697 lines
23 KiB
GLSL
697 lines
23 KiB
GLSL
#[vertex]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
#ifdef USE_ATTRIBUTES
|
|
layout(location = 0) in vec2 vertex_attrib;
|
|
layout(location = 3) in vec4 color_attrib;
|
|
layout(location = 4) in vec2 uv_attrib;
|
|
|
|
layout(location = 10) in uvec4 bone_attrib;
|
|
layout(location = 11) in vec4 weight_attrib;
|
|
|
|
#endif
|
|
|
|
#include "canvas_uniforms_inc.glsl"
|
|
|
|
layout(location = 0) out vec2 uv_interp;
|
|
layout(location = 1) out vec4 color_interp;
|
|
layout(location = 2) out vec2 vertex_interp;
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
layout(location = 3) out vec2 pixel_size_interp;
|
|
|
|
#endif
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
} material;
|
|
#endif
|
|
|
|
#GLOBALS
|
|
|
|
void main() {
|
|
vec4 instance_custom = vec4(0.0);
|
|
#ifdef USE_PRIMITIVE
|
|
|
|
//weird bug,
|
|
//this works
|
|
vec2 vertex;
|
|
vec2 uv;
|
|
vec4 color;
|
|
|
|
if (gl_VertexIndex == 0) {
|
|
vertex = draw_data.points[0];
|
|
uv = draw_data.uvs[0];
|
|
color = vec4(unpackHalf2x16(draw_data.colors[0]), unpackHalf2x16(draw_data.colors[1]));
|
|
} else if (gl_VertexIndex == 1) {
|
|
vertex = draw_data.points[1];
|
|
uv = draw_data.uvs[1];
|
|
color = vec4(unpackHalf2x16(draw_data.colors[2]), unpackHalf2x16(draw_data.colors[3]));
|
|
} else {
|
|
vertex = draw_data.points[2];
|
|
uv = draw_data.uvs[2];
|
|
color = vec4(unpackHalf2x16(draw_data.colors[4]), unpackHalf2x16(draw_data.colors[5]));
|
|
}
|
|
uvec4 bones = uvec4(0, 0, 0, 0);
|
|
vec4 bone_weights = vec4(0.0);
|
|
|
|
#elif defined(USE_ATTRIBUTES)
|
|
|
|
vec2 vertex = vertex_attrib;
|
|
vec4 color = color_attrib * draw_data.modulation;
|
|
vec2 uv = uv_attrib;
|
|
|
|
uvec4 bones = bone_attrib;
|
|
vec4 bone_weights = weight_attrib;
|
|
#else
|
|
|
|
vec2 vertex_base_arr[4] = vec2[](vec2(0.0, 0.0), vec2(0.0, 1.0), vec2(1.0, 1.0), vec2(1.0, 0.0));
|
|
vec2 vertex_base = vertex_base_arr[gl_VertexIndex];
|
|
|
|
vec2 uv = draw_data.src_rect.xy + abs(draw_data.src_rect.zw) * ((draw_data.flags & FLAGS_TRANSPOSE_RECT) != 0 ? vertex_base.yx : vertex_base.xy);
|
|
vec4 color = draw_data.modulation;
|
|
vec2 vertex = draw_data.dst_rect.xy + abs(draw_data.dst_rect.zw) * mix(vertex_base, vec2(1.0, 1.0) - vertex_base, lessThan(draw_data.src_rect.zw, vec2(0.0, 0.0)));
|
|
uvec4 bones = uvec4(0, 0, 0, 0);
|
|
|
|
#endif
|
|
|
|
mat4 model_matrix = mat4(vec4(draw_data.world_x, 0.0, 0.0), vec4(draw_data.world_y, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(draw_data.world_ofs, 0.0, 1.0));
|
|
|
|
#define FLAGS_INSTANCING_MASK 0x7F
|
|
#define FLAGS_INSTANCING_HAS_COLORS (1 << 7)
|
|
#define FLAGS_INSTANCING_HAS_CUSTOM_DATA (1 << 8)
|
|
|
|
uint instancing = draw_data.flags & FLAGS_INSTANCING_MASK;
|
|
|
|
#ifdef USE_ATTRIBUTES
|
|
if (instancing > 1) {
|
|
// trails
|
|
|
|
uint stride = 2 + 1 + 1; //particles always uses this format
|
|
|
|
uint trail_size = instancing;
|
|
|
|
uint offset = trail_size * stride * gl_InstanceIndex;
|
|
|
|
vec4 pcolor;
|
|
vec2 new_vertex;
|
|
{
|
|
uint boffset = offset + bone_attrib.x * stride;
|
|
new_vertex = (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.x;
|
|
pcolor = transforms.data[boffset + 2] * weight_attrib.x;
