godot/servers/physics_2d/godot_body_pair_2d.cpp
Rémi Verschelde d95794ec8a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".
2023-01-05 13:25:55 +01:00

602 lines
21 KiB
C++

/**************************************************************************/
/* godot_body_pair_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "godot_body_pair_2d.h"
#include "godot_collision_solver_2d.h"
#include "godot_space_2d.h"
#define ACCUMULATE_IMPULSES
#define MIN_VELOCITY 0.001
#define MAX_BIAS_ROTATION (Math_PI / 8)
void GodotBodyPair2D::_add_contact(const Vector2 &p_point_A, const Vector2 &p_point_B, void *p_self) {
GodotBodyPair2D *self = static_cast<GodotBodyPair2D *>(p_self);
self->_contact_added_callback(p_point_A, p_point_B);
}
void GodotBodyPair2D::_contact_added_callback(const Vector2 &p_point_A, const Vector2 &p_point_B) {
Vector2 local_A = A->get_inv_transform().basis_xform(p_point_A);
Vector2 local_B = B->get_inv_transform().basis_xform(p_point_B - offset_B);
int new_index = contact_count;
ERR_FAIL_COND(new_index >= (MAX_CONTACTS + 1));
Contact contact;
contact.local_A = local_A;
contact.local_B = local_B;
contact.normal = (p_point_A - p_point_B).normalized();
contact.used = true;
// Attempt to determine if the contact will be reused.
real_t recycle_radius_2 = space->get_contact_recycle_radius() * space->get_contact_recycle_radius();
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (c.local_A.distance_squared_to(local_A) < (recycle_radius_2) &&
c.local_B.distance_squared_to(local_B) < (recycle_radius_2)) {
contact.acc_normal_impulse = c.acc_normal_impulse;
contact.acc_tangent_impulse = c.acc_tangent_impulse;
contact.acc_bias_impulse = c.acc_bias_impulse;
contact.acc_bias_impulse_center_of_mass = c.acc_bias_impulse_center_of_mass;
c = contact;
return;
}
}
// Figure out if the contact amount must be reduced to fit the new contact.
if (new_index == MAX_CONTACTS) {
// Remove the contact with the minimum depth.
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
int least_deep = -1;
real_t min_depth;
// Start with depth for new contact.
{
Vector2 global_A = transform_A.basis_xform(contact.local_A);
Vector2 global_B = transform_B.basis_xform(contact.local_B) + offset_B;
Vector2 axis = global_A - global_B;
min_depth = axis.dot(contact.normal);
}
for (int i = 0; i < contact_count; i++) {
const Contact &c = contacts[i];
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < min_depth) {
min_depth = depth;
least_deep = i;
}
}
if (least_deep > -1) {
// Replace the least deep contact by the new one.
contacts[least_deep] = contact;
}
return;
}
contacts[new_index] = contact;
contact_count++;
}
void GodotBodyPair2D::_validate_contacts() {
// Make sure to erase contacts that are no longer valid.
real_t max_separation = space->get_contact_max_separation();
real_t max_separation2 = max_separation * max_separation;
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
bool erase = false;
if (!c.used) {
// Was left behind in previous frame.
erase = true;
} else {
c.used = false;
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth < -max_separation || (global_B + c.normal * depth - global_A).length_squared() > max_separation2) {
erase = true;
}
}
if (erase) {
// Contact no longer needed, remove.
if ((i + 1) < contact_count) {
// Swap with the last one.
SWAP(contacts[i], contacts[contact_count - 1]);
}
i--;
contact_count--;
}
}
}
// _test_ccd prevents tunneling by slowing down a high velocity body that is about to collide so that next frame it will be at an appropriate location to collide (i.e. slight overlap)
// Warning: the way velocity is adjusted down to cause a collision means the momentum will be weaker than it should for a bounce!
// Process: only proceed if body A's motion is high relative to its size.
