBodies, int* batchSizes)
{
B3_PROFILE("sortConstraintByBatch3");
static int maxSwaps = 0;
int numSwaps = 0;
curUsed.resize(2*simdWidth);
static int maxNumConstraints = 0;
if (maxNumConstraints<numConstraints)
{
maxNumConstraints = numConstraints;
//printf("maxNumConstraints = %d\n",maxNumConstraints );
}
int numUsedArray = numBodies/32+1;
bodyUsed.resize(numUsedArray);
for (int q=0;q<numUsedArray;q++)
bodyUsed[q]=0;
int curBodyUsed = 0;
int numIter = 0;
m_data->m_sortData.resize(0);
m_data->m_idxBuffer.resize(0);
m_data->m_old.resize(0);
#if defined(_DEBUG)
for(int i=0; i<numConstraints; i++)
cs[i].getBatchIdx() = -1;
#endif
int numValidConstraints = 0;
// int unprocessedConstraintIndex = 0;
int batchIdx = 0;
{
B3_PROFILE("cpu batch innerloop");
while( numValidConstraints < numConstraints)
{
numIter++;
int nCurrentBatch = 0;
batchSizes[batchIdx] = 0;
// clear flag
for(int i=0; i<curBodyUsed; i++)
bodyUsed[curUsed[i]/32] = 0;
curBodyUsed = 0;
for(int i=numValidConstraints; i<numConstraints; i++)
{
int idx = i;
b3Assert( idx < numConstraints );
// check if it can go
int bodyAS = cs[idx].m_bodyAPtrAndSignBit;
int bodyBS = cs[idx].m_bodyBPtrAndSignBit;
int bodyA = abs(bodyAS);
int bodyB = abs(bodyBS);
bool aIsStatic = (bodyAS<0) || bodyAS==staticIdx;
bool bIsStatic = (bodyBS<0) || bodyBS==staticIdx;
int aUnavailable = 0;
int bUnavailable = 0;
if (!aIsStatic)
{
aUnavailable = bodyUsed[ bodyA/32 ] & (1<<(bodyA&31));
}
if (!aUnavailable)
if (!bIsStatic)
{
bUnavailable = bodyUsed[ bodyB/32 ] & (1<<(bodyB&31));
}
if( aUnavailable==0 && bUnavailable==0 ) // ok
{
if (!aIsStatic)
{
bodyUsed[ bodyA/32 ] |= (1<<(bodyA&31));
curUsed[curBodyUsed++]=bodyA;
}
if (!bIsStatic)
{
bodyUsed[ bodyB/32 ] |= (1<<(bodyB&31));
curUsed[curBodyUsed++]=bodyB;
}
cs[idx].getBatchIdx() = batchIdx;
if (i!=numValidConstraints)
{
b3Swap(cs[i],cs[numValidConstraints]);
numSwaps++;
}
numValidConstraints++;
{
nCurrentBatch++;
if( nCurrentBatch == simdWidth )
{
batchSizes[batchIdx] += simdWidth;
nCurrentBatch = 0;
for(int i=0; i<curBodyUsed; i++)
bodyUsed[curUsed[i]/32] = 0;
curBodyUsed = 0;
}
}
}
}
if (batchIdx>=B3_MAX_NUM_BATCHES)
{
b3Error("batchIdx>=B3_MAX_NUM_BATCHES");
b3Assert(0);
break;
}
batchSizes[batchIdx] += nCurrentBatch;
batchIdx ++;
}
}
#if defined(_DEBUG)
// debugPrintf( "nBatches: %d\n", batchIdx );
for(int i=0; i<numConstraints; i++)
{
b3Assert( cs[i].getBatchIdx() != -1 );
}
#endif
batchSizes[batchIdx] =0;
if (maxSwaps<numSwaps)
{
maxSwaps = numSwaps;
//printf("maxSwaps = %d\n", maxSwaps);
}
return batchIdx;
}