|
|
}
|
|
if (weight_attrib.y > 0.001) {
|
|
uint boffset = offset + bone_attrib.y * stride;
|
|
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.y;
|
|
pcolor += transforms.data[boffset + 2] * weight_attrib.y;
|
|
}
|
|
if (weight_attrib.z > 0.001) {
|
|
uint boffset = offset + bone_attrib.z * stride;
|
|
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.z;
|
|
pcolor += transforms.data[boffset + 2] * weight_attrib.z;
|
|
}
|
|
if (weight_attrib.w > 0.001) {
|
|
uint boffset = offset + bone_attrib.w * stride;
|
|
new_vertex += (vec4(vertex, 0.0, 1.0) * mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy * weight_attrib.w;
|
|
pcolor += transforms.data[boffset + 2] * weight_attrib.w;
|
|
}
|
|
|
|
instance_custom = transforms.data[offset + 3];
|
|
|
|
vertex = new_vertex;
|
|
color *= pcolor;
|
|
} else
|
|
#endif // USE_ATTRIBUTES
|
|
{
|
|
if (instancing == 1) {
|
|
uint stride = 2;
|
|
{
|
|
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
|
|
stride += 1;
|
|
}
|
|
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
|
|
stride += 1;
|
|
}
|
|
}
|
|
|
|
uint offset = stride * gl_InstanceIndex;
|
|
|
|
mat4 matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));
|
|
offset += 2;
|
|
|
|
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_COLORS)) {
|
|
color *= transforms.data[offset];
|
|
offset += 1;
|
|
}
|
|
|
|
if (bool(draw_data.flags & FLAGS_INSTANCING_HAS_CUSTOM_DATA)) {
|
|
instance_custom = transforms.data[offset];
|
|
}
|
|
|
|
matrix = transpose(matrix);
|
|
model_matrix = model_matrix * matrix;
|
|
}
|
|
}
|
|
|
|
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
|
|
if (bool(draw_data.flags & FLAGS_USING_PARTICLES)) {
|
|
//scale by texture size
|
|
vertex /= draw_data.color_texture_pixel_size;
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_POINT_SIZE
|
|
float point_size = 1.0;
|
|
#endif
|
|
{
|
|
#CODE : VERTEX
|
|
}
|
|
|
|
#ifdef USE_NINEPATCH
|
|
pixel_size_interp = abs(draw_data.dst_rect.zw) * vertex_base;
|
|
#endif
|
|
|
|
#if !defined(SKIP_TRANSFORM_USED)
|
|
vertex = (model_matrix * vec4(vertex, 0.0, 1.0)).xy;
|
|
#endif
|
|
|
|
color_interp = color;
|
|
|
|
if (canvas_data.use_pixel_snap) {
|
|
vertex = floor(vertex + 0.5);
|
|
// precision issue on some hardware creates artifacts within texture
|
|
// offset uv by a small amount to avoid
|
|
uv += 1e-5;
|
|
}
|
|
|
|
vertex = (canvas_data.canvas_transform * vec4(vertex, 0.0, 1.0)).xy;
|
|
|
|
vertex_interp = vertex;
|
|
uv_interp = uv;
|
|
|
|
gl_Position = canvas_data.screen_transform * vec4(vertex, 0.0, 1.0);
|
|
|
|
#ifdef USE_POINT_SIZE
|
|
gl_PointSize = point_size;
|
|
#endif
|
|
}
|
|
|
|
#[fragment]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
#include "canvas_uniforms_inc.glsl"
|
|
|
|
layout(location = 0) in vec2 uv_interp;
|
|
layout(location = 1) in vec4 color_interp;
|
|
layout(location = 2) in vec2 vertex_interp;
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
layout(location = 3) in vec2 pixel_size_interp;
|
|
|
|
#endif
|
|
|
|
layout(location = 0) out vec4 frag_color;
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
|
|
|
|
#MATERIAL_UNIFORMS
|
|
|
|
} material;
|
|
#endif
|
|
|
|
vec2 screen_uv_to_sdf(vec2 p_uv) {
|
|
return canvas_data.screen_to_sdf * p_uv;