// cast forward along motion vector to see if A is going to enter/pass B's collider next frame, only proceed if it does.
// adjust the velocity of A down so that it will just slightly intersect the collider instead of blowing right past it.
bool GodotBodyPair2D::_test_ccd(real_t p_step, GodotBody2D *p_A, int p_shape_A, const Transform2D &p_xform_A, GodotBody2D *p_B, int p_shape_B, const Transform2D &p_xform_B) {
Vector2 motion = p_A->get_linear_velocity() * p_step;
real_t mlen = motion.length();
if (mlen < CMP_EPSILON) {
return false;
}
Vector2 mnormal = motion / mlen;
real_t min = 0.0, max = 0.0;
p_A->get_shape(p_shape_A)->project_rangev(mnormal, p_xform_A, min, max);
// Did it move enough in this direction to even attempt raycast?
// Let's say it should move more than 1/3 the size of the object in that axis.
bool fast_object = mlen > (max - min) * 0.3;
if (!fast_object) {
return false;
}
// A is moving fast enough that tunneling might occur. See if it's really about to collide.
// Cast a segment from support in motion normal, in the same direction of motion by motion length.
// Support point will the farthest forward collision point along the movement vector.
// i.e. the point that should hit B first if any collision does occur.
// convert mnormal into body A's local xform because get_support requires (and returns) local coordinates.
int a;
Vector2 s[2];
p_A->get_shape(p_shape_A)->get_supports(p_xform_A.basis_xform_inv(mnormal).normalized(), s, a);
Vector2 from = p_xform_A.xform(s[0]);
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
// This should ensure the calculated new velocity will really cause a bit of overlap instead of just getting us very close.
Vector2 to = from + motion;
Transform2D from_inv = p_xform_B.affine_inverse();
// Back up 10% of the per-frame motion behind the support point and use that as the beginning of our cast.
// At high speeds, this may mean we're actually casting from well behind the body instead of inside it, which is odd. But it still works out.
Vector2 local_from = from_inv.xform(from - motion * 0.1);
Vector2 local_to = from_inv.xform(to);
Vector2 rpos, rnorm;
if (!p_B->get_shape(p_shape_B)->intersect_segment(local_from, local_to, rpos, rnorm)) {
// there was no hit. Since the segment is the length of per-frame motion, this means the bodies will not
// actually collide yet on next frame. We'll probably check again next frame once they're closer.
return false;
}
// Check one-way collision based on motion direction.
if (p_A->get_shape(p_shape_A)->allows_one_way_collision() && p_B->is_shape_set_as_one_way_collision(p_shape_B)) {
Vector2 direction = p_xform_B.columns[1].normalized();
if (direction.dot(mnormal) < CMP_EPSILON) {
collided = false;
oneway_disabled = true;
return false;
}
}
// Shorten the linear velocity so it does not hit, but gets close enough,
// next frame will hit softly or soft enough.
Vector2 hitpos = p_xform_B.xform(rpos);
real_t newlen = hitpos.distance_to(from) + (max - min) * 0.01; // adding 1% of body length to the distance between collision and support point should cause body A's support point to arrive just within B's collider next frame.
p_A->set_linear_velocity(mnormal * (newlen / p_step));
return true;
}
real_t combine_bounce(GodotBody2D *A, GodotBody2D *B) {
return CLAMP(A->get_bounce() + B->get_bounce(), 0, 1);
}
real_t combine_friction(GodotBody2D *A, GodotBody2D *B) {
return ABS(MIN(A->get_friction(), B->get_friction()));
}
bool GodotBodyPair2D::setup(real_t p_step) {
check_ccd = false;
if (!A->interacts_with(B) || A->has_exception(B->get_self()) || B->has_exception(A->get_self())) {
collided = false;
return false;
}
collide_A = (A->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && A->collides_with(B);
collide_B = (B->get_mode() > PhysicsServer2D::BODY_MODE_KINEMATIC) && B->collides_with(A);
report_contacts_only = false;
if (!collide_A && !collide_B) {
if ((A->get_max_contacts_reported() > 0) || (B->get_max_contacts_reported() > 0)) {
report_contacts_only = true;
} else {
collided = false;
return false;
}
}
//use local A coordinates to avoid numerical issues on collision detection
offset_B = B->get_transform().get_origin() - A->get_transform().get_origin();
_validate_contacts();
const Vector2 &offset_A = A->get_transform().get_origin();
Transform2D xform_Au = A->get_transform().untranslated();
Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform2D xform_Bu = B->get_transform();
xform_Bu.columns[2] -= offset_A;
Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);
GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
GodotShape2D *shape_B_ptr = B->get_shape(shape_B);
Vector2 motion_A, motion_B;
if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
motion_A = A->get_motion();
}
if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_SHAPE) {
motion_B = B->get_motion();
}
bool prev_collided = collided;
collided = GodotCollisionSolver2D::solve(shape_A_ptr, xform_A, motion_A, shape_B_ptr, xform_B, motion_B, _add_contact, this, &sep_axis);
if (!collided) {
oneway_disabled = false;
if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
check_ccd = true;
return true;
}
if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
check_ccd = true;
return true;
}
return false;
}
if (oneway_disabled) {
return false;
}
if (!prev_collided) {
if (shape_B_ptr->allows_one_way_collision() && A->is_shape_set_as_one_way_collision(shape_A)) {
Vector2 direction = xform_A.columns[1].normalized();
bool valid = false;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (c.normal.dot(direction) > -CMP_EPSILON) { // Greater (normal inverted).
continue;
}
valid = true;
break;
}
if (!valid) {
collided = false;
oneway_disabled = true;
return false;
}
}
if (shape_A_ptr->allows_one_way_collision() && B->is_shape_set_as_one_way_collision(shape_B)) {
Vector2 direction = xform_B.columns[1].normalized();
bool valid = false;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
if (c.normal.dot(direction) < CMP_EPSILON) { // Less (normal ok).
continue;
}
valid = true;
break;
}
if (!valid) {
collided = false;
oneway_disabled = true;
return false;
}
}
}
return true;
}
bool GodotBodyPair2D::pre_solve(real_t p_step) {
if (oneway_disabled) {
return false;
}
if (!collided) {
if (check_ccd) {
const Vector2 &offset_A = A->get_transform().get_origin();
Transform2D xform_Au = A->get_transform().untranslated();
Transform2D xform_A = xform_Au * A->get_shape_transform(shape_A);
Transform2D xform_Bu = B->get_transform();
xform_Bu.columns[2] -= offset_A;
Transform2D xform_B = xform_Bu * B->get_shape_transform(shape_B);
if (A->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_A) {
_test_ccd(p_step, A, shape_A, xform_A, B, shape_B, xform_B);
}
if (B->get_continuous_collision_detection_mode() == PhysicsServer2D::CCD_MODE_CAST_RAY && collide_B) {
_test_ccd(p_step, B, shape_B, xform_B, A, shape_A, xform_A);
}
}
return false;
}
real_t max_penetration = space->get_contact_max_allowed_penetration();
real_t bias = space->get_contact_bias();
GodotShape2D *shape_A_ptr = A->get_shape(shape_A);
GodotShape2D *shape_B_ptr = B->get_shape(shape_B);
if (shape_A_ptr->get_custom_bias() || shape_B_ptr->get_custom_bias()) {
if (shape_A_ptr->get_custom_bias() == 0) {
bias = shape_B_ptr->get_custom_bias();
} else if (shape_B_ptr->get_custom_bias() == 0) {
bias = shape_A_ptr->get_custom_bias();
} else {
bias = (shape_B_ptr->get_custom_bias() + shape_A_ptr->get_custom_bias()) * 0.5;
}
}
real_t inv_dt = 1.0 / p_step;
bool do_process = false;
const Vector2 &offset_A = A->get_transform().get_origin();
const Transform2D &transform_A = A->get_transform();
const Transform2D &transform_B = B->get_transform();
real_t inv_inertia_A = collide_A ? A->get_inv_inertia() : 0.0;
real_t inv_inertia_B = collide_B ? B->get_inv_inertia() : 0.0;
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
for (int i = 0; i < contact_count; i++) {
Contact &c = contacts[i];
c.active = false;
Vector2 global_A = transform_A.basis_xform(c.local_A);
Vector2 global_B = transform_B.basis_xform(c.local_B) + offset_B;
Vector2 axis = global_A - global_B;
real_t depth = axis.dot(c.normal);
if (depth <= 0.0) {
continue;
}
#ifdef DEBUG_ENABLED
if (space->is_debugging_contacts()) {
space->add_debug_contact(global_A + offset_A);
space->add_debug_contact(global_B + offset_A);
}
#endif
c.rA = global_A - A->get_center_of_mass();
c.rB = global_B - B->get_center_of_mass() - offset_B;
if (A->can_report_contacts()) {
Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
A->add_contact(global_A + offset_A, -c.normal, depth, shape_A, global_B + offset_A, shape_B, B->get_instance_id(), B->get_self(), crB + B->get_linear_velocity());
}
if (B->can_report_contacts()) {
Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
B->add_contact(global_B + offset_A, c.normal, depth, shape_B, global_A + offset_A, shape_A, A->get_instance_id(), A->get_self(), crA + A->get_linear_velocity());
}
if (report_contacts_only) {
collided = false;
continue;
}
// Precompute normal mass, tangent mass, and bias.
real_t rnA = c.rA.dot(c.normal);
real_t rnB = c.rB.dot(c.normal);
real_t kNormal = inv_mass_A + inv_mass_B;
kNormal += inv_inertia_A * (c.rA.dot(c.rA) - rnA * rnA) + inv_inertia_B * (c.rB.dot(c.rB) - rnB * rnB);
c.mass_normal = 1.0f / kNormal;
Vector2 tangent = c.normal.orthogonal();
real_t rtA = c.rA.dot(tangent);
real_t rtB = c.rB.dot(tangent);
real_t kTangent = inv_mass_A + inv_mass_B;
kTangent += inv_inertia_A * (c.rA.dot(c.rA) - rtA * rtA) + inv_inertia_B * (c.rB.dot(c.rB) - rtB * rtB);
c.mass_tangent = 1.0f / kTangent;
c.bias = -bias * inv_dt * MIN(0.0f, -depth + max_penetration);
c.depth = depth;
#ifdef ACCUMULATE_IMPULSES
{
// Apply normal + friction impulse
Vector2 P = c.acc_normal_impulse * c.normal + c.acc_tangent_impulse * tangent;
if (collide_A) {
A->apply_impulse(-P, c.rA + A->get_center_of_mass());
}
if (collide_B) {
B->apply_impulse(P, c.rB + B->get_center_of_mass());
}
}
#endif
c.bounce = combine_bounce(A, B);
if (c.bounce) {
Vector2 crA(-A->get_prev_angular_velocity() * c.rA.y, A->get_prev_angular_velocity() * c.rA.x);
Vector2 crB(-B->get_prev_angular_velocity() * c.rB.y, B->get_prev_angular_velocity() * c.rB.x);
Vector2 dv = B->get_prev_linear_velocity() + crB - A->get_prev_linear_velocity() - crA;
c.bounce = c.bounce * dv.dot(c.normal);
}
c.active = true;
do_process = true;
}
return do_process;
}
void GodotBodyPair2D::solve(real_t p_step) {
if (!collided || oneway_disabled) {
return;
}
const real_t max_bias_av = MAX_BIAS_ROTATION / p_step;
real_t inv_mass_A = collide_A ? A->get_inv_mass() : 0.0;
real_t inv_mass_B = collide_B ? B->get_inv_mass() : 0.0;
for (int i = 0; i < contact_count; ++i) {
Contact &c = contacts[i];
if (!c.active) {
continue;
}
// Relative velocity at contact
Vector2 crA(-A->get_angular_velocity() * c.rA.y, A->get_angular_velocity() * c.rA.x);
Vector2 crB(-B->get_angular_velocity() * c.rB.y, B->get_angular_velocity() * c.rB.x);
Vector2 dv = B->get_linear_velocity() + crB - A->get_linear_velocity() - crA;
Vector2 crbA(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
Vector2 crbB(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
Vector2 dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
real_t vn = dv.dot(c.normal);
real_t vbn = dbv.dot(c.normal);
Vector2 tangent = c.normal.orthogonal();
real_t vt = dv.dot(tangent);
real_t jbn = (c.bias - vbn) * c.mass_normal;
real_t jbnOld = c.acc_bias_impulse;
c.acc_bias_impulse = MAX(jbnOld + jbn, 0.0f);
Vector2 jb = c.normal * (c.acc_bias_impulse - jbnOld);
if (collide_A) {
A->apply_bias_impulse(-jb, c.rA + A->get_center_of_mass(), max_bias_av);
}
if (collide_B) {
B->apply_bias_impulse(jb, c.rB + B->get_center_of_mass(), max_bias_av);
}
crbA = Vector2(-A->get_biased_angular_velocity() * c.rA.y, A->get_biased_angular_velocity() * c.rA.x);
crbB = Vector2(-B->get_biased_angular_velocity() * c.rB.y, B->get_biased_angular_velocity() * c.rB.x);
dbv = B->get_biased_linear_velocity() + crbB - A->get_biased_linear_velocity() - crbA;
vbn = dbv.dot(c.normal);
if (Math::abs(-vbn + c.bias) > MIN_VELOCITY) {
real_t jbn_com = (-vbn + c.bias) / (inv_mass_A + inv_mass_B);
real_t jbnOld_com = c.acc_bias_impulse_center_of_mass;
c.acc_bias_impulse_center_of_mass = MAX(jbnOld_com + jbn_com, 0.0f);
Vector2 jb_com = c.normal * (c.acc_bias_impulse_center_of_mass - jbnOld_com);
if (collide_A) {
A->apply_bias_impulse(-jb_com, A->get_center_of_mass(), 0.0f);
}
if (collide_B) {
B->apply_bias_impulse(jb_com, B->get_center_of_mass(), 0.0f);
}
}
real_t jn = -(c.bounce + vn) * c.mass_normal;
real_t jnOld = c.acc_normal_impulse;
c.acc_normal_impulse = MAX(jnOld + jn, 0.0f);
real_t friction = combine_friction(A, B);
real_t jtMax = friction * c.acc_normal_impulse;
real_t jt = -vt * c.mass_tangent;
real_t jtOld = c.acc_tangent_impulse;
c.acc_tangent_impulse = CLAMP(jtOld + jt, -jtMax, jtMax);
Vector2 j = c.normal * (c.acc_normal_impulse - jnOld) + tangent * (c.acc_tangent_impulse - jtOld);
if (collide_A) {
A->apply_impulse(-j, c.rA + A->get_center_of_mass());
}
if (collide_B) {
B->apply_impulse(j, c.rB + B->get_center_of_mass());
}
}
}
GodotBodyPair2D::GodotBodyPair2D(GodotBody2D *p_A, int p_shape_A, GodotBody2D *p_B, int p_shape_B) :
GodotConstraint2D(_arr, 2) {
A = p_A;
B = p_B;
shape_A = p_shape_A;
shape_B = p_shape_B;
space = A->get_space();
A->add_constraint(this, 0);
B->add_constraint(this, 1);
}
GodotBodyPair2D::~GodotBodyPair2D() {
A->remove_constraint(this, 0);
B->remove_constraint(this, 1);
}