422196759f
Same rationale as the previous commits.
961 lines
44 KiB
C++
961 lines
44 KiB
C++
/* openssl/engine.h */
|
|
/*
|
|
* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL project
|
|
* 2000.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
* ECDH support in OpenSSL originally developed by
|
|
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
|
|
*/
|
|
|
|
#ifndef HEADER_ENGINE_H
|
|
# define HEADER_ENGINE_H
|
|
|
|
# include <openssl/opensslconf.h>
|
|
|
|
# ifdef OPENSSL_NO_ENGINE
|
|
# error ENGINE is disabled.
|
|
# endif
|
|
|
|
# ifndef OPENSSL_NO_DEPRECATED
|
|
# include <openssl/bn.h>
|
|
# ifndef OPENSSL_NO_RSA
|
|
# include <openssl/rsa.h>
|
|
# endif
|
|
# ifndef OPENSSL_NO_DSA
|
|
# include <openssl/dsa.h>
|
|
# endif
|
|
# ifndef OPENSSL_NO_DH
|
|
# include <openssl/dh.h>
|
|
# endif
|
|
# ifndef OPENSSL_NO_ECDH
|
|
# include <openssl/ecdh.h>
|
|
# endif
|
|
# ifndef OPENSSL_NO_ECDSA
|
|
# include <openssl/ecdsa.h>
|
|
# endif
|
|
# include <openssl/rand.h>
|
|
# include <openssl/ui.h>
|
|
# include <openssl/err.h>
|
|
# endif
|
|
|
|
# include <openssl/ossl_typ.h>
|
|
# include <openssl/symhacks.h>
|
|
|
|
# include <openssl/x509.h>
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
/*
|
|
* These flags are used to control combinations of algorithm (methods) by
|
|
* bitwise "OR"ing.
|
|
*/
|
|
# define ENGINE_METHOD_RSA (unsigned int)0x0001
|
|
# define ENGINE_METHOD_DSA (unsigned int)0x0002
|
|
# define ENGINE_METHOD_DH (unsigned int)0x0004
|
|
# define ENGINE_METHOD_RAND (unsigned int)0x0008
|
|
# define ENGINE_METHOD_ECDH (unsigned int)0x0010
|
|
# define ENGINE_METHOD_ECDSA (unsigned int)0x0020
|
|
# define ENGINE_METHOD_CIPHERS (unsigned int)0x0040
|
|
# define ENGINE_METHOD_DIGESTS (unsigned int)0x0080
|
|
# define ENGINE_METHOD_STORE (unsigned int)0x0100
|
|
# define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200
|
|
# define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400
|
|
/* Obvious all-or-nothing cases. */
|
|
# define ENGINE_METHOD_ALL (unsigned int)0xFFFF
|
|
# define ENGINE_METHOD_NONE (unsigned int)0x0000
|
|
|
|
/*
|
|
* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
|
|
* internally to control registration of ENGINE implementations, and can be
|
|
* set by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
|
|
* initialise registered ENGINEs if they are not already initialised.
|
|
*/
|
|
# define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001
|
|
|
|
/* ENGINE flags that can be set by ENGINE_set_flags(). */
|
|
/* Not used */
|
|
/* #define ENGINE_FLAGS_MALLOCED 0x0001 */
|
|
|
|
/*
|
|
* This flag is for ENGINEs that wish to handle the various 'CMD'-related
|
|
* control commands on their own. Without this flag, ENGINE_ctrl() handles
|
|
* these control commands on behalf of the ENGINE using their "cmd_defns"
|
|
* data.
|
|
*/
|
|
# define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002
|
|
|
|
/*
|
|
* This flag is for ENGINEs who return new duplicate structures when found
|
|
* via "ENGINE_by_id()". When an ENGINE must store state (eg. if
|
|
* ENGINE_ctrl() commands are called in sequence as part of some stateful
|
|
* process like key-generation setup and execution), it can set this flag -
|
|
* then each attempt to obtain the ENGINE will result in it being copied into
|
|
* a new structure. Normally, ENGINEs don't declare this flag so
|
|
* ENGINE_by_id() just increments the existing ENGINE's structural reference
|
|
* count.
|
|
*/
|
|
# define ENGINE_FLAGS_BY_ID_COPY (int)0x0004
|
|
|
|
/*
|
|
* This flag if for an ENGINE that does not want its methods registered as
|
|
* part of ENGINE_register_all_complete() for example if the methods are not
|
|
* usable as default methods.
|
|
*/
|
|
|
|
# define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008
|
|
|
|
/*
|
|
* ENGINEs can support their own command types, and these flags are used in
|
|
* ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input
|
|
* each command expects. Currently only numeric and string input is
|
|
* supported. If a control command supports none of the _NUMERIC, _STRING, or
|
|
* _NO_INPUT options, then it is regarded as an "internal" control command -
|
|
* and not for use in config setting situations. As such, they're not
|
|
* available to the ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl()
|
|
* access. Changes to this list of 'command types' should be reflected
|
|
* carefully in ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string().
|
|
*/
|
|
|
|
/* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */
|
|
# define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
|
|
/*
|
|
* accepts string input (cast from 'void*' to 'const char *', 4th parameter
|
|
* to ENGINE_ctrl)
|
|
*/
|
|
# define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
|
|
/*
|
|
* Indicates that the control command takes *no* input. Ie. the control
|
|
* command is unparameterised.
|
|
*/
|
|
# define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
|
|
/*
|
|
* Indicates that the control command is internal. This control command won't
|
|
* be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
|
|
* function.