|
|
}
|
|
|
|
float texture_sdf(vec2 p_sdf) {
|
|
vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
|
|
float d = texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv).r;
|
|
d *= SDF_MAX_LENGTH;
|
|
return d * canvas_data.tex_to_sdf;
|
|
}
|
|
|
|
vec2 texture_sdf_normal(vec2 p_sdf) {
|
|
vec2 uv = p_sdf * canvas_data.sdf_to_tex.xy + canvas_data.sdf_to_tex.zw;
|
|
|
|
const float EPSILON = 0.001;
|
|
return normalize(vec2(
|
|
texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(EPSILON, 0.0)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(EPSILON, 0.0)).r,
|
|
texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv + vec2(0.0, EPSILON)).r - texture(sampler2D(sdf_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), uv - vec2(0.0, EPSILON)).r));
|
|
}
|
|
|
|
vec2 sdf_to_screen_uv(vec2 p_sdf) {
|
|
return p_sdf * canvas_data.sdf_to_screen;
|
|
}
|
|
|
|
#GLOBALS
|
|
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 light_compute(
|
|
vec3 light_vertex,
|
|
vec3 light_position,
|
|
vec3 normal,
|
|
vec4 light_color,
|
|
float light_energy,
|
|
vec4 specular_shininess,
|
|
inout vec4 shadow_modulate,
|
|
vec2 screen_uv,
|
|
vec2 uv,
|
|
vec4 color, bool is_directional) {
|
|
vec4 light = vec4(0.0);
|
|
vec3 light_direction = vec3(0.0);
|
|
|
|
if (is_directional) {
|
|
light_direction = normalize(mix(vec3(light_position.xy, 0.0), vec3(0, 0, 1), light_position.z));
|
|
light_position = vec3(0.0);
|
|
} else {
|
|
light_direction = normalize(light_position - light_vertex);
|
|
}
|
|
|
|
#CODE : LIGHT
|
|
|
|
return light;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
float map_ninepatch_axis(float pixel, float draw_size, float tex_pixel_size, float margin_begin, float margin_end, int np_repeat, inout int draw_center) {
|
|
float tex_size = 1.0 / tex_pixel_size;
|
|
|
|
if (pixel < margin_begin) {
|
|
return pixel * tex_pixel_size;
|
|
} else if (pixel >= draw_size - margin_end) {
|
|
return (tex_size - (draw_size - pixel)) * tex_pixel_size;
|
|
} else {
|
|
if (!bool(draw_data.flags & FLAGS_NINEPACH_DRAW_CENTER)) {
|
|
draw_center--;
|
|
}
|
|
|
|
// np_repeat is passed as uniform using NinePatchRect::AxisStretchMode enum.
|
|
if (np_repeat == 0) { // Stretch.
|
|
// Convert to ratio.
|
|
float ratio = (pixel - margin_begin) / (draw_size - margin_begin - margin_end);
|
|
// Scale to source texture.
|
|
return (margin_begin + ratio * (tex_size - margin_begin - margin_end)) * tex_pixel_size;
|
|
} else if (np_repeat == 1) { // Tile.
|
|
// Convert to offset.
|
|
float ofs = mod((pixel - margin_begin), tex_size - margin_begin - margin_end);
|
|
// Scale to source texture.
|
|
return (margin_begin + ofs) * tex_pixel_size;
|
|
} else if (np_repeat == 2) { // Tile Fit.
|
|
// Calculate scale.
|
|
float src_area = draw_size - margin_begin - margin_end;
|
|
float dst_area = tex_size - margin_begin - margin_end;
|
|
float scale = max(1.0, floor(src_area / max(dst_area, 0.0000001) + 0.5));
|
|
// Convert to ratio.
|
|
float ratio = (pixel - margin_begin) / src_area;
|
|
ratio = mod(ratio * scale, 1.0);
|
|
// Scale to source texture.
|
|
return (margin_begin + ratio * dst_area) * tex_pixel_size;
|
|
} else { // Shouldn't happen, but silences compiler warning.
