godot/thirdparty/vulkan/loader/loader.c

8752 lines
385 KiB
C

/*
*
* Copyright (c) 2014-2020 The Khronos Group Inc.
* Copyright (c) 2014-2020 Valve Corporation
* Copyright (c) 2014-2020 LunarG, Inc.
* Copyright (C) 2015 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Young <marky@lunarg.com>
* Author: Lenny Komow <lenny@lunarg.com>
*
*/
// This needs to be defined first, or else we'll get redefinitions on NTSTATUS values
#ifdef _WIN32
#define UMDF_USING_NTSTATUS
#include <ntstatus.h>
#endif
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <stddef.h>
#if defined(__APPLE__)
#include <CoreFoundation/CoreFoundation.h>
#include <sys/param.h>
#endif
// Time related functions
#include <time.h>
#include <sys/types.h>
#if defined(_WIN32)
#include "dirent_on_windows.h"
#else // _WIN32
#include <dirent.h>
#endif // _WIN32
#include "vk_loader_platform.h"
#include "loader.h"
#include "gpa_helper.h"
#include "debug_utils.h"
#include "wsi.h"
#include "vulkan/vk_icd.h"
#include "cJSON.h"
#include "murmurhash.h"
#if defined(_WIN32)
#include <cfgmgr32.h>
#include <initguid.h>
#include <devpkey.h>
#include <winternl.h>
#include <strsafe.h>
#ifdef __MINGW32__
#undef strcpy // fix error with redfined strcpy when building with MinGW-w64
#endif
#include <dxgi1_6.h>
#include "adapters.h"
typedef HRESULT (APIENTRY *PFN_CreateDXGIFactory1)(REFIID riid, void **ppFactory);
static PFN_CreateDXGIFactory1 fpCreateDXGIFactory1;
#endif
// This is a CMake generated file with #defines for any functions/includes
// that it found present. This is currently necessary to properly determine
// if secure_getenv or __secure_getenv are present
#if !defined(VULKAN_NON_CMAKE_BUILD)
#include "loader_cmake_config.h"
#endif // !defined(VULKAN_NON_CMAKE_BUILD)
// Generated file containing all the extension data
#include "vk_loader_extensions.c"
// Environment Variable information
#define VK_ICD_FILENAMES_ENV_VAR "VK_ICD_FILENAMES"
#define VK_LAYER_PATH_ENV_VAR "VK_LAYER_PATH"
// Override layer information
#define VK_OVERRIDE_LAYER_NAME "VK_LAYER_LUNARG_override"
struct loader_struct loader = {0};
// TLS for instance for alloc/free callbacks
THREAD_LOCAL_DECL struct loader_instance *tls_instance;
static size_t loader_platform_combine_path(char *dest, size_t len, ...);
struct loader_phys_dev_per_icd {
uint32_t count;
VkPhysicalDevice *phys_devs;
struct loader_icd_term *this_icd_term;
};
enum loader_debug {
LOADER_INFO_BIT = 0x01,
LOADER_WARN_BIT = 0x02,
LOADER_PERF_BIT = 0x04,
LOADER_ERROR_BIT = 0x08,
LOADER_DEBUG_BIT = 0x10,
};
uint32_t g_loader_debug = 0;
uint32_t g_loader_log_msgs = 0;
enum loader_data_files_type {
LOADER_DATA_FILE_MANIFEST_ICD = 0,
LOADER_DATA_FILE_MANIFEST_LAYER,
LOADER_DATA_FILE_NUM_TYPES // Not a real field, used for possible loop terminator
};
// thread safety lock for accessing global data structures such as "loader"
// all entrypoints on the instance chain need to be locked except GPA
// additionally CreateDevice and DestroyDevice needs to be locked
loader_platform_thread_mutex loader_lock;
loader_platform_thread_mutex loader_json_lock;
loader_platform_thread_mutex loader_preload_icd_lock;
// A list of ICDs that gets initialized when the loader does its global initialization. This list should never be used by anything
// other than EnumerateInstanceExtensionProperties(), vkDestroyInstance, and loader_release(). This list does not change
// functionality, but the fact that the libraries already been loaded causes any call that needs to load ICD libraries to speed up
// significantly. This can have a huge impact when making repeated calls to vkEnumerateInstanceExtensionProperties and
// vkCreateInstance.
static struct loader_icd_tramp_list scanned_icds;
LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init);
void *loader_instance_heap_alloc(const struct loader_instance *instance, size_t size, VkSystemAllocationScope alloc_scope) {
void *pMemory = NULL;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (instance && instance->alloc_callbacks.pfnAllocation) {
// These are internal structures, so it's best to align everything to
// the largest unit size which is the size of a uint64_t.
pMemory = instance->alloc_callbacks.pfnAllocation(instance->alloc_callbacks.pUserData, size, sizeof(uint64_t), alloc_scope);
} else {
#endif
pMemory = malloc(size);
}
return pMemory;
}
void loader_instance_heap_free(const struct loader_instance *instance, void *pMemory) {
if (pMemory != NULL) {
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (instance && instance->alloc_callbacks.pfnFree) {
instance->alloc_callbacks.pfnFree(instance->alloc_callbacks.pUserData, pMemory);
} else {
#endif
free(pMemory);
}
}
}
void *loader_instance_heap_realloc(const struct loader_instance *instance, void *pMemory, size_t orig_size, size_t size,
VkSystemAllocationScope alloc_scope) {
void *pNewMem = NULL;
if (pMemory == NULL || orig_size == 0) {
pNewMem = loader_instance_heap_alloc(instance, size, alloc_scope);
} else if (size == 0) {
loader_instance_heap_free(instance, pMemory);
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
#else
} else if (instance && instance->alloc_callbacks.pfnReallocation) {
// These are internal structures, so it's best to align everything to
// the largest unit size which is the size of a uint64_t.
pNewMem = instance->alloc_callbacks.pfnReallocation(instance->alloc_callbacks.pUserData, pMemory, size, sizeof(uint64_t),
alloc_scope);
#endif
} else {
pNewMem = realloc(pMemory, size);
}
return pNewMem;
}
void *loader_instance_tls_heap_alloc(size_t size) {
return loader_instance_heap_alloc(tls_instance, size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
}
void loader_instance_tls_heap_free(void *pMemory) { loader_instance_heap_free(tls_instance, pMemory); }
void *loader_device_heap_alloc(const struct loader_device *device, size_t size, VkSystemAllocationScope alloc_scope) {
void *pMemory = NULL;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (device && device->alloc_callbacks.pfnAllocation) {
// These are internal structures, so it's best to align everything to
// the largest unit size which is the size of a uint64_t.
pMemory = device->alloc_callbacks.pfnAllocation(device->alloc_callbacks.pUserData, size, sizeof(uint64_t), alloc_scope);
} else {
#endif
pMemory = malloc(size);
}
return pMemory;
}
void loader_device_heap_free(const struct loader_device *device, void *pMemory) {
if (pMemory != NULL) {
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (device && device->alloc_callbacks.pfnFree) {
device->alloc_callbacks.pfnFree(device->alloc_callbacks.pUserData, pMemory);
} else {
#endif
free(pMemory);
}
}
}
void *loader_device_heap_realloc(const struct loader_device *device, void *pMemory, size_t orig_size, size_t size,
VkSystemAllocationScope alloc_scope) {
void *pNewMem = NULL;
if (pMemory == NULL || orig_size == 0) {
pNewMem = loader_device_heap_alloc(device, size, alloc_scope);
} else if (size == 0) {
loader_device_heap_free(device, pMemory);
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
#else
} else if (device && device->alloc_callbacks.pfnReallocation) {
// These are internal structures, so it's best to align everything to
// the largest unit size which is the size of a uint64_t.
pNewMem = device->alloc_callbacks.pfnReallocation(device->alloc_callbacks.pUserData, pMemory, size, sizeof(uint64_t),
alloc_scope);
#endif
} else {
pNewMem = realloc(pMemory, size);
}
return pNewMem;
}
// Environment variables
#if defined(__linux__) || defined(__APPLE__) || defined(__Fuchsia__)
static inline bool IsHighIntegrity() {
return geteuid() != getuid() || getegid() != getgid();
}
static inline char *loader_getenv(const char *name, const struct loader_instance *inst) {
// No allocation of memory necessary for Linux, but we should at least touch
// the inst pointer to get rid of compiler warnings.