|
|
*/
|
|
# define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008
|
|
|
|
/*
|
|
* NB: These 3 control commands are deprecated and should not be used.
|
|
* ENGINEs relying on these commands should compile conditional support for
|
|
* compatibility (eg. if these symbols are defined) but should also migrate
|
|
* the same functionality to their own ENGINE-specific control functions that
|
|
* can be "discovered" by calling applications. The fact these control
|
|
* commands wouldn't be "executable" (ie. usable by text-based config)
|
|
* doesn't change the fact that application code can find and use them
|
|
* without requiring per-ENGINE hacking.
|
|
*/
|
|
|
|
/*
|
|
* These flags are used to tell the ctrl function what should be done. All
|
|
* command numbers are shared between all engines, even if some don't make
|
|
* sense to some engines. In such a case, they do nothing but return the
|
|
* error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED.
|
|
*/
|
|
# define ENGINE_CTRL_SET_LOGSTREAM 1
|
|
# define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2
|
|
# define ENGINE_CTRL_HUP 3/* Close and reinitialise
|
|
* any handles/connections
|
|
* etc. */
|
|
# define ENGINE_CTRL_SET_USER_INTERFACE 4/* Alternative to callback */
|
|
# define ENGINE_CTRL_SET_CALLBACK_DATA 5/* User-specific data, used
|
|
* when calling the password
|
|
* callback and the user
|
|
* interface */
|
|
# define ENGINE_CTRL_LOAD_CONFIGURATION 6/* Load a configuration,
|
|
* given a string that
|
|
* represents a file name
|
|
* or so */
|
|
# define ENGINE_CTRL_LOAD_SECTION 7/* Load data from a given
|
|
* section in the already
|
|
* loaded configuration */
|
|
|
|
/*
|
|
* These control commands allow an application to deal with an arbitrary
|
|
* engine in a dynamic way. Warn: Negative return values indicate errors FOR
|
|
* THESE COMMANDS because zero is used to indicate 'end-of-list'. Other
|
|
* commands, including ENGINE-specific command types, return zero for an
|
|
* error. An ENGINE can choose to implement these ctrl functions, and can
|
|
* internally manage things however it chooses - it does so by setting the
|
|
* ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise
|
|
* the ENGINE_ctrl() code handles this on the ENGINE's behalf using the
|
|
* cmd_defns data (set using ENGINE_set_cmd_defns()). This means an ENGINE's
|
|
* ctrl() handler need only implement its own commands - the above "meta"
|
|
* commands will be taken care of.
|
|
*/
|
|
|
|
/*
|
|
* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not",
|
|
* then all the remaining control commands will return failure, so it is
|
|
* worth checking this first if the caller is trying to "discover" the
|
|
* engine's capabilities and doesn't want errors generated unnecessarily.
|
|
*/
|
|
# define ENGINE_CTRL_HAS_CTRL_FUNCTION 10
|
|
/*
|
|
* Returns a positive command number for the first command supported by the
|
|
* engine. Returns zero if no ctrl commands are supported.
|
|
*/
|
|
# define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
|
|
/*
|
|
* The 'long' argument specifies a command implemented by the engine, and the
|
|
* return value is the next command supported, or zero if there are no more.
|
|
*/
|
|
# define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
|
|
/*
|
|
* The 'void*' argument is a command name (cast from 'const char *'), and the
|
|
* return value is the command that corresponds to it.
|
|
*/
|
|
# define ENGINE_CTRL_GET_CMD_FROM_NAME 13
|
|
/*
|
|
* The next two allow a command to be converted into its corresponding string
|
|
* form. In each case, the 'long' argument supplies the command. In the
|
|
* NAME_LEN case, the return value is the length of the command name (not
|
|
* counting a trailing EOL). In the NAME case, the 'void*' argument must be a
|
|
* string buffer large enough, and it will be populated with the name of the
|
|
* command (WITH a trailing EOL).
|
|
*/
|
|
# define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
|
|
# define ENGINE_CTRL_GET_NAME_FROM_CMD 15
|
|
/* The next two are similar but give a "short description" of a command. */
|
|
# define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
|
|
# define ENGINE_CTRL_GET_DESC_FROM_CMD 17
|
|
/*
|
|
* With this command, the return value is the OR'd combination of
|
|
* ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
|
|
* engine-specific ctrl command expects.
|
|
*/
|
|
# define ENGINE_CTRL_GET_CMD_FLAGS 18
|
|
|
|
/*
|
|
* ENGINE implementations should start the numbering of their own control
|
|
* commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc).
|
|
*/
|
|
# define ENGINE_CMD_BASE 200
|
|
|
|
/*
|
|
* NB: These 2 nCipher "chil" control commands are deprecated, and their
|
|
* functionality is now available through ENGINE-specific control commands
|
|
* (exposed through the above-mentioned 'CMD'-handling). Code using these 2
|
|
* commands should be migrated to the more general command handling before
|
|
* these are removed.
|
|
*/
|
|
|
|
/* Flags specific to the nCipher "chil" engine */
|
|
# define ENGINE_CTRL_CHIL_SET_FORKCHECK 100
|
|
/*
|
|
* Depending on the value of the (long)i argument, this sets or
|
|
* unsets the SimpleForkCheck flag in the CHIL API to enable or
|
|
* disable checking and workarounds for applications that fork().
|
|
*/
|
|
# define ENGINE_CTRL_CHIL_NO_LOCKING 101
|
|
/*
|
|
* This prevents the initialisation function from providing mutex
|
|
* callbacks to the nCipher library.