|
|
return 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef USE_LIGHTING
|
|
|
|
vec3 light_normal_compute(vec3 light_vec, vec3 normal, vec3 base_color, vec3 light_color, vec4 specular_shininess, bool specular_shininess_used) {
|
|
float cNdotL = max(0.0, dot(normal, light_vec));
|
|
|
|
if (specular_shininess_used) {
|
|
//blinn
|
|
vec3 view = vec3(0.0, 0.0, 1.0); // not great but good enough
|
|
vec3 half_vec = normalize(view + light_vec);
|
|
|
|
float cNdotV = max(dot(normal, view), 0.0);
|
|
float cNdotH = max(dot(normal, half_vec), 0.0);
|
|
float cVdotH = max(dot(view, half_vec), 0.0);
|
|
float cLdotH = max(dot(light_vec, half_vec), 0.0);
|
|
float shininess = exp2(15.0 * specular_shininess.a + 1.0) * 0.25;
|
|
float blinn = pow(cNdotH, shininess);
|
|
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
|
|
float s = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75);
|
|
|
|
return specular_shininess.rgb * light_color * s + light_color * base_color * cNdotL;
|
|
} else {
|
|
return light_color * base_color * cNdotL;
|
|
}
|
|
}
|
|
|
|
//float distance = length(shadow_pos);
|
|
vec4 light_shadow_compute(uint light_base, vec4 light_color, vec4 shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
vec3 shadow_modulate
|
|
#endif
|
|
) {
|
|
float shadow;
|
|
uint shadow_mode = light_array.data[light_base].flags & LIGHT_FLAGS_FILTER_MASK;
|
|
|
|
if (shadow_mode == LIGHT_FLAGS_SHADOW_NEAREST) {
|
|
shadow = textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
|
|
} else if (shadow_mode == LIGHT_FLAGS_SHADOW_PCF5) {
|
|
vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
|
|
shadow = 0.0;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
|
|
shadow /= 5.0;
|
|
} else { //PCF13
|
|
vec4 shadow_pixel_size = vec4(light_array.data[light_base].shadow_pixel_size, 0.0, 0.0, 0.0);
|
|
shadow = 0.0;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 6.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 5.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 4.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 3.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size * 2.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv - shadow_pixel_size, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 2.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 3.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 4.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 5.0, 0.0).x;
|
|
shadow += textureProjLod(sampler2DShadow(shadow_atlas_texture, shadow_sampler), shadow_uv + shadow_pixel_size * 6.0, 0.0).x;
|
|
shadow /= 13.0;
|
|
}
|
|
|
|
vec4 shadow_color = unpackUnorm4x8(light_array.data[light_base].shadow_color);
|
|
#ifdef LIGHT_CODE_USED
|
|
shadow_color.rgb *= shadow_modulate;
|
|
#endif
|
|
|
|
shadow_color.a *= light_color.a; //respect light alpha
|
|
|
|
return mix(light_color, shadow_color, shadow);
|
|
}
|
|
|
|
void light_blend_compute(uint light_base, vec4 light_color, inout vec3 color) {
|
|
uint blend_mode = light_array.data[light_base].flags & LIGHT_FLAGS_BLEND_MASK;
|
|
|
|
switch (blend_mode) {
|
|
case LIGHT_FLAGS_BLEND_MODE_ADD: {
|
|
color.rgb += light_color.rgb * light_color.a;
|
|
} break;
|
|
case LIGHT_FLAGS_BLEND_MODE_SUB: {
|
|
color.rgb -= light_color.rgb * light_color.a;
|
|
} break;
|
|