(void)inst;
return getenv(name);
}
static inline char *loader_secure_getenv(const char *name, const struct loader_instance *inst) {
char *out;
#if defined(__APPLE__)
// Apple does not appear to have a secure getenv implementation.
// The main difference between secure getenv and getenv is that secure getenv
// returns NULL if the process is being run with elevated privileges by a normal user.
// The idea is to prevent the reading of malicious environment variables by a process
// that can do damage.
// This algorithm is derived from glibc code that sets an internal
// variable (__libc_enable_secure) if the process is running under setuid or setgid.
return IsHighIntegrity() ? NULL : loader_getenv(name, inst);
#elif defined(__Fuchsia__)
return loader_getenv(name, inst);
#else
// Linux
#if defined(HAVE_SECURE_GETENV) && !defined(USE_UNSAFE_FILE_SEARCH)
(void)inst;
out = secure_getenv(name);
#elif defined(HAVE___SECURE_GETENV) && !defined(USE_UNSAFE_FILE_SEARCH)
(void)inst;
out = __secure_getenv(name);
#else
out = loader_getenv(name, inst);
#if !defined(USE_UNSAFE_FILE_SEARCH)
loader_log(inst, LOADER_INFO_BIT, 0, "Loader is using non-secure environment variable lookup for %s", name);
#endif
#endif
return out;
#endif
}
static inline void loader_free_getenv(char *val, const struct loader_instance *inst) {
// No freeing of memory necessary for Linux, but we should at least touch
// the val and inst pointers to get rid of compiler warnings.
(void)val;
(void)inst;
}
#elif defined(WIN32)
static inline bool IsHighIntegrity() {
HANDLE process_token;
if (OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY | TOKEN_QUERY_SOURCE, &process_token)) {
// Maximum possible size of SID_AND_ATTRIBUTES is maximum size of a SID + size of attributes DWORD.
uint8_t mandatory_label_buffer[SECURITY_MAX_SID_SIZE + sizeof(DWORD)];
DWORD buffer_size;
if (GetTokenInformation(process_token, TokenIntegrityLevel, mandatory_label_buffer, sizeof(mandatory_label_buffer),
&buffer_size) != 0) {
const TOKEN_MANDATORY_LABEL *mandatory_label = (const TOKEN_MANDATORY_LABEL *)mandatory_label_buffer;
const DWORD sub_authority_count = *GetSidSubAuthorityCount(mandatory_label->Label.Sid);
const DWORD integrity_level = *GetSidSubAuthority(mandatory_label->Label.Sid, sub_authority_count - 1);
CloseHandle(process_token);
return integrity_level > SECURITY_MANDATORY_MEDIUM_RID;
}
CloseHandle(process_token);
}
return false;
}
static inline char *loader_getenv(const char *name, const struct loader_instance *inst) {
char *retVal;
DWORD valSize;
valSize = GetEnvironmentVariableA(name, NULL, 0);
// valSize DOES include the null terminator, so for any set variable
// will always be at least 1. If it's 0, the variable wasn't set.
if (valSize == 0) return NULL;
// Allocate the space necessary for the registry entry
if (NULL != inst && NULL != inst->alloc_callbacks.pfnAllocation) {
retVal = (char *)inst->alloc_callbacks.pfnAllocation(inst->alloc_callbacks.pUserData, valSize, sizeof(char *),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
} else {
retVal = (char *)malloc(valSize);
}
if (NULL != retVal) {
GetEnvironmentVariableA(name, retVal, valSize);
}
return retVal;
}
static inline char *loader_secure_getenv(const char *name, const struct loader_instance *inst) {
#if !defined(USE_UNSAFE_FILE_SEARCH)
if (IsHighIntegrity()) {
loader_log(inst, LOADER_INFO_BIT, 0, "Loader is running with elevated permissions. Environment variable %s will be ignored",
name);
return NULL;
}
#endif
return loader_getenv(name, inst);
}
static inline void loader_free_getenv(char *val, const struct loader_instance *inst) {
if (NULL != inst && NULL != inst->alloc_callbacks.pfnFree) {
inst->alloc_callbacks.pfnFree(inst->alloc_callbacks.pUserData, val);
} else {
free((void *)val);
}
}
#else
static inline char *loader_getenv(const char *name, const struct loader_instance *inst) {
// stub func
(void)inst;
(void)name;
return NULL;
}
static inline void loader_free_getenv(char *val, const struct loader_instance *inst) {
// stub func
(void)val;
(void)inst;
}
#endif
void loader_log(const struct loader_instance *inst, VkFlags msg_type, int32_t msg_code, const char *format, ...) {
char msg[512];
char cmd_line_msg[512];
size_t cmd_line_size = sizeof(cmd_line_msg);
va_list ap;
int ret;
va_start(ap, format);
ret = vsnprintf(msg, sizeof(msg), format, ap);
if ((ret >= (int)sizeof(msg)) || ret < 0) {
msg[sizeof(msg) - 1] = '\0';
}
va_end(ap);
if (inst) {
VkDebugUtilsMessageSeverityFlagBitsEXT severity = 0;
VkDebugUtilsMessageTypeFlagsEXT type;
VkDebugUtilsMessengerCallbackDataEXT callback_data;
VkDebugUtilsObjectNameInfoEXT object_name;
if ((msg_type & LOADER_INFO_BIT) != 0) {
severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT;
} else if ((msg_type & LOADER_WARN_BIT) != 0) {
severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT;
} else if ((msg_type & LOADER_ERROR_BIT) != 0) {
severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
} else if ((msg_type & LOADER_DEBUG_BIT) != 0) {
severity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT;
}
if ((msg_type & LOADER_PERF_BIT) != 0) {
type = VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
} else {
type = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT;
}
callback_data.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CALLBACK_DATA_EXT;
callback_data.pNext = NULL;
callback_data.flags = 0;
callback_data.pMessageIdName = "Loader Message";
callback_data.messageIdNumber = 0;
callback_data.pMessage = msg;
callback_data.queueLabelCount = 0;
callback_data.pQueueLabels = NULL;
callback_data.cmdBufLabelCount = 0;
callback_data.pCmdBufLabels = NULL;
callback_data.objectCount = 1;
callback_data.pObjects = &object_name;
object_name.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_OBJECT_NAME_INFO_EXT;
object_name.pNext = NULL;
object_name.objectType = VK_OBJECT_TYPE_INSTANCE;
object_name.objectHandle = (uint64_t)(uintptr_t)inst;
object_name.pObjectName = NULL;
util_SubmitDebugUtilsMessageEXT(inst, severity, type, &callback_data);
}
if (!(msg_type & g_loader_log_msgs)) {
return;
}
cmd_line_msg[0] = '\0';
cmd_line_size -= 1;
size_t original_size = cmd_line_size;
if ((msg_type & LOADER_INFO_BIT) != 0) {
strncat(cmd_line_msg, "INFO", cmd_line_size);
cmd_line_size -= 4;
}
if ((msg_type & LOADER_WARN_BIT) != 0) {
if (cmd_line_size != original_size) {
strncat(cmd_line_msg, " | ", cmd_line_size);
cmd_line_size -= 3;
}
strncat(cmd_line_msg, "WARNING", cmd_line_size);
cmd_line_size -= 7;
}
if ((msg_type & LOADER_PERF_BIT) != 0) {
if (cmd_line_size != original_size) {
strncat(cmd_line_msg, " | ", cmd_line_size);
cmd_line_size -= 3;
}
strncat(cmd_line_msg, "PERF", cmd_line_size);
cmd_line_size -= 4;
}
if ((msg_type & LOADER_ERROR_BIT) != 0) {
if (cmd_line_size != original_size) {
strncat(cmd_line_msg, " | ", cmd_line_size);
cmd_line_size -= 3;
}
strncat(cmd_line_msg, "ERROR", cmd_line_size);
cmd_line_size -= 5;
}
if ((msg_type & LOADER_DEBUG_BIT) != 0) {
if (cmd_line_size != original_size) {
strncat(cmd_line_msg, " | ", cmd_line_size);
cmd_line_size -= 3;
}
strncat(cmd_line_msg, "DEBUG", cmd_line_size);
cmd_line_size -= 5;
}
if (cmd_line_size != original_size) {
strncat(cmd_line_msg, ": ", cmd_line_size);
cmd_line_size -= 2;
}
if (0 < cmd_line_size) {
// If the message is too long, trim it down
if (strlen(msg) > cmd_line_size) {
msg[cmd_line_size - 1] = '\0';
}
strncat(cmd_line_msg, msg, cmd_line_size);
} else {
// Shouldn't get here, but check to make sure if we've already overrun
// the string boundary
assert(false);
}
#if defined(WIN32)
OutputDebugString(cmd_line_msg);
OutputDebugString("\n");
#endif
fputs(cmd_line_msg, stderr);
fputc('\n', stderr);
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetInstanceDispatch(VkInstance instance, void *object) {
struct loader_instance *inst = loader_get_instance(instance);
if (!inst) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkSetInstanceDispatch: Can not retrieve Instance "
"dispatch table.");
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, inst->disp);
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL vkSetDeviceDispatch(VkDevice device, void *object) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
if (NULL == icd_term) {
return VK_ERROR_INITIALIZATION_FAILED;
}
loader_set_dispatch(object, &dev->loader_dispatch);
return VK_SUCCESS;
}
#if defined(_WIN32)
// Append the JSON path data to the list and allocate/grow the list if it's not large enough.