|
|
*/
|
|
|
|
/*
|
|
* If an ENGINE supports its own specific control commands and wishes the
|
|
* framework to handle the above 'ENGINE_CMD_***'-manipulation commands on
|
|
* its behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN
|
|
* entries to ENGINE_set_cmd_defns(). It should also implement a ctrl()
|
|
* handler that supports the stated commands (ie. the "cmd_num" entries as
|
|
* described by the array). NB: The array must be ordered in increasing order
|
|
* of cmd_num. "null-terminated" means that the last ENGINE_CMD_DEFN element
|
|
* has cmd_num set to zero and/or cmd_name set to NULL.
|
|
*/
|
|
typedef struct ENGINE_CMD_DEFN_st {
|
|
unsigned int cmd_num; /* The command number */
|
|
const char *cmd_name; /* The command name itself */
|
|
const char *cmd_desc; /* A short description of the command */
|
|
unsigned int cmd_flags; /* The input the command expects */
|
|
} ENGINE_CMD_DEFN;
|
|
|
|
/* Generic function pointer */
|
|
typedef int (*ENGINE_GEN_FUNC_PTR) (void);
|
|
/* Generic function pointer taking no arguments */
|
|
typedef int (*ENGINE_GEN_INT_FUNC_PTR) (ENGINE *);
|
|
/* Specific control function pointer */
|
|
typedef int (*ENGINE_CTRL_FUNC_PTR) (ENGINE *, int, long, void *,
|
|
void (*f) (void));
|
|
/* Generic load_key function pointer */
|
|
typedef EVP_PKEY *(*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
|
|
UI_METHOD *ui_method,
|
|
void *callback_data);
|
|
typedef int (*ENGINE_SSL_CLIENT_CERT_PTR) (ENGINE *, SSL *ssl,
|
|
STACK_OF(X509_NAME) *ca_dn,
|
|
X509 **pcert, EVP_PKEY **pkey,
|
|
STACK_OF(X509) **pother,
|
|
UI_METHOD *ui_method,
|
|
void *callback_data);
|
|
/*-
|
|
* These callback types are for an ENGINE's handler for cipher and digest logic.
|
|
* These handlers have these prototypes;
|
|
* int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
|
|
* int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
|
|
* Looking at how to implement these handlers in the case of cipher support, if
|
|
* the framework wants the EVP_CIPHER for 'nid', it will call;
|
|
* foo(e, &p_evp_cipher, NULL, nid); (return zero for failure)
|
|
* If the framework wants a list of supported 'nid's, it will call;
|
|
* foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error)
|
|
*/
|
|
/*
|
|
* Returns to a pointer to the array of supported cipher 'nid's. If the
|
|
* second parameter is non-NULL it is set to the size of the returned array.
|
|
*/
|
|
typedef int (*ENGINE_CIPHERS_PTR) (ENGINE *, const EVP_CIPHER **,
|
|
const int **, int);
|
|
typedef int (*ENGINE_DIGESTS_PTR) (ENGINE *, const EVP_MD **, const int **,
|
|
int);
|
|
typedef int (*ENGINE_PKEY_METHS_PTR) (ENGINE *, EVP_PKEY_METHOD **,
|
|
const int **, int);
|
|
typedef int (*ENGINE_PKEY_ASN1_METHS_PTR) (ENGINE *, EVP_PKEY_ASN1_METHOD **,
|
|
const int **, int);
|
|
/*
|
|
* STRUCTURE functions ... all of these functions deal with pointers to
|
|
* ENGINE structures where the pointers have a "structural reference". This
|
|
* means that their reference is to allowed access to the structure but it
|
|
* does not imply that the structure is functional. To simply increment or
|
|
* decrement the structural reference count, use ENGINE_by_id and
|
|
* ENGINE_free. NB: This is not required when iterating using ENGINE_get_next
|
|
* as it will automatically decrement the structural reference count of the
|
|
* "current" ENGINE and increment the structural reference count of the
|
|
* ENGINE it returns (unless it is NULL).
|
|
*/
|
|
|
|
/* Get the first/last "ENGINE" type available. */
|
|
ENGINE *ENGINE_get_first(void);
|
|
ENGINE *ENGINE_get_last(void);
|
|
/* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
|
|
ENGINE *ENGINE_get_next(ENGINE *e);
|
|
ENGINE *ENGINE_get_prev(ENGINE *e);
|
|
/* Add another "ENGINE" type into the array. */
|
|
int ENGINE_add(ENGINE *e);
|
|
/* Remove an existing "ENGINE" type from the array. */
|
|
int ENGINE_remove(ENGINE *e);
|
|
/* Retrieve an engine from the list by its unique "id" value. */
|
|
ENGINE *ENGINE_by_id(const char *id);
|
|
/* Add all the built-in engines. */
|
|
void ENGINE_load_openssl(void);
|
|
void ENGINE_load_dynamic(void);
|
|
# ifndef OPENSSL_NO_STATIC_ENGINE
|
|
void ENGINE_load_4758cca(void);
|
|
void ENGINE_load_aep(void);
|
|
void ENGINE_load_atalla(void);
|
|
void ENGINE_load_chil(void);
|
|
void ENGINE_load_cswift(void);
|
|
void ENGINE_load_nuron(void);
|
|
void ENGINE_load_sureware(void);
|
|
void ENGINE_load_ubsec(void);
|
|
void ENGINE_load_padlock(void);
|
|
void ENGINE_load_capi(void);
|
|
# ifndef OPENSSL_NO_GMP
|
|
void ENGINE_load_gmp(void);
|
|
# endif
|
|
# ifndef OPENSSL_NO_GOST
|
|
void ENGINE_load_gost(void);
|
|
# endif
|
|
# endif
|
|
void ENGINE_load_cryptodev(void);
|
|
void ENGINE_load_rdrand(void);
|
|
void ENGINE_load_builtin_engines(void);
|
|
|
|
/*
|
|
* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
|
|
* "registry" handling.