case LIGHT_FLAGS_BLEND_MODE_MIX: {
|
|
color.rgb = mix(color.rgb, light_color.rgb, light_color.a);
|
|
} break;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
float msdf_median(float r, float g, float b, float a) {
|
|
return min(max(min(r, g), min(max(r, g), b)), a);
|
|
}
|
|
|
|
void main() {
|
|
vec4 color = color_interp;
|
|
vec2 uv = uv_interp;
|
|
vec2 vertex = vertex_interp;
|
|
|
|
#if !defined(USE_ATTRIBUTES) && !defined(USE_PRIMITIVE)
|
|
|
|
#ifdef USE_NINEPATCH
|
|
|
|
int draw_center = 2;
|
|
uv = vec2(
|
|
map_ninepatch_axis(pixel_size_interp.x, abs(draw_data.dst_rect.z), draw_data.color_texture_pixel_size.x, draw_data.ninepatch_margins.x, draw_data.ninepatch_margins.z, int(draw_data.flags >> FLAGS_NINEPATCH_H_MODE_SHIFT) & 0x3, draw_center),
|
|
map_ninepatch_axis(pixel_size_interp.y, abs(draw_data.dst_rect.w), draw_data.color_texture_pixel_size.y, draw_data.ninepatch_margins.y, draw_data.ninepatch_margins.w, int(draw_data.flags >> FLAGS_NINEPATCH_V_MODE_SHIFT) & 0x3, draw_center));
|
|
|
|
if (draw_center == 0) {
|
|
color.a = 0.0;
|
|
}
|
|
|
|
uv = uv * draw_data.src_rect.zw + draw_data.src_rect.xy; //apply region if needed
|
|
|
|
#endif
|
|
if (bool(draw_data.flags & FLAGS_CLIP_RECT_UV)) {
|
|
uv = clamp(uv, draw_data.src_rect.xy, draw_data.src_rect.xy + abs(draw_data.src_rect.zw));
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef USE_PRIMITIVE
|
|
if (bool(draw_data.flags & FLAGS_USE_MSDF)) {
|
|
float px_range = draw_data.ninepatch_margins.x;
|
|
float outline_thickness = draw_data.ninepatch_margins.y;
|
|
//float reserved1 = draw_data.ninepatch_margins.z;
|
|
//float reserved2 = draw_data.ninepatch_margins.w;
|
|
|
|
vec4 msdf_sample = texture(sampler2D(color_texture, texture_sampler), uv);
|
|
vec2 msdf_size = vec2(textureSize(sampler2D(color_texture, texture_sampler), 0));
|
|
vec2 dest_size = vec2(1.0) / fwidth(uv);
|
|
float px_size = max(0.5 * dot((vec2(px_range) / msdf_size), dest_size), 1.0);
|
|
float d = msdf_median(msdf_sample.r, msdf_sample.g, msdf_sample.b, msdf_sample.a) - 0.5;
|
|
|
|
if (outline_thickness > 0) {
|
|
float cr = clamp(outline_thickness, 0.0, px_range / 2) / px_range;
|
|
float a = clamp((d + cr) * px_size, 0.0, 1.0);
|
|
color.a = a * color.a;
|
|
} else {
|
|
float a = clamp(d * px_size + 0.5, 0.0, 1.0);
|
|
color.a = a * color.a;
|
|
}
|
|
} else if (bool(draw_data.flags & FLAGS_USE_LCD)) {
|
|
vec4 lcd_sample = texture(sampler2D(color_texture, texture_sampler), uv);
|
|
if (lcd_sample.a == 1.0) {
|
|
color.rgb = lcd_sample.rgb * color.a;
|
|
} else {
|
|
color = vec4(0.0, 0.0, 0.0, 0.0);
|
|
}
|
|
} else {
|
|
#else
|
|
{
|
|
#endif
|
|
color *= texture(sampler2D(color_texture, texture_sampler), uv);
|
|
}
|
|
|
|
uint light_count = (draw_data.flags >> FLAGS_LIGHT_COUNT_SHIFT) & 0xF; //max 16 lights
|
|
bool using_light = light_count > 0 || canvas_data.directional_light_count > 0;
|
|
|
|
vec3 normal;
|
|
|
|
#if defined(NORMAL_USED)
|
|
bool normal_used = true;
|
|
#else
|
|
bool normal_used = false;
|
|
#endif
|
|
|
|
if (normal_used || (using_light && bool(draw_data.flags & FLAGS_DEFAULT_NORMAL_MAP_USED))) {
|
|
normal.xy = texture(sampler2D(normal_texture, texture_sampler), uv).xy * vec2(2.0, -2.0) - vec2(1.0, -1.0);
|
|
normal.z = sqrt(1.0 - dot(normal.xy, normal.xy));
|
|
normal_used = true;
|
|
} else {
|
|
normal = vec3(0.0, 0.0, 1.0);
|
|
}
|
|
|
|
vec4 specular_shininess;
|
|
|
|
#if defined(SPECULAR_SHININESS_USED)
|
|
|
|
bool specular_shininess_used = true;
|
|
#else
|
|
bool specular_shininess_used = false;
|
|
#endif
|
|
|
|
if (specular_shininess_used || (using_light && normal_used && bool(draw_data.flags & FLAGS_DEFAULT_SPECULAR_MAP_USED))) {
|
|
specular_shininess = texture(sampler2D(specular_texture, texture_sampler), uv);
|
|
specular_shininess *= unpackUnorm4x8(draw_data.specular_shininess);
|
|
specular_shininess_used = true;
|
|
} else {
|
|
specular_shininess = vec4(1.0);
|
|
}
|
|
|
|
#if defined(SCREEN_UV_USED)
|
|
vec2 screen_uv = gl_FragCoord.xy * canvas_data.screen_pixel_size;
|
|
#else
|
|
vec2 screen_uv = vec2(0.0);
|
|
#endif
|
|
|
|
vec3 light_vertex = vec3(vertex, 0.0);
|
|
vec2 shadow_vertex = vertex;
|
|
|
|
{
|
|
float normal_map_depth = 1.0;
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
vec3 normal_map = vec3(0.0, 0.0, 1.0);
|
|
normal_used = true;
|
|
#endif
|
|
|
|
#CODE : FRAGMENT
|
|
|
|
#if defined(NORMAL_MAP_USED)
|
|
normal = mix(vec3(0.0, 0.0, 1.0), normal_map * vec3(2.0, -2.0, 1.0) - vec3(1.0, -1.0, 0.0), normal_map_depth);
|
|
#endif
|
|
}
|
|
|
|
if (normal_used) {
|
|
//convert by item transform
|
|
normal.xy = mat2(normalize(draw_data.world_x), normalize(draw_data.world_y)) * normal.xy;
|
|
//convert by canvas transform
|
|
normal = normalize((canvas_data.canvas_normal_transform * vec4(normal, 0.0)).xyz);
|
|
}
|
|
|
|
vec4 base_color = color;
|
|
if (bool(draw_data.flags & FLAGS_USING_LIGHT_MASK)) {
|
|
color = vec4(0.0); //invisible by default due to using light mask
|
|
}
|
|
|
|
#ifdef MODE_LIGHT_ONLY
|
|
color = vec4(0.0);
|
|
#elif !defined(MODE_UNSHADED)
|
|
color *= canvas_data.canvas_modulation;
|
|
#endif
|
|
|
|
#if defined(USE_LIGHTING) && !defined(MODE_UNSHADED)
|
|
|
|
// Directional Lights
|
|
|
|
for (uint i = 0; i < canvas_data.directional_light_count; i++) {
|
|
uint light_base = i;
|
|
|
|
vec2 direction = light_array.data[light_base].position;
|
|
vec4 light_color = light_array.data[light_base].color;
|
|
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 shadow_modulate = vec4(1.0);
|
|
light_color = light_compute(light_vertex, vec3(direction, light_array.data[light_base].height), normal, light_color, light_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, true);
|
|
#else
|
|
|
|
if (normal_used) {
|
|
vec3 light_vec = normalize(mix(vec3(direction, 0.0), vec3(0, 0, 1), light_array.data[light_base].height));
|
|
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
|
|
} else {
|
|
light_color.rgb *= base_color.rgb;
|
|
}
|
|
#endif
|
|
|
|
if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
|
|
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
|
|
vec4 shadow_uv = vec4(shadow_pos.x, light_array.data[light_base].shadow_y_ofs, shadow_pos.y * light_array.data[light_base].shadow_zfar_inv, 1.0);
|
|
|
|
light_color = light_shadow_compute(light_base, light_color, shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
shadow_modulate.rgb
|
|
#endif
|
|
);
|
|
}
|
|
|
|
light_blend_compute(light_base, light_color, color.rgb);
|
|
}
|
|
|
|
// Positional Lights
|
|
|
|
for (uint i = 0; i < MAX_LIGHTS_PER_ITEM; i++) {
|
|
if (i >= light_count) {
|
|
break;
|
|
}
|
|
uint light_base = draw_data.lights[i >> 2];
|
|
light_base >>= (i & 3) * 8;
|
|
light_base &= 0xFF;
|
|
|
|
vec2 tex_uv = (vec4(vertex, 0.0, 1.0) * mat4(light_array.data[light_base].texture_matrix[0], light_array.data[light_base].texture_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
vec2 tex_uv_atlas = tex_uv * light_array.data[light_base].atlas_rect.zw + light_array.data[light_base].atlas_rect.xy;
|
|
vec4 light_color = textureLod(sampler2D(atlas_texture, texture_sampler), tex_uv_atlas, 0.0);
|
|
vec4 light_base_color = light_array.data[light_base].color;
|
|
|
|
#ifdef LIGHT_CODE_USED
|
|
|
|
vec4 shadow_modulate = vec4(1.0);
|
|
vec3 light_position = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
|
|
|
|
light_color.rgb *= light_base_color.rgb;
|
|
light_color = light_compute(light_vertex, light_position, normal, light_color, light_base_color.a, specular_shininess, shadow_modulate, screen_uv, uv, base_color, false);
|
|
#else
|
|
|
|
light_color.rgb *= light_base_color.rgb * light_base_color.a;
|
|
|
|
if (normal_used) {
|
|
vec3 light_pos = vec3(light_array.data[light_base].position, light_array.data[light_base].height);
|
|
vec3 pos = light_vertex;
|
|
vec3 light_vec = normalize(light_pos - pos);
|
|
|
|
light_color.rgb = light_normal_compute(light_vec, normal, base_color.rgb, light_color.rgb, specular_shininess, specular_shininess_used);
|
|
} else {
|
|
light_color.rgb *= base_color.rgb;
|
|
}
|
|
#endif
|
|
if (any(lessThan(tex_uv, vec2(0.0, 0.0))) || any(greaterThanEqual(tex_uv, vec2(1.0, 1.0)))) {
|
|
//if outside the light texture, light color is zero
|
|
light_color.a = 0.0;
|
|
}
|
|
|
|
if (bool(light_array.data[light_base].flags & LIGHT_FLAGS_HAS_SHADOW)) {
|
|
vec2 shadow_pos = (vec4(shadow_vertex, 0.0, 1.0) * mat4(light_array.data[light_base].shadow_matrix[0], light_array.data[light_base].shadow_matrix[1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0))).xy; //multiply inverse given its transposed. Optimizer removes useless operations.
|
|
|
|
vec2 pos_norm = normalize(shadow_pos);
|
|
vec2 pos_abs = abs(pos_norm);
|
|
vec2 pos_box = pos_norm / max(pos_abs.x, pos_abs.y);
|
|
vec2 pos_rot = pos_norm * mat2(vec2(0.7071067811865476, -0.7071067811865476), vec2(0.7071067811865476, 0.7071067811865476)); //is there a faster way to 45 degrees rot?
|
|
float tex_ofs;
|
|
float distance;
|
|
if (pos_rot.y > 0) {
|
|
if (pos_rot.x > 0) {
|
|
tex_ofs = pos_box.y * 0.125 + 0.125;
|
|
distance = shadow_pos.x;
|
|
} else {
|
|
tex_ofs = pos_box.x * -0.125 + (0.25 + 0.125);
|
|
distance = shadow_pos.y;
|
|
}
|
|
} else {
|
|
if (pos_rot.x < 0) {
|
|
tex_ofs = pos_box.y * -0.125 + (0.5 + 0.125);
|
|
distance = -shadow_pos.x;
|
|
} else {
|
|
tex_ofs = pos_box.x * 0.125 + (0.75 + 0.125);
|
|
distance = -shadow_pos.y;
|
|
}
|
|
}
|
|
|
|
distance *= light_array.data[light_base].shadow_zfar_inv;
|
|
|
|
//float distance = length(shadow_pos);
|
|
vec4 shadow_uv = vec4(tex_ofs, light_array.data[light_base].shadow_y_ofs, distance, 1.0);
|
|
|
|
light_color = light_shadow_compute(light_base, light_color, shadow_uv
|
|
#ifdef LIGHT_CODE_USED
|
|
,
|
|
shadow_modulate.rgb
|
|
#endif
|
|
);
|
|
}
|
|
|
|
light_blend_compute(light_base, light_color, color.rgb);
|
|
}
|
|
#endif
|
|
|
|
frag_color = color;
|
|
}
|