// Function returns true if filename was appended to reg_data list.
// Caller should free reg_data.
static bool loaderAddJsonEntry(const struct loader_instance *inst,
char **reg_data, // list of JSON files
PDWORD total_size, // size of reg_data
LPCSTR key_name, // key name - used for debug prints - i.e. VulkanDriverName
DWORD key_type, // key data type
LPSTR json_path, // JSON string to add to the list reg_data
DWORD json_size, // size in bytes of json_path
VkResult *result) {
// Check for and ignore duplicates.
if (*reg_data && strstr(*reg_data, json_path)) {
// Success. The json_path is already in the list.
return true;
}
if (NULL == *reg_data) {
*reg_data = loader_instance_heap_alloc(inst, *total_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == *reg_data) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderAddJsonEntry: Failed to allocate space for registry data for key %s", json_path);
*result = VK_ERROR_OUT_OF_HOST_MEMORY;
return false;
}
*reg_data[0] = '\0';
} else if (strlen(*reg_data) + json_size + 1 > *total_size) {
void *new_ptr =
loader_instance_heap_realloc(inst, *reg_data, *total_size, *total_size * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderAddJsonEntry: Failed to reallocate space for registry value of size %d for key %s", *total_size * 2,
json_path);
*result = VK_ERROR_OUT_OF_HOST_MEMORY;
return false;
}
*reg_data = new_ptr;
*total_size *= 2;
}
for (char *curr_filename = json_path; curr_filename[0] != '\0'; curr_filename += strlen(curr_filename) + 1) {
if (strlen(*reg_data) == 0) {
(void)snprintf(*reg_data, json_size + 1, "%s", curr_filename);
} else {
(void)snprintf(*reg_data + strlen(*reg_data), json_size + 2, "%c%s", PATH_SEPARATOR, curr_filename);
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "%s: Located json file \"%s\" from PnP registry: %s", __FUNCTION__,
curr_filename, key_name);
if (key_type == REG_SZ) {
break;
}
}
return true;
}
// Find the list of registry files (names VulkanDriverName/VulkanDriverNameWow) in hkr.
//
// This function looks for filename in given device handle, filename is then added to return list
// function return true if filename was appended to reg_data list
// If error occurs result is updated with failure reason
bool loaderGetDeviceRegistryEntry(const struct loader_instance *inst, char **reg_data, PDWORD total_size, DEVINST dev_id,
LPCSTR value_name, VkResult *result) {
HKEY hkrKey = INVALID_HANDLE_VALUE;
DWORD requiredSize, data_type;
char *manifest_path = NULL;
bool found = false;
if (NULL == total_size || NULL == reg_data) {
*result = VK_ERROR_INITIALIZATION_FAILED;
return false;
}
CONFIGRET status = CM_Open_DevNode_Key(dev_id, KEY_QUERY_VALUE, 0, RegDisposition_OpenExisting, &hkrKey, CM_REGISTRY_SOFTWARE);
if (status != CR_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: Failed to open registry key for DeviceID(%d)", dev_id);
*result = VK_ERROR_INITIALIZATION_FAILED;
return false;
}
// query value
LSTATUS ret = RegQueryValueEx(
hkrKey,
value_name,
NULL,
NULL,
NULL,
&requiredSize);
if (ret != ERROR_SUCCESS) {
if (ret == ERROR_FILE_NOT_FOUND) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: Device ID(%d) Does not contain a value for \"%s\"", dev_id, value_name);
} else {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: DeviceID(%d) Failed to obtain %s size", dev_id, value_name);
}
goto out;
}
manifest_path = loader_instance_heap_alloc(inst, requiredSize, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (manifest_path == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: Failed to allocate space for DriverName.");
*result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
ret = RegQueryValueEx(
hkrKey,
value_name,
NULL,
&data_type,
(BYTE *)manifest_path,
&requiredSize
);
if (ret != ERROR_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: DeviceID(%d) Failed to obtain %s", value_name);
*result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
if (data_type != REG_SZ && data_type != REG_MULTI_SZ) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetDeviceRegistryEntry: Invalid %s data type. Expected REG_SZ or REG_MULTI_SZ.", value_name);
*result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
found = loaderAddJsonEntry(inst, reg_data, total_size, value_name, data_type, manifest_path, requiredSize, result);
out:
if (manifest_path != NULL) {
loader_instance_heap_free(inst, manifest_path);
}
RegCloseKey(hkrKey);
return found;
}
// Find the list of registry files (names VulkanDriverName/VulkanDriverNameWow) in hkr .
//
// This function looks for display devices and childish software components
// for a list of files which are added to a returned list (function return
// value).
// Function return is a string with a ';' separated list of filenames.
// Function return is NULL if no valid name/value pairs are found in the key,
// or the key is not found.
//
// *reg_data contains a string list of filenames as pointer.
// When done using the returned string list, the caller should free the pointer.