|
|
*/
|
|
unsigned int ENGINE_get_table_flags(void);
|
|
void ENGINE_set_table_flags(unsigned int flags);
|
|
|
|
/*- Manage registration of ENGINEs per "table". For each type, there are 3
|
|
* functions;
|
|
* ENGINE_register_***(e) - registers the implementation from 'e' (if it has one)
|
|
* ENGINE_unregister_***(e) - unregister the implementation from 'e'
|
|
* ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list
|
|
* Cleanup is automatically registered from each table when required, so
|
|
* ENGINE_cleanup() will reverse any "register" operations.
|
|
*/
|
|
|
|
int ENGINE_register_RSA(ENGINE *e);
|
|
void ENGINE_unregister_RSA(ENGINE *e);
|
|
void ENGINE_register_all_RSA(void);
|
|
|
|
int ENGINE_register_DSA(ENGINE *e);
|
|
void ENGINE_unregister_DSA(ENGINE *e);
|
|
void ENGINE_register_all_DSA(void);
|
|
|
|
int ENGINE_register_ECDH(ENGINE *e);
|
|
void ENGINE_unregister_ECDH(ENGINE *e);
|
|
void ENGINE_register_all_ECDH(void);
|
|
|
|
int ENGINE_register_ECDSA(ENGINE *e);
|
|
void ENGINE_unregister_ECDSA(ENGINE *e);
|
|
void ENGINE_register_all_ECDSA(void);
|
|
|
|
int ENGINE_register_DH(ENGINE *e);
|
|
void ENGINE_unregister_DH(ENGINE *e);
|
|
void ENGINE_register_all_DH(void);
|
|
|
|
int ENGINE_register_RAND(ENGINE *e);
|
|
void ENGINE_unregister_RAND(ENGINE *e);
|
|
void ENGINE_register_all_RAND(void);
|
|
|
|
int ENGINE_register_STORE(ENGINE *e);
|
|
void ENGINE_unregister_STORE(ENGINE *e);
|
|
void ENGINE_register_all_STORE(void);
|
|
|
|
int ENGINE_register_ciphers(ENGINE *e);
|
|
void ENGINE_unregister_ciphers(ENGINE *e);
|
|
void ENGINE_register_all_ciphers(void);
|
|
|
|
int ENGINE_register_digests(ENGINE *e);
|
|
void ENGINE_unregister_digests(ENGINE *e);
|
|
void ENGINE_register_all_digests(void);
|
|
|
|
int ENGINE_register_pkey_meths(ENGINE *e);
|
|
void ENGINE_unregister_pkey_meths(ENGINE *e);
|
|
void ENGINE_register_all_pkey_meths(void);
|
|
|
|
int ENGINE_register_pkey_asn1_meths(ENGINE *e);
|
|
void ENGINE_unregister_pkey_asn1_meths(ENGINE *e);
|
|
void ENGINE_register_all_pkey_asn1_meths(void);
|
|
|
|
/*
|
|
* These functions register all support from the above categories. Note, use
|
|
* of these functions can result in static linkage of code your application
|
|
* may not need. If you only need a subset of functionality, consider using
|
|
* more selective initialisation.
|
|
*/
|
|
int ENGINE_register_complete(ENGINE *e);
|
|
int ENGINE_register_all_complete(void);
|
|
|
|
/*
|
|
* Send parametrised control commands to the engine. The possibilities to
|
|
* send down an integer, a pointer to data or a function pointer are
|
|
* provided. Any of the parameters may or may not be NULL, depending on the
|
|
* command number. In actuality, this function only requires a structural
|
|
* (rather than functional) reference to an engine, but many control commands
|
|
* may require the engine be functional. The caller should be aware of trying
|
|
* commands that require an operational ENGINE, and only use functional
|
|
* references in such situations.
|
|
*/
|
|
int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f) (void));
|
|
|
|
/*
|
|
* This function tests if an ENGINE-specific command is usable as a
|
|
* "setting". Eg. in an application's config file that gets processed through
|
|
* ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
|
|
* ENGINE_ctrl_cmd_string(), only ENGINE_ctrl().
|
|
*/
|
|
int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
|
|
|
|
/*
|
|
* This function works like ENGINE_ctrl() with the exception of taking a
|
|
* command name instead of a command number, and can handle optional
|
|
* commands. See the comment on ENGINE_ctrl_cmd_string() for an explanation
|
|
* on how to use the cmd_name and cmd_optional.
|
|
*/
|
|
int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
|
|
long i, void *p, void (*f) (void), int cmd_optional);
|
|
|
|
/*
|
|
* This function passes a command-name and argument to an ENGINE. The
|
|
* cmd_name is converted to a command number and the control command is
|
|
* called using 'arg' as an argument (unless the ENGINE doesn't support such
|
|
* a command, in which case no control command is called). The command is
|
|
* checked for input flags, and if necessary the argument will be converted
|
|
* to a numeric value. If cmd_optional is non-zero, then if the ENGINE
|
|
* doesn't support the given cmd_name the return value will be success
|
|
* anyway. This function is intended for applications to use so that users
|
|
* (or config files) can supply engine-specific config data to the ENGINE at
|
|
* run-time to control behaviour of specific engines. As such, it shouldn't
|
|
* be used for calling ENGINE_ctrl() functions that return data, deal with
|
|
* binary data, or that are otherwise supposed to be used directly through
|
|
* ENGINE_ctrl() in application code. Any "return" data from an ENGINE_ctrl()
|
|
* operation in this function will be lost - the return value is interpreted
|
|
* as failure if the return value is zero, success otherwise, and this
|
|
* function returns a boolean value as a result. In other words, vendors of
|
|
* 'ENGINE'-enabled devices should write ENGINE implementations with
|
|
* parameterisations that work in this scheme, so that compliant ENGINE-based
|
|
* applications can work consistently with the same configuration for the
|
|
* same ENGINE-enabled devices, across applications.
|
|
*/
|
|
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
|
|
int cmd_optional);
|
|
|
|
/*
|
|
* These functions are useful for manufacturing new ENGINE structures. They
|
|
* don't address reference counting at all - one uses them to populate an
|
|
* ENGINE structure with personalised implementations of things prior to
|
|
* using it directly or adding it to the builtin ENGINE list in OpenSSL.
|
|
* These are also here so that the ENGINE structure doesn't have to be
|
|
* exposed and break binary compatibility!
|
|
*/
|
|
ENGINE *ENGINE_new(void);
|
|
int ENGINE_free(ENGINE *e);
|
|
int ENGINE_up_ref(ENGINE *e);
|
|
int ENGINE_set_id(ENGINE *e, const char *id);
|
|
int ENGINE_set_name(ENGINE *e, const char *name);
|
|
int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
|
|
int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
|
|
int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *ecdh_meth);
|
|
int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *ecdsa_meth);
|
|
int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
|
|
int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
|
|
int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth);
|
|
int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
|
|
int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
|
|
int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
|
|
int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
|
|
int ENGINE_set_load_privkey_function(ENGINE *e,
|
|
ENGINE_LOAD_KEY_PTR loadpriv_f);
|
|
int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
|
|
int ENGINE_set_load_ssl_client_cert_function(ENGINE *e,
|
|
ENGINE_SSL_CLIENT_CERT_PTR
|
|
loadssl_f);
|
|
int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
|
|
int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
|
|
int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f);
|
|
int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f);
|
|
int ENGINE_set_flags(ENGINE *e, int flags);
|
|
int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
|
|
/* These functions allow control over any per-structure ENGINE data. */
|
|
int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
|
|
CRYPTO_EX_dup *dup_func,
|
|
CRYPTO_EX_free *free_func);
|
|
int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
|
|
void *ENGINE_get_ex_data(const ENGINE *e, int idx);
|
|
|
|
/*
|
|
* This function cleans up anything that needs it. Eg. the ENGINE_add()
|
|
* function automatically ensures the list cleanup function is registered to
|
|
* be called from ENGINE_cleanup(). Similarly, all ENGINE_register_***
|
|
* functions ensure ENGINE_cleanup() will clean up after them.
|
|
*/
|
|
void ENGINE_cleanup(void);
|
|
|
|
/*
|
|
* These return values from within the ENGINE structure. These can be useful
|
|
* with functional references as well as structural references - it depends
|
|
* which you obtained. Using the result for functional purposes if you only
|
|
* obtained a structural reference may be problematic!
|
|
*/
|
|
const char *ENGINE_get_id(const ENGINE *e);
|
|
const char *ENGINE_get_name(const ENGINE *e);
|
|
const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
|
|
const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
|
|
const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e);
|
|
const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e);
|
|
const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
|
|
const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
|
|
const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);
|
|
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
|
|
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
|
|
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
|
|
ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
|
|
ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
|
|
ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
|
|
ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE
|
|
*e);
|
|
ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
|
|
ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
|
|
ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e);
|
|
ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e);
|
|
const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
|
|
const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
|
|
const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid);
|
|
const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid);
|
|
const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e,
|
|
const char *str,
|
|
int len);
|
|
const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe,
|
|
const char *str,
|
|
int len);
|
|
const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
|
|
int ENGINE_get_flags(const ENGINE *e);
|
|
|
|
/*
|
|
* FUNCTIONAL functions. These functions deal with ENGINE structures that
|
|
* have (or will) be initialised for use. Broadly speaking, the structural
|
|
* functions are useful for iterating the list of available engine types,
|
|
* creating new engine types, and other "list" operations. These functions
|
|
* actually deal with ENGINEs that are to be used. As such these functions
|
|
* can fail (if applicable) when particular engines are unavailable - eg. if
|
|
* a hardware accelerator is not attached or not functioning correctly. Each
|
|
* ENGINE has 2 reference counts; structural and functional. Every time a
|
|
* functional reference is obtained or released, a corresponding structural
|
|
* reference is automatically obtained or released too.
|
|
*/
|
|
|
|
/*
|
|
* Initialise a engine type for use (or up its reference count if it's
|
|
* already in use). This will fail if the engine is not currently operational
|
|
* and cannot initialise.
|
|
*/
|
|
int ENGINE_init(ENGINE *e);
|
|
/*
|
|
* Free a functional reference to a engine type. This does not require a
|
|
* corresponding call to ENGINE_free as it also releases a structural
|
|
* reference.
|
|
*/
|
|
int ENGINE_finish(ENGINE *e);
|
|
|
|
/*
|
|
* The following functions handle keys that are stored in some secondary
|
|
* location, handled by the engine. The storage may be on a card or
|
|
* whatever.
|
|
*/
|
|
EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
|
|
UI_METHOD *ui_method, void *callback_data);
|
|
EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
|
|
UI_METHOD *ui_method, void *callback_data);
|
|
int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s,
|
|
STACK_OF(X509_NAME) *ca_dn, X509 **pcert,
|
|
EVP_PKEY **ppkey, STACK_OF(X509) **pother,
|
|
UI_METHOD *ui_method, void *callback_data);
|
|
|
|
/*
|
|
* This returns a pointer for the current ENGINE structure that is (by
|
|
* default) performing any RSA operations. The value returned is an
|
|
* incremented reference, so it should be free'd (ENGINE_finish) before it is
|
|
* discarded.
|
|
*/
|
|
ENGINE *ENGINE_get_default_RSA(void);
|
|
/* Same for the other "methods" */
|
|
ENGINE *ENGINE_get_default_DSA(void);
|
|
ENGINE *ENGINE_get_default_ECDH(void);
|
|
ENGINE *ENGINE_get_default_ECDSA(void);
|
|
ENGINE *ENGINE_get_default_DH(void);
|
|
ENGINE *ENGINE_get_default_RAND(void);
|
|
/*
|
|
* These functions can be used to get a functional reference to perform
|
|
* ciphering or digesting corresponding to "nid".
|
|
*/
|
|
ENGINE *ENGINE_get_cipher_engine(int nid);
|
|
ENGINE *ENGINE_get_digest_engine(int nid);
|
|
ENGINE *ENGINE_get_pkey_meth_engine(int nid);
|
|
ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid);
|
|
|
|
/*
|
|
* This sets a new default ENGINE structure for performing RSA operations. If
|
|
* the result is non-zero (success) then the ENGINE structure will have had
|
|
* its reference count up'd so the caller should still free their own
|
|
* reference 'e'.
|
|
*/
|
|
int ENGINE_set_default_RSA(ENGINE *e);
|
|
int ENGINE_set_default_string(ENGINE *e, const char *def_list);
|
|
/* Same for the other "methods" */
|
|
int ENGINE_set_default_DSA(ENGINE *e);
|
|
int ENGINE_set_default_ECDH(ENGINE *e);
|
|
int ENGINE_set_default_ECDSA(ENGINE *e);
|
|
int ENGINE_set_default_DH(ENGINE *e);
|
|
int ENGINE_set_default_RAND(ENGINE *e);
|
|
int ENGINE_set_default_ciphers(ENGINE *e);
|
|
int ENGINE_set_default_digests(ENGINE *e);
|
|
int ENGINE_set_default_pkey_meths(ENGINE *e);
|
|
int ENGINE_set_default_pkey_asn1_meths(ENGINE *e);
|
|
|
|
/*
|
|
* The combination "set" - the flags are bitwise "OR"d from the
|
|
* ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
|
|
* function, this function can result in unnecessary static linkage. If your
|
|
* application requires only specific functionality, consider using more
|
|
* selective functions.
|
|
*/
|
|
int ENGINE_set_default(ENGINE *e, unsigned int flags);
|
|
|
|
void ENGINE_add_conf_module(void);
|
|
|
|
/* Deprecated functions ... */
|
|
/* int ENGINE_clear_defaults(void); */
|
|
|
|
/**************************/
|
|
/* DYNAMIC ENGINE SUPPORT */
|
|
/**************************/
|
|
|
|
/* Binary/behaviour compatibility levels */
|
|
# define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000
|
|
/*
|
|
* Binary versions older than this are too old for us (whether we're a loader
|
|
* or a loadee)
|
|
*/
|
|
# define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000
|
|
|
|
/*
|
|
* When compiling an ENGINE entirely as an external shared library, loadable
|
|
* by the "dynamic" ENGINE, these types are needed. The 'dynamic_fns'
|
|
* structure type provides the calling application's (or library's) error
|
|
* functionality and memory management function pointers to the loaded
|
|
* library. These should be used/set in the loaded library code so that the
|
|
* loading application's 'state' will be used/changed in all operations. The
|
|
* 'static_state' pointer allows the loaded library to know if it shares the
|
|
* same static data as the calling application (or library), and thus whether
|
|
* these callbacks need to be set or not.
|
|
*/
|
|
typedef void *(*dyn_MEM_malloc_cb) (size_t);
|
|
typedef void *(*dyn_MEM_realloc_cb) (void *, size_t);
|
|
typedef void (*dyn_MEM_free_cb) (void *);
|
|
typedef struct st_dynamic_MEM_fns {
|
|
dyn_MEM_malloc_cb malloc_cb;
|
|
dyn_MEM_realloc_cb realloc_cb;
|
|
dyn_MEM_free_cb free_cb;
|
|
} dynamic_MEM_fns;
|
|
/*
|
|
* FIXME: Perhaps the memory and locking code (crypto.h) should declare and
|
|
* use these types so we (and any other dependant code) can simplify a bit??
|
|
*/
|
|
typedef void (*dyn_lock_locking_cb) (int, int, const char *, int);
|
|
typedef int (*dyn_lock_add_lock_cb) (int *, int, int, const char *, int);
|
|
typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb) (const char *,
|
|
int);
|
|
typedef void (*dyn_dynlock_lock_cb) (int, struct CRYPTO_dynlock_value *,
|
|
const char *, int);
|
|
typedef void (*dyn_dynlock_destroy_cb) (struct CRYPTO_dynlock_value *,
|
|
const char *, int);
|
|
typedef struct st_dynamic_LOCK_fns {
|
|
dyn_lock_locking_cb lock_locking_cb;
|
|
dyn_lock_add_lock_cb lock_add_lock_cb;
|
|
dyn_dynlock_create_cb dynlock_create_cb;
|
|
dyn_dynlock_lock_cb dynlock_lock_cb;
|
|
dyn_dynlock_destroy_cb dynlock_destroy_cb;
|
|
} dynamic_LOCK_fns;
|
|
/* The top-level structure */
|
|
typedef struct st_dynamic_fns {
|
|
void *static_state;
|
|
const ERR_FNS *err_fns;
|
|
const CRYPTO_EX_DATA_IMPL *ex_data_fns;
|
|
dynamic_MEM_fns mem_fns;
|
|
dynamic_LOCK_fns lock_fns;
|
|
} dynamic_fns;
|
|
|
|
/*
|
|
* The version checking function should be of this prototype. NB: The
|
|
* ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading
|
|
* code. If this function returns zero, it indicates a (potential) version
|
|
* incompatibility and the loaded library doesn't believe it can proceed.
|
|
* Otherwise, the returned value is the (latest) version supported by the
|
|
* loading library. The loader may still decide that the loaded code's
|
|
* version is unsatisfactory and could veto the load. The function is
|
|
* expected to be implemented with the symbol name "v_check", and a default
|
|
* implementation can be fully instantiated with
|
|
* IMPLEMENT_DYNAMIC_CHECK_FN().
|
|
*/
|
|
typedef unsigned long (*dynamic_v_check_fn) (unsigned long ossl_version);
|
|
# define IMPLEMENT_DYNAMIC_CHECK_FN() \
|
|
OPENSSL_EXPORT unsigned long v_check(unsigned long v); \
|
|
OPENSSL_EXPORT unsigned long v_check(unsigned long v) { \
|
|
if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
|
|
return 0; }
|
|
|
|
/*
|
|
* This function is passed the ENGINE structure to initialise with its own
|
|
* function and command settings. It should not adjust the structural or
|
|
* functional reference counts. If this function returns zero, (a) the load
|
|
* will be aborted, (b) the previous ENGINE state will be memcpy'd back onto
|
|
* the structure, and (c) the shared library will be unloaded. So
|
|
* implementations should do their own internal cleanup in failure
|
|
* circumstances otherwise they could leak. The 'id' parameter, if non-NULL,
|
|
* represents the ENGINE id that the loader is looking for. If this is NULL,
|
|
* the shared library can choose to return failure or to initialise a
|
|
* 'default' ENGINE. If non-NULL, the shared library must initialise only an
|
|
* ENGINE matching the passed 'id'. The function is expected to be
|
|
* implemented with the symbol name "bind_engine". A standard implementation
|
|
* can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where the parameter
|
|
* 'fn' is a callback function that populates the ENGINE structure and
|
|
* returns an int value (zero for failure). 'fn' should have prototype;
|
|
* [static] int fn(ENGINE *e, const char *id);
|
|
*/
|
|
typedef int (*dynamic_bind_engine) (ENGINE *e, const char *id,
|
|
const dynamic_fns *fns);
|
|
# define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
|
|
OPENSSL_EXPORT \
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \
|
|
OPENSSL_EXPORT \
|
|
int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
|
|
if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
|
|
if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \
|
|
fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \
|
|
return 0; \
|
|
CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); \
|
|
CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); \
|
|
CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_cb); \
|
|
CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb); \
|
|
CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destroy_cb); \
|
|
if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \
|
|
return 0; \
|
|
if(!ERR_set_implementation(fns->err_fns)) return 0; \
|
|
skip_cbs: \
|
|
if(!fn(e,id)) return 0; \
|
|
return 1; }
|
|
|
|
/*
|
|
* If the loading application (or library) and the loaded ENGINE library
|
|
* share the same static data (eg. they're both dynamically linked to the
|
|
* same libcrypto.so) we need a way to avoid trying to set system callbacks -
|
|
* this would fail, and for the same reason that it's unnecessary to try. If
|
|
* the loaded ENGINE has (or gets from through the loader) its own copy of
|
|
* the libcrypto static data, we will need to set the callbacks. The easiest
|
|
* way to detect this is to have a function that returns a pointer to some
|
|
* static data and let the loading application and loaded ENGINE compare
|
|
* their respective values.
|
|
*/
|
|
void *ENGINE_get_static_state(void);
|
|
|
|
# if defined(__OpenBSD__) || defined(__FreeBSD__) || defined(HAVE_CRYPTODEV)
|
|
void ENGINE_setup_bsd_cryptodev(void);
|
|
# endif
|
|
|
|
/* BEGIN ERROR CODES */
|
|
/*
|
|
* The following lines are auto generated by the script mkerr.pl. Any changes
|
|
* made after this point may be overwritten when the script is next run.
|
|
*/
|
|
void ERR_load_ENGINE_strings(void);
|
|
|
|
/* Error codes for the ENGINE functions. */
|
|
|
|
/* Function codes. */
|
|
# define ENGINE_F_DYNAMIC_CTRL 180
|
|
# define ENGINE_F_DYNAMIC_GET_DATA_CTX 181
|
|
# define ENGINE_F_DYNAMIC_LOAD 182
|
|
# define ENGINE_F_DYNAMIC_SET_DATA_CTX 183
|
|
# define ENGINE_F_ENGINE_ADD 105
|
|
# define ENGINE_F_ENGINE_BY_ID 106
|
|
# define ENGINE_F_ENGINE_CMD_IS_EXECUTABLE 170
|
|
# define ENGINE_F_ENGINE_CTRL 142
|
|
# define ENGINE_F_ENGINE_CTRL_CMD 178
|
|
# define ENGINE_F_ENGINE_CTRL_CMD_STRING 171
|
|
# define ENGINE_F_ENGINE_FINISH 107
|
|
# define ENGINE_F_ENGINE_FREE_UTIL 108
|
|
# define ENGINE_F_ENGINE_GET_CIPHER 185
|
|
# define ENGINE_F_ENGINE_GET_DEFAULT_TYPE 177
|
|
# define ENGINE_F_ENGINE_GET_DIGEST 186
|
|
# define ENGINE_F_ENGINE_GET_NEXT 115
|
|
# define ENGINE_F_ENGINE_GET_PKEY_ASN1_METH 193
|
|
# define ENGINE_F_ENGINE_GET_PKEY_METH 192
|
|
# define ENGINE_F_ENGINE_GET_PREV 116
|
|
# define ENGINE_F_ENGINE_INIT 119
|
|
# define ENGINE_F_ENGINE_LIST_ADD 120
|
|
# define ENGINE_F_ENGINE_LIST_REMOVE 121
|
|
# define ENGINE_F_ENGINE_LOAD_PRIVATE_KEY 150
|
|
# define ENGINE_F_ENGINE_LOAD_PUBLIC_KEY 151
|
|
# define ENGINE_F_ENGINE_LOAD_SSL_CLIENT_CERT 194
|
|
# define ENGINE_F_ENGINE_NEW 122
|
|
# define ENGINE_F_ENGINE_REMOVE 123
|
|
# define ENGINE_F_ENGINE_SET_DEFAULT_STRING 189
|
|
# define ENGINE_F_ENGINE_SET_DEFAULT_TYPE 126
|
|
# define ENGINE_F_ENGINE_SET_ID 129
|
|
# define ENGINE_F_ENGINE_SET_NAME 130
|
|
# define ENGINE_F_ENGINE_TABLE_REGISTER 184
|
|
# define ENGINE_F_ENGINE_UNLOAD_KEY 152
|
|
# define ENGINE_F_ENGINE_UNLOCKED_FINISH 191
|
|
# define ENGINE_F_ENGINE_UP_REF 190
|
|
# define ENGINE_F_INT_CTRL_HELPER 172
|
|
# define ENGINE_F_INT_ENGINE_CONFIGURE 188
|
|
# define ENGINE_F_INT_ENGINE_MODULE_INIT 187
|
|
# define ENGINE_F_LOG_MESSAGE 141
|
|
|
|
/* Reason codes. */
|
|
# define ENGINE_R_ALREADY_LOADED 100
|
|
# define ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER 133
|
|
# define ENGINE_R_CMD_NOT_EXECUTABLE 134
|
|
# define ENGINE_R_COMMAND_TAKES_INPUT 135
|
|
# define ENGINE_R_COMMAND_TAKES_NO_INPUT 136
|
|
# define ENGINE_R_CONFLICTING_ENGINE_ID 103
|
|
# define ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED 119
|
|
# define ENGINE_R_DH_NOT_IMPLEMENTED 139
|
|
# define ENGINE_R_DSA_NOT_IMPLEMENTED 140
|
|
# define ENGINE_R_DSO_FAILURE 104
|
|
# define ENGINE_R_DSO_NOT_FOUND 132
|
|
# define ENGINE_R_ENGINES_SECTION_ERROR 148
|
|
# define ENGINE_R_ENGINE_CONFIGURATION_ERROR 102
|
|
# define ENGINE_R_ENGINE_IS_NOT_IN_LIST 105
|
|
# define ENGINE_R_ENGINE_SECTION_ERROR 149
|
|
# define ENGINE_R_FAILED_LOADING_PRIVATE_KEY 128
|
|
# define ENGINE_R_FAILED_LOADING_PUBLIC_KEY 129
|
|
# define ENGINE_R_FINISH_FAILED 106
|
|
# define ENGINE_R_GET_HANDLE_FAILED 107
|
|
# define ENGINE_R_ID_OR_NAME_MISSING 108
|
|
# define ENGINE_R_INIT_FAILED 109
|
|
# define ENGINE_R_INTERNAL_LIST_ERROR 110
|
|
# define ENGINE_R_INVALID_ARGUMENT 143
|
|
# define ENGINE_R_INVALID_CMD_NAME 137
|
|
# define ENGINE_R_INVALID_CMD_NUMBER 138
|
|
# define ENGINE_R_INVALID_INIT_VALUE 151
|
|
# define ENGINE_R_INVALID_STRING 150
|
|
# define ENGINE_R_NOT_INITIALISED 117
|
|
# define ENGINE_R_NOT_LOADED 112
|
|
# define ENGINE_R_NO_CONTROL_FUNCTION 120
|
|
# define ENGINE_R_NO_INDEX 144
|
|
# define ENGINE_R_NO_LOAD_FUNCTION 125
|
|
# define ENGINE_R_NO_REFERENCE 130
|
|
# define ENGINE_R_NO_SUCH_ENGINE 116
|
|
# define ENGINE_R_NO_UNLOAD_FUNCTION 126
|
|
# define ENGINE_R_PROVIDE_PARAMETERS 113
|
|
# define ENGINE_R_RSA_NOT_IMPLEMENTED 141
|
|
# define ENGINE_R_UNIMPLEMENTED_CIPHER 146
|
|
# define ENGINE_R_UNIMPLEMENTED_DIGEST 147
|
|
# define ENGINE_R_UNIMPLEMENTED_PUBLIC_KEY_METHOD 101
|
|
# define ENGINE_R_VERSION_INCOMPATIBILITY 145
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
#endif
|