VkResult loaderGetDeviceRegistryFiles(const struct loader_instance *inst, char **reg_data, PDWORD reg_data_size,
LPCSTR value_name) {
static const wchar_t *softwareComponentGUID = L"{5c4c3332-344d-483c-8739-259e934c9cc8}";
static const wchar_t *displayGUID = L"{4d36e968-e325-11ce-bfc1-08002be10318}";
#ifdef CM_GETIDLIST_FILTER_PRESENT
const ULONG flags = CM_GETIDLIST_FILTER_CLASS | CM_GETIDLIST_FILTER_PRESENT;
#else
const ULONG flags = 0x300;
#endif
wchar_t childGuid[MAX_GUID_STRING_LEN + 2]; // +2 for brackets {}
ULONG childGuidSize = sizeof(childGuid);
DEVINST devID = 0, childID = 0;
wchar_t *pDeviceNames = NULL;
ULONG deviceNamesSize = 0;
VkResult result = VK_SUCCESS;
bool found = false;
if (NULL == reg_data) {
result = VK_ERROR_INITIALIZATION_FAILED;
return result;
}
// if after obtaining the DeviceNameSize, new device is added start over
do {
CM_Get_Device_ID_List_SizeW(&deviceNamesSize, displayGUID, flags);
if (pDeviceNames != NULL) {
loader_instance_heap_free(inst, pDeviceNames);
}
pDeviceNames = loader_instance_heap_alloc(inst, deviceNamesSize * sizeof(wchar_t), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (pDeviceNames == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: Failed to allocate space for display device names.");
result = VK_ERROR_OUT_OF_HOST_MEMORY;
return result;
}
} while (CM_Get_Device_ID_ListW(displayGUID, pDeviceNames, deviceNamesSize, flags) == CR_BUFFER_SMALL);
if (pDeviceNames) {
for (wchar_t *deviceName = pDeviceNames; *deviceName; deviceName += wcslen(deviceName) + 1) {
CONFIGRET status = CM_Locate_DevNodeW(&devID, deviceName, CM_LOCATE_DEVNODE_NORMAL);
if (CR_SUCCESS != status) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: failed to open DevNode %ls",
deviceName);
continue;
}
ULONG ulStatus, ulProblem;
status = CM_Get_DevNode_Status(&ulStatus, &ulProblem, devID, 0);
if (CR_SUCCESS != status)
{
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: failed to probe device status %ls",
deviceName);
continue;
}
if ((ulStatus & DN_HAS_PROBLEM) && (ulProblem == CM_PROB_NEED_RESTART || ulProblem == DN_NEED_RESTART)) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: device %ls is pending reboot, skipping ...", deviceName);
continue;
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "loaderGetDeviceRegistryFiles: opening device %ls", deviceName);
if (loaderGetDeviceRegistryEntry(inst, reg_data, reg_data_size, devID, value_name, &result)) {
found = true;
continue;
}
else if (result == VK_ERROR_OUT_OF_HOST_MEMORY) {
break;
}
status = CM_Get_Child(&childID, devID, 0);
if (status != CR_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: unable to open child-device error:%d", status);
continue;
}
do {
wchar_t buffer[MAX_DEVICE_ID_LEN];
CM_Get_Device_IDW(childID, buffer, MAX_DEVICE_ID_LEN, 0);
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: Opening child device %d - %ls", childID, buffer);
status = CM_Get_DevNode_Registry_PropertyW(childID, CM_DRP_CLASSGUID, NULL, &childGuid, &childGuidSize, 0);
if (status != CR_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: unable to obtain GUID for:%d error:%d", childID, status);
result = VK_ERROR_INITIALIZATION_FAILED;
continue;
}
if (wcscmp(childGuid, softwareComponentGUID) != 0) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"loaderGetDeviceRegistryFiles: GUID for %d is not SoftwareComponent skipping", childID);
continue;
}
if (loaderGetDeviceRegistryEntry(inst, reg_data, reg_data_size, childID, value_name, &result)) {
found = true;
break; // check next-display-device
}
} while (CM_Get_Sibling(&childID, childID, 0) == CR_SUCCESS);
}
loader_instance_heap_free(inst, pDeviceNames);
}
if (!found && result != VK_ERROR_OUT_OF_HOST_MEMORY) {
result = VK_ERROR_INITIALIZATION_FAILED;
}
return result;
}
static char *loader_get_next_path(char *path);
// Find the list of registry files (names within a key) in key "location".
//
// This function looks in the registry (hive = DEFAULT_VK_REGISTRY_HIVE) key as
// given in "location"
// for a list or name/values which are added to a returned list (function return
// value).
// The DWORD values within the key must be 0 or they are skipped.
// Function return is a string with a ';' separated list of filenames.
// Function return is NULL if no valid name/value pairs are found in the key,
// or the key is not found.
//
// *reg_data contains a string list of filenames as pointer.
// When done using the returned string list, the caller should free the pointer.
VkResult loaderGetRegistryFiles(const struct loader_instance *inst, char *location, bool use_secondary_hive, char **reg_data,
PDWORD reg_data_size) {
// This list contains all of the allowed ICDs. This allows us to verify that a device is actually present from the vendor
// specified. This does disallow other vendors, but any new driver should use the device-specific registries anyway.
static const struct {
const char *filename;
int vendor_id;
} known_drivers[] = {
#if defined(_WIN64)
{
.filename = "igvk64.json",
.vendor_id = 0x8086,
},
{
.filename = "nv-vk64.json",
.vendor_id = 0x10de,
},
{
.filename = "amd-vulkan64.json",
.vendor_id = 0x1002,
},
{
.filename = "amdvlk64.json",
.vendor_id = 0x1002,
},
#else
{
.filename = "igvk32.json",
.vendor_id = 0x8086,
},
{
.filename = "nv-vk32.json",
.vendor_id = 0x10de,
},
{
.filename = "amd-vulkan32.json",
.vendor_id = 0x1002,
},
{
.filename = "amdvlk32.json",
.vendor_id = 0x1002,
},
#endif
};
LONG rtn_value;
HKEY hive = DEFAULT_VK_REGISTRY_HIVE, key;
DWORD access_flags;
char name[2048];
char *loc = location;
char *next;
DWORD name_size = sizeof(name);
DWORD value;
DWORD value_size = sizeof(value);
VkResult result = VK_SUCCESS;
bool found = false;
IDXGIFactory1 *dxgi_factory = NULL;
bool is_driver = !strcmp(location, VK_DRIVERS_INFO_REGISTRY_LOC);
if (NULL == reg_data) {
result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
if (is_driver) {
HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory1, (void **)&dxgi_factory);
if (hres != S_OK) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderGetRegistryFiles: Failed to create dxgi factory for ICD registry verification. No ICDs will be added from "
"legacy registry locations");
goto out;
}
}
while (*loc) {
next = loader_get_next_path(loc);
access_flags = KEY_QUERY_VALUE;
rtn_value = RegOpenKeyEx(hive, loc, 0, access_flags, &key);
if (ERROR_SUCCESS == rtn_value) {
for (DWORD idx = 0;
(rtn_value = RegEnumValue(key, idx++, name, &name_size, NULL, NULL, (LPBYTE)&value, &value_size)) == ERROR_SUCCESS;
name_size = sizeof(name), value_size = sizeof(value)) {
if (value_size == sizeof(value) && value == 0) {
if (NULL == *reg_data) {
*reg_data = loader_instance_heap_alloc(inst, *reg_data_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == *reg_data) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetRegistryFiles: Failed to allocate space for registry data for key %s", name);
RegCloseKey(key);
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
*reg_data[0] = '\0';
} else if (strlen(*reg_data) + name_size + 1 > *reg_data_size) {
void *new_ptr = loader_instance_heap_realloc(inst, *reg_data, *reg_data_size, *reg_data_size * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetRegistryFiles: Failed to reallocate space for registry value of size %d for key %s",
*reg_data_size * 2, name);
RegCloseKey(key);
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
*reg_data = new_ptr;
*reg_data_size *= 2;
}
// We've now found a json file. If this is an ICD, we still need to check if there is actually a device
// that matches this ICD
loader_log(
inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Located json file \"%s\" from registry \"%s\\%s\"", name,
hive == DEFAULT_VK_REGISTRY_HIVE ? DEFAULT_VK_REGISTRY_HIVE_STR : SECONDARY_VK_REGISTRY_HIVE_STR, location);
if (is_driver) {
int i;
for (i = 0; i < sizeof(known_drivers) / sizeof(known_drivers[0]); ++i) {
if (!strcmp(name + strlen(name) - strlen(known_drivers[i].filename), known_drivers[i].filename)) {
break;
}
}
if (i == sizeof(known_drivers) / sizeof(known_drivers[0])) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Driver %s is not recognized as a known driver. It will be assumed to be active", name);
} else {
bool found_gpu = false;
for (int j = 0;; ++j) {
IDXGIAdapter1 *adapter;
HRESULT hres = dxgi_factory->lpVtbl->EnumAdapters1(dxgi_factory, j, &adapter);
if (hres == DXGI_ERROR_NOT_FOUND) {
break;
} else if (hres != S_OK) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Failed to enumerate DXGI adapters at index %d. As a result, drivers may be skipped", j);
continue;
}
DXGI_ADAPTER_DESC1 description;
hres = adapter->lpVtbl->GetDesc1(adapter, &description);
if (hres != S_OK) {
loader_log(
inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Failed to get DXGI adapter information at index %d. As a result, drivers may be skipped", j);
continue;
}
if (description.VendorId == known_drivers[i].vendor_id) {
found_gpu = true;
break;
}
}
if (!found_gpu) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Dropping driver %s as no corresponding DXGI adapter was found", name);
continue;
}
}
}
if (strlen(*reg_data) == 0) {
// The list is emtpy. Add the first entry.
(void)snprintf(*reg_data, name_size + 1, "%s", name);
found = true;
} else {
// At this point the reg_data variable contains other JSON paths, likely from the PNP/device section
// of the registry that we want to have precedence over this non-device specific section of the registry.
// To make sure we avoid enumerating old JSON files/drivers that might be present in the non-device specific
// area of the registry when a newer device specific JSON file is present, do a check before adding.
// Find the file name, without path, of the JSON file found in the non-device specific registry location.
// If the same JSON file name is already found in the list, don't add it again.
bool foundDuplicate = false;
char *pLastSlashName = strrchr(name, '\\');
if (pLastSlashName != NULL) {
char *foundMatch = strstr(*reg_data, pLastSlashName + 1);
if (foundMatch != NULL) {
foundDuplicate = true;
}
}
if (foundDuplicate == false) {
// Add the new entry to the list.
(void)snprintf(*reg_data + strlen(*reg_data), name_size + 2, "%c%s", PATH_SEPARATOR, name);
found = true;
} else {
loader_log(
inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Skipping adding of json file \"%s\" from registry \"%s\\%s\" to the list due to duplication", name,
hive == DEFAULT_VK_REGISTRY_HIVE ? DEFAULT_VK_REGISTRY_HIVE_STR : SECONDARY_VK_REGISTRY_HIVE_STR,
location);
}
}
}
}
RegCloseKey(key);
}
// Advance the location - if the next location is in the secondary hive, then reset the locations and advance the hive
if (use_secondary_hive && (hive == DEFAULT_VK_REGISTRY_HIVE) && (*next == '\0')) {
loc = location;
hive = SECONDARY_VK_REGISTRY_HIVE;
} else {
loc = next;
}
}
if (!found && result != VK_ERROR_OUT_OF_HOST_MEMORY) {
result = VK_ERROR_INITIALIZATION_FAILED;
}
out:
if (is_driver && dxgi_factory != NULL) {
dxgi_factory->lpVtbl->Release(dxgi_factory);
}
return result;
}
#endif // WIN32
// Combine path elements, separating each element with the platform-specific
// directory separator, and save the combined string to a destination buffer,
// not exceeding the given length. Path elements are given as variable args,
// with a NULL element terminating the list.
//
// \returns the total length of the combined string, not including an ASCII
// NUL termination character. This length may exceed the available storage:
// in this case, the written string will be truncated to avoid a buffer
// overrun, and the return value will greater than or equal to the storage
// size. A NULL argument may be provided as the destination buffer in order
// to determine the required string length without actually writing a string.
static size_t loader_platform_combine_path(char *dest, size_t len, ...) {
size_t required_len = 0;
va_list ap;
const char *component;
va_start(ap, len);
while ((component = va_arg(ap, const char *))) {
if (required_len > 0) {
// This path element is not the first non-empty element; prepend
// a directory separator if space allows
if (dest && required_len + 1 < len) {
(void)snprintf(dest + required_len, len - required_len, "%c", DIRECTORY_SYMBOL);
}
required_len++;
}
if (dest && required_len < len) {
strncpy(dest + required_len, component, len - required_len);
}
required_len += strlen(component);
}
va_end(ap);
// strncpy(3) won't add a NUL terminating byte in the event of truncation.
if (dest && required_len >= len) {
dest[len - 1] = '\0';
}
return required_len;
}
// Given string of three part form "maj.min.pat" convert to a vulkan version number.
static uint32_t loader_make_version(char *vers_str) {
uint32_t major = 0, minor = 0, patch = 0;
char *vers_tok;
if (!vers_str) {
return 0;
}
vers_tok = strtok(vers_str, ".\"\n\r");
if (NULL != vers_tok) {
major = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
minor = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
patch = (uint16_t)atoi(vers_tok);
}
}
}
return VK_MAKE_VERSION(major, minor, patch);
}
bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2) {
return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false;
}
// Search the given ext_array for an extension matching the given vk_ext_prop
bool has_vk_extension_property_array(const VkExtensionProperties *vk_ext_prop, const uint32_t count,
const VkExtensionProperties *ext_array) {
for (uint32_t i = 0; i < count; i++) {
if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i])) return true;
}
return false;
}
// Search the given ext_list for an extension matching the given vk_ext_prop
bool has_vk_extension_property(const VkExtensionProperties *vk_ext_prop, const struct loader_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop)) return true;
}
return false;
}
// Search the given ext_list for a device extension matching the given ext_prop
bool has_vk_dev_ext_property(const VkExtensionProperties *ext_prop, const struct loader_device_extension_list *ext_list) {
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i].props, ext_prop)) return true;
}
return false;
}
// Get the next unused layer property in the list. Init the property to zero.
static struct loader_layer_properties *loaderGetNextLayerPropertySlot(const struct loader_instance *inst,
struct loader_layer_list *layer_list) {
if (layer_list->capacity == 0) {
layer_list->list =
loader_instance_heap_alloc(inst, sizeof(struct loader_layer_properties) * 64, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderGetNextLayerPropertySlot: Out of memory can "
"not add any layer properties to list");
return NULL;
}
memset(layer_list->list, 0, sizeof(struct loader_layer_properties) * 64);
layer_list->capacity = sizeof(struct loader_layer_properties) * 64;
}
// Ensure enough room to add an entry
if ((layer_list->count + 1) * sizeof(struct loader_layer_properties) > layer_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, layer_list->list, layer_list->capacity, layer_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderGetNextLayerPropertySlot: realloc failed for layer list");
return NULL;
}
layer_list->list = new_ptr;
memset((uint8_t *)layer_list->list + layer_list->capacity, 0, layer_list->capacity);
layer_list->capacity *= 2;
}
layer_list->count++;
return &(layer_list->list[layer_list->count - 1]);
}
// Search the given layer list for a layer property matching the given layer name
static struct loader_layer_properties *loaderFindLayerProperty(const char *name, const struct loader_layer_list *layer_list) {
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i].info;
if (strcmp(name, item->layerName) == 0) return &layer_list->list[i];
}
return NULL;
}
// Search the given layer list for a layer matching the given layer name
static bool loaderFindLayerNameInList(const char *name, const struct loader_layer_list *layer_list) {
if (NULL == layer_list) {
return false;
}
if (NULL != loaderFindLayerProperty(name, layer_list)) {
return true;
}
return false;
}
// Search the given meta-layer's component list for a layer matching the given layer name
static bool loaderFindLayerNameInMetaLayer(const struct loader_instance *inst, const char *layer_name,
struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) {
for (uint32_t comp_layer = 0; comp_layer < meta_layer_props->num_component_layers; comp_layer++) {
if (!strcmp(meta_layer_props->component_layer_names[comp_layer], layer_name)) {
return true;
}
struct loader_layer_properties *comp_layer_props =
loaderFindLayerProperty(meta_layer_props->component_layer_names[comp_layer], layer_list);
if (comp_layer_props->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
return loaderFindLayerNameInMetaLayer(inst, layer_name, layer_list, comp_layer_props);
}
}
return false;
}
// Search the override layer's blacklist for a layer matching the given layer name
static bool loaderFindLayerNameInBlacklist(const struct loader_instance *inst, const char *layer_name,
struct loader_layer_list *layer_list, struct loader_layer_properties *meta_layer_props) {
for (uint32_t black_layer = 0; black_layer < meta_layer_props->num_blacklist_layers; ++black_layer) {
if (!strcmp(meta_layer_props->blacklist_layer_names[black_layer], layer_name)) {
return true;
}
}
return false;
}
// Remove all layer properties entries from the list
void loaderDeleteLayerListAndProperties(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
uint32_t i, j, k;
struct loader_device_extension_list *dev_ext_list;
struct loader_dev_ext_props *ext_props;
if (!layer_list) return;
for (i = 0; i < layer_list->count; i++) {
if (NULL != layer_list->list[i].blacklist_layer_names) {
loader_instance_heap_free(inst, layer_list->list[i].blacklist_layer_names);
layer_list->list[i].blacklist_layer_names = NULL;
}
if (NULL != layer_list->list[i].component_layer_names) {
loader_instance_heap_free(inst, layer_list->list[i].component_layer_names);
layer_list->list[i].component_layer_names = NULL;
}
if (NULL != layer_list->list[i].override_paths) {
loader_instance_heap_free(inst, layer_list->list[i].override_paths);
layer_list->list[i].override_paths = NULL;
}
if (NULL != layer_list->list[i].app_key_paths) {
loader_instance_heap_free(inst, layer_list->list[i].app_key_paths);
layer_list->list[i].app_key_paths = NULL;
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&layer_list->list[i].instance_extension_list);
dev_ext_list = &layer_list->list[i].device_extension_list;
if (dev_ext_list->capacity > 0 && NULL != dev_ext_list->list) {
for (j = 0; j < dev_ext_list->count; j++) {
ext_props = &dev_ext_list->list[j];
if (ext_props->entrypoint_count > 0) {
for (k = 0; k < ext_props->entrypoint_count; k++) {
loader_instance_heap_free(inst, ext_props->entrypoints[k]);
}
loader_instance_heap_free(inst, ext_props->entrypoints);
}
}
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)dev_ext_list);
}
layer_list->count = 0;
if (layer_list->capacity > 0) {
layer_list->capacity = 0;
loader_instance_heap_free(inst, layer_list->list);
}
}
void loaderRemoveLayerInList(const struct loader_instance *inst, struct loader_layer_list *layer_list, uint32_t layer_to_remove) {
if (layer_list == NULL || layer_to_remove >= layer_list->count) {
return;
}
if (layer_list->list[layer_to_remove].type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
// Delete the component layers
loader_instance_heap_free(inst, layer_list->list[layer_to_remove].component_layer_names);
loader_instance_heap_free(inst, layer_list->list[layer_to_remove].override_paths);
loader_instance_heap_free(inst, layer_list->list[layer_to_remove].blacklist_layer_names);
loader_instance_heap_free(inst, layer_list->list[layer_to_remove].app_key_paths);
}
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&layer_list->list[layer_to_remove], &layer_list->list[layer_to_remove + 1],
sizeof(struct loader_layer_properties) * (layer_list->count - 1 - layer_to_remove));
// Make sure to clear out the removed layer, in case new layers are added in the previous location
memset(&layer_list->list[layer_list->count - 1], 0, sizeof(struct loader_layer_properties));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
layer_list->count--;
}
// Remove all layers in the layer list that are blacklisted by the override layer.
// NOTE: This should only be called if an override layer is found and not expired.
void loaderRemoveLayersInBlacklist(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
struct loader_layer_properties *override_prop = loaderFindLayerProperty(VK_OVERRIDE_LAYER_NAME, layer_list);
if (NULL == override_prop) {
return;
}
for (int32_t j = 0; j < (int32_t)(layer_list->count); j++) {
struct loader_layer_properties cur_layer_prop = layer_list->list[j];
const char *cur_layer_name = &cur_layer_prop.info.layerName[0];
// Skip the override layer itself.
if (!strcmp(VK_OVERRIDE_LAYER_NAME, cur_layer_name)) {
continue;
}
// If found in the override layer's blacklist, remove it
if (loaderFindLayerNameInBlacklist(inst, cur_layer_name, layer_list, override_prop)) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"loaderRemoveLayersInBlacklist: Override layer is active and layer %s is in the blacklist"
" inside of it. Removing that layer from current layer list.",
cur_layer_name);
if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
// Delete the component layers
loader_instance_heap_free(inst, cur_layer_prop.component_layer_names);
loader_instance_heap_free(inst, cur_layer_prop.override_paths);
// Never need to free the blacklist, since it can only exist in the override layer
}
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&layer_list->list[j], &layer_list->list[j + 1],
sizeof(struct loader_layer_properties) * (layer_list->count - 1 - j));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
layer_list->count--;
j--;
// Re-do the query for the override layer
override_prop = loaderFindLayerProperty(VK_OVERRIDE_LAYER_NAME, layer_list);
}
}
}
// Remove all layers in the layer list that are not found inside any implicit meta-layers.
void loaderRemoveLayersNotInImplicitMetaLayers(const struct loader_instance *inst, struct loader_layer_list *layer_list) {
int32_t i;
int32_t j;
int32_t layer_count = (int32_t)(layer_list->count);
for (i = 0; i < layer_count; i++) {
layer_list->list[i].keep = false;
}
for (i = 0; i < layer_count; i++) {
struct loader_layer_properties cur_layer_prop = layer_list->list[i];
if (0 == (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
cur_layer_prop.keep = true;
} else {
continue;
}
if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
for (j = 0; j < layer_count; j++) {
struct loader_layer_properties layer_to_check = layer_list->list[j];
if (i == j) {
continue;
}
// For all layers found in this meta layer, we want to keep them as well.
if (loaderFindLayerNameInMetaLayer(inst, layer_to_check.info.layerName, layer_list, &cur_layer_prop)) {
cur_layer_prop.keep = true;
}
}
}
}
// Remove any layers we don't want to keep (Don't use layer_count here as we need it to be
// dynamically updated if we delete a layer property in the list).
for (i = 0; i < (int32_t)(layer_list->count); i++) {
struct loader_layer_properties cur_layer_prop = layer_list->list[i];
if (!cur_layer_prop.keep) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"loaderRemoveLayersNotInImplicitMetaLayers : Implicit meta-layers are active, and layer %s is not list"
" inside of any. So removing layer from current layer list.",
cur_layer_prop.info.layerName);
if (cur_layer_prop.type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
// Delete the component layers
loader_instance_heap_free(inst, cur_layer_prop.component_layer_names);
loader_instance_heap_free(inst, cur_layer_prop.override_paths);
}
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&layer_list->list[i], &layer_list->list[i + 1],
sizeof(struct loader_layer_properties) * (layer_list->count - 1 - i));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
layer_list->count--;
i--;
}
}
}
static VkResult loader_add_instance_extensions(const struct loader_instance *inst,
const PFN_vkEnumerateInstanceExtensionProperties fp_get_props, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i, count = 0;
VkExtensionProperties *ext_props;
VkResult res = VK_SUCCESS;
if (!fp_get_props) {
// No EnumerateInstanceExtensionProperties defined
goto out;
}
res = fp_get_props(NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_instance_extensions: Error getting Instance "
"extension count from %s",
lib_name);
goto out;
}
if (count == 0) {
// No ExtensionProperties to report
goto out;
}
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (NULL == ext_props) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = fp_get_props(NULL, &count, ext_props);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_instance_extensions: Error getting Instance "
"extensions from %s",
lib_name);
goto out;
}
for (i = 0; i < count; i++) {
char spec_version[64];
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_props[i]);
if (!ext_unsupported) {
(void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion),
VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Instance Extension: %s (%s) version %s", ext_props[i].extensionName,
lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_instance_extensions: Failed to add %s "
"to Instance extension list",
lib_name);
goto out;
}
}
}
out:
return res;
}
// Initialize ext_list with the physical device extensions.
// The extension properties are passed as inputs in count and ext_props.
static VkResult loader_init_device_extensions(const struct loader_instance *inst, struct loader_physical_device_term *phys_dev_term,
uint32_t count, VkExtensionProperties *ext_props,
struct loader_extension_list *ext_list) {
VkResult res;
uint32_t i;
res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
for (i = 0; i < count; i++) {
char spec_version[64];
(void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion),
VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Device Extension: %s (%s) version %s", ext_props[i].extensionName,
phys_dev_term->this_icd_term->scanned_icd->lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) return res;
}
return VK_SUCCESS;
}
VkResult loader_add_device_extensions(const struct loader_instance *inst,
PFN_vkEnumerateDeviceExtensionProperties fpEnumerateDeviceExtensionProperties,
VkPhysicalDevice physical_device, const char *lib_name,
struct loader_extension_list *ext_list) {
uint32_t i, count;
VkResult res;
VkExtensionProperties *ext_props;
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL);
if (res == VK_SUCCESS && count > 0) {
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
if (!ext_props) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_device_extensions: Failed to allocate space"
" for device extension properties.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = fpEnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props);
if (res != VK_SUCCESS) {
return res;
}
for (i = 0; i < count; i++) {
char spec_version[64];
(void)snprintf(spec_version, sizeof(spec_version), "%d.%d.%d", VK_VERSION_MAJOR(ext_props[i].specVersion),
VK_VERSION_MINOR(ext_props[i].specVersion), VK_VERSION_PATCH(ext_props[i].specVersion));
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Device Extension: %s (%s) version %s", ext_props[i].extensionName,
lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS) {
return res;
}
}
} else {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_device_extensions: Error getting physical "
"device extension info count from library %s",
lib_name);
return res;
}
return VK_SUCCESS;
}
VkResult loader_init_generic_list(const struct loader_instance *inst, struct loader_generic_list *list_info, size_t element_size) {
size_t capacity = 32 * element_size;
list_info->count = 0;
list_info->capacity = 0;
list_info->list = loader_instance_heap_alloc(inst, capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list_info->list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_init_generic_list: Failed to allocate space "
"for generic list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memset(list_info->list, 0, capacity);
list_info->capacity = capacity;
return VK_SUCCESS;
}
void loader_destroy_generic_list(const struct loader_instance *inst, struct loader_generic_list *list) {
loader_instance_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
}
// Append non-duplicate extension properties defined in props to the given ext_list.
// Return - Vk_SUCCESS on success
VkResult loader_add_to_ext_list(const struct loader_instance *inst, struct loader_extension_list *ext_list,
uint32_t prop_list_count, const VkExtensionProperties *props) {
uint32_t i;
const VkExtensionProperties *cur_ext;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
return res;
}
}
for (i = 0; i < prop_list_count; i++) {
cur_ext = &props[i];
// look for duplicates
if (has_vk_extension_property(cur_ext, ext_list)) {
continue;
}
// add to list at end
// check for enough capacity
if (ext_list->count * sizeof(VkExtensionProperties) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (new_ptr == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_to_ext_list: Failed to reallocate "
"space for extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties));
ext_list->count++;
}
return VK_SUCCESS;
}
// Append one extension property defined in props with entrypoints defined in entries to the given
// ext_list. Do not append if a duplicate.
// Return - Vk_SUCCESS on success
VkResult loader_add_to_dev_ext_list(const struct loader_instance *inst, struct loader_device_extension_list *ext_list,
const VkExtensionProperties *props, uint32_t entry_count, char **entrys) {
uint32_t idx;
if (ext_list->list == NULL || ext_list->capacity == 0) {
VkResult res = loader_init_generic_list(inst, (struct loader_generic_list *)ext_list, sizeof(struct loader_dev_ext_props));
if (VK_SUCCESS != res) {
return res;
}
}
// look for duplicates
if (has_vk_dev_ext_property(props, ext_list)) {
return VK_SUCCESS;
}
idx = ext_list->count;
// add to list at end
// check for enough capacity
if (idx * sizeof(struct loader_dev_ext_props) >= ext_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, ext_list->list, ext_list->capacity, ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_to_dev_ext_list: Failed to reallocate space for device extension list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
ext_list->list = new_ptr;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[idx].props, props, sizeof(*props));
ext_list->list[idx].entrypoint_count = entry_count;
if (entry_count == 0) {
ext_list->list[idx].entrypoints = NULL;
} else {
ext_list->list[idx].entrypoints =
loader_instance_heap_alloc(inst, sizeof(char *) * entry_count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_to_dev_ext_list: Failed to allocate space "
"for device extension entrypoint list in list %d",
idx);
ext_list->list[idx].entrypoint_count = 0;
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (uint32_t i = 0; i < entry_count; i++) {
ext_list->list[idx].entrypoints[i] =
loader_instance_heap_alloc(inst, strlen(entrys[i]) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints[i] == NULL) {
for (uint32_t j = 0; j < i; j++) {
loader_instance_heap_free(inst, ext_list->list[idx].entrypoints[j]);
}
loader_instance_heap_free(inst, ext_list->list[idx].entrypoints);
ext_list->list[idx].entrypoint_count = 0;
ext_list->list[idx].entrypoints = NULL;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_to_dev_ext_list: Failed to allocate space "
"for device extension entrypoint %d name",
i);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
strcpy(ext_list->list[idx].entrypoints[i], entrys[i]);
}
}
ext_list->count++;
return VK_SUCCESS;
}
// Prototypes needed.
bool loaderAddMetaLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list);
// Manage lists of VkLayerProperties
static bool loaderInitLayerList(const struct loader_instance *inst, struct loader_layer_list *list) {
list->capacity = 32 * sizeof(struct loader_layer_properties);
list->list = loader_instance_heap_alloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
memset(list->list, 0, list->capacity);
list->count = 0;
return true;
}
// Search the given layer list for a list matching the given VkLayerProperties
bool loaderListHasLayerProperty(const VkLayerProperties *vk_layer_prop, const struct loader_layer_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(vk_layer_prop->layerName, list->list[i].info.layerName) == 0) return true;
}
return false;
}
void loaderDestroyLayerList(const struct loader_instance *inst, struct loader_device *device,
struct loader_layer_list *layer_list) {
if (device) {
loader_device_heap_free(device, layer_list->list);
} else {
loader_instance_heap_free(inst, layer_list->list);
}
layer_list->count = 0;
layer_list->capacity = 0;
}
// Append non-duplicate layer properties defined in prop_list to the given layer_info list
VkResult loaderAddLayerPropertiesToList(const struct loader_instance *inst, struct loader_layer_list *list,
uint32_t prop_list_count, const struct loader_layer_properties *props) {
uint32_t i;
struct loader_layer_properties *layer;
if (list->list == NULL || list->capacity == 0) {
if (!loaderInitLayerList(inst, list)) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
if (list->list == NULL) return VK_SUCCESS;
for (i = 0; i < prop_list_count; i++) {
layer = (struct loader_layer_properties *)&props[i];
// Look for duplicates, and skip
if (loaderListHasLayerProperty(&layer->info, list)) {
continue;
}
// Check for enough capacity
if (((list->count + 1) * sizeof(struct loader_layer_properties)) >= list->capacity) {
size_t new_capacity = list->capacity * 2;
void *new_ptr =
loader_instance_heap_realloc(inst, list->list, list->capacity, new_capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderAddLayerPropertiesToList: Realloc failed for when attempting to add new layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
list->list = new_ptr;
list->capacity = new_capacity;
}
memcpy(&list->list[list->count], layer, sizeof(struct loader_layer_properties));
list->count++;
}
return VK_SUCCESS;
}
// Search the given search_list for any layers in the props list. Add these to the
// output layer_list. Don't add duplicates to the output layer_list.
static VkResult loaderAddLayerNamesToList(const struct loader_instance *inst, struct loader_layer_list *output_list,
struct loader_layer_list *expanded_output_list, uint32_t name_count,
const char *const *names, const struct loader_layer_list *source_list) {
struct loader_layer_properties *layer_prop;
VkResult err = VK_SUCCESS;
for (uint32_t i = 0; i < name_count; i++) {
const char *source_name = names[i];
layer_prop = loaderFindLayerProperty(source_name, source_list);
if (NULL == layer_prop) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loaderAddLayerNamesToList: Unable to find layer %s", source_name);
err = VK_ERROR_LAYER_NOT_PRESENT;
continue;
}
// If not a meta-layer, simply add it.
if (0 == (layer_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
if (!loaderListHasLayerProperty(&layer_prop->info, output_list)) {
loaderAddLayerPropertiesToList(inst, output_list, 1, layer_prop);
}
if (!loaderListHasLayerProperty(&layer_prop->info, expanded_output_list)) {
loaderAddLayerPropertiesToList(inst, expanded_output_list, 1, layer_prop);
}
} else {
if (!loaderListHasLayerProperty(&layer_prop->info, output_list) ||
!loaderListHasLayerProperty(&layer_prop->info, expanded_output_list)) {
loaderAddMetaLayer(inst, layer_prop, output_list, expanded_output_list, source_list);
}
}
}
return err;
}
static bool checkExpiration(const struct loader_instance *inst, const struct loader_layer_properties *prop) {
time_t current = time(NULL);
struct tm tm_current = *localtime(&current);
struct tm tm_expiration = {
.tm_sec = 0,
.tm_min = prop->expiration.minute,
.tm_hour = prop->expiration.hour,
.tm_mday = prop->expiration.day,
.tm_mon = prop->expiration.month - 1,
.tm_year = prop->expiration.year - 1900,
.tm_isdst = tm_current.tm_isdst,
// wday and yday are ignored by mktime
};
time_t expiration = mktime(&tm_expiration);
return current < expiration;
}
// Determine if the provided implicit layer should be enabled by querying the appropriate environmental variables.
// For an implicit layer, at least a disable environment variable is required.
bool loaderImplicitLayerIsEnabled(const struct loader_instance *inst, const struct loader_layer_properties *prop) {
bool enable = false;
char *env_value = NULL;
// If no enable_environment variable is specified, this implicit layer is always be enabled by default.
if (prop->enable_env_var.name[0] == 0) {
enable = true;
} else {
// Otherwise, only enable this layer if the enable environment variable is defined
env_value = loader_getenv(prop->enable_env_var.name, inst);
if (env_value && !strcmp(prop->enable_env_var.value, env_value)) {
enable = true;
}
loader_free_getenv(env_value, inst);
}
// The disable_environment has priority over everything else. If it is defined, the layer is always
// disabled.
env_value = loader_getenv(prop->disable_env_var.name, inst);
if (env_value) {
enable = false;
}
loader_free_getenv(env_value, inst);
// If this layer has an expiration, check it to determine if this layer has expired.
if (prop->has_expiration) {
enable = checkExpiration(inst, prop);
}
// Enable this layer if it is included in the override layer
if (inst != NULL && inst->override_layer_present) {
struct loader_layer_properties *override = NULL;
for (uint32_t i = 0; i < inst->instance_layer_list.count; ++i) {
if (strcmp(inst->instance_layer_list.list[i].info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
override = &inst->instance_layer_list.list[i];
break;
}
}
if (override != NULL) {
for (uint32_t i = 0; i < override->num_component_layers; ++i) {
if (strcmp(override->component_layer_names[i], prop->info.layerName) == 0) {
enable = true;
break;
}
}
}
}
return enable;
}
// Check the individual implicit layer for the enable/disable environment variable settings. Only add it after
// every check has passed indicating it should be used.
static void loaderAddImplicitLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
bool enable = loaderImplicitLayerIsEnabled(inst, prop);
// If the implicit layer is supposed to be enable, make sure the layer supports at least the same API version
// that the application is asking (i.e. layer's API >= app's API). If it's not, disable this layer.
if (enable) {
uint16_t layer_api_major_version = VK_VERSION_MAJOR(prop->info.specVersion);
uint16_t layer_api_minor_version = VK_VERSION_MINOR(prop->info.specVersion);
if (inst->app_api_major_version > layer_api_major_version ||
(inst->app_api_major_version == layer_api_major_version && inst->app_api_minor_version > layer_api_minor_version)) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"loader_add_implicit_layer: Disabling implicit layer %s for using an old API version %d.%d versus "
"application requested %d.%d",
prop->info.layerName, layer_api_major_version, layer_api_minor_version, inst->app_api_major_version,
inst->app_api_minor_version);
enable = false;
}
}
if (enable) {
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
if (!loaderListHasLayerProperty(&prop->info, target_list)) {
loaderAddLayerPropertiesToList(inst, target_list, 1, prop);
}
if (NULL != expanded_target_list && !loaderListHasLayerProperty(&prop->info, expanded_target_list)) {
loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, prop);
}
} else {
if (!loaderListHasLayerProperty(&prop->info, target_list) ||
(NULL != expanded_target_list && !loaderListHasLayerProperty(&prop->info, expanded_target_list))) {
loaderAddMetaLayer(inst, prop, target_list, expanded_target_list, source_list);
}
}
}
}
// Add the component layers of a meta-layer to the active list of layers
bool loaderAddMetaLayer(const struct loader_instance *inst, const struct loader_layer_properties *prop,
struct loader_layer_list *target_list, struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
bool found = true;
// If the meta-layer isn't present in the unexpanded list, add it.
if (!loaderListHasLayerProperty(&prop->info, target_list)) {
loaderAddLayerPropertiesToList(inst, target_list, 1, prop);
}
// We need to add all the individual component layers
for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) {
bool found_comp = false;
const struct loader_layer_properties *search_prop =
loaderFindLayerProperty(prop->component_layer_names[comp_layer], source_list);
if (search_prop != NULL) {
found_comp = true;
// If the component layer is itself an implicit layer, we need to do the implicit layer enable
// checks
if (0 == (search_prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
loaderAddImplicitLayer(inst, search_prop, target_list, expanded_target_list, source_list);
} else {
if (0 != (search_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
found = loaderAddMetaLayer(inst, search_prop, target_list, expanded_target_list, source_list);
} else {
// Otherwise, just make sure it hasn't already been added to either list before we add it
if (!loaderListHasLayerProperty(&search_prop->info, target_list)) {
loaderAddLayerPropertiesToList(inst, target_list, 1, search_prop);
}
if (NULL != expanded_target_list && !loaderListHasLayerProperty(&search_prop->info, expanded_target_list)) {
loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, search_prop);
}
}
}
}
if (!found_comp) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddMetaLayer: Failed to find layer name %s component layer "
"%s to activate",
search_prop->info.layerName, prop->component_layer_names[comp_layer]);
found = false;
}
}
// Add this layer to the overall target list (not the expanded one)
if (found && !loaderListHasLayerProperty(&prop->info, target_list)) {
loaderAddLayerPropertiesToList(inst, target_list, 1, prop);
}
return found;
}
// Search the source_list for any layer with a name that matches the given name and a type
// that matches the given type. Add all matching layers to the target_list.
// Do not add if found loader_layer_properties is already on the target_list.
VkResult loaderAddLayerNameToList(const struct loader_instance *inst, const char *name, const enum layer_type_flags type_flags,
const struct loader_layer_list *source_list, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list) {
VkResult res = VK_SUCCESS;
bool found = false;
for (uint32_t i = 0; i < source_list->count; i++) {
struct loader_layer_properties *source_prop = &source_list->list[i];
if (0 == strcmp(source_prop->info.layerName, name) && (source_prop->type_flags & type_flags) == type_flags) {
// If not a meta-layer, simply add it.
if (0 == (source_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER)) {
if (!loaderListHasLayerProperty(&source_prop->info, target_list) &&
VK_SUCCESS == loaderAddLayerPropertiesToList(inst, target_list, 1, source_prop)) {
found = true;
}
if (!loaderListHasLayerProperty(&source_prop->info, expanded_target_list) &&
VK_SUCCESS == loaderAddLayerPropertiesToList(inst, expanded_target_list, 1, source_prop)) {
found = true;
}
} else {
found = loaderAddMetaLayer(inst, source_prop, target_list, expanded_target_list, source_list);
}
}
}
if (!found) {
if (strcmp(name, "VK_LAYER_LUNARG_standard_validation")) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddLayerNameToList: Failed to find layer name %s to activate", name);
} else {
res = VK_ERROR_LAYER_NOT_PRESENT;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Layer VK_LAYER_LUNARG_standard_validation has been changed to VK_LAYER_KHRONOS_validation. Please use the "
"new version of the layer.");
}
}
return res;
}
static VkExtensionProperties *get_extension_property(const char *name, const struct loader_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].extensionName) == 0) return &list->list[i];
}
return NULL;
}
static VkExtensionProperties *get_dev_extension_property(const char *name, const struct loader_device_extension_list *list) {
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].props.extensionName) == 0) return &list->list[i].props;
}
return NULL;
}
// For Instance extensions implemented within the loader (i.e. DEBUG_REPORT
// the extension must provide two entry points for the loader to use:
// - "trampoline" entry point - this is the address returned by GetProcAddr
// and will always do what's necessary to support a
// global call.
// - "terminator" function - this function will be put at the end of the
// instance chain and will contain the necessary logic
// to call / process the extension for the appropriate
// ICDs that are available.
// There is no generic mechanism for including these functions, the references
// must be placed into the appropriate loader entry points.
// GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr
// requests
// loader_coalesce_extensions(void) - add extension records to the list of global
// extension available to the app.
// instance_disp - add function pointer for terminator function
// to this array.
// The extension itself should be in a separate file that will be linked directly
// with the loader.
VkResult loader_get_icd_loader_instance_extensions(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
struct loader_extension_list *inst_exts) {
struct loader_extension_list icd_exts;
VkResult res = VK_SUCCESS;
char *env_value;
bool filter_extensions = true;
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Build ICD instance extension list");
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
filter_extensions = false;
}
loader_free_getenv(env_value, inst);
// traverse scanned icd list adding non-duplicate extensions to the list
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_instance_extensions(inst, icd_tramp_list->scanned_list[i].EnumerateInstanceExtensionProperties,
icd_tramp_list->scanned_list[i].lib_name, &icd_exts);
if (VK_SUCCESS == res) {
if (filter_extensions) {
// Remove any extensions not recognized by the loader
for (int32_t j = 0; j < (int32_t)icd_exts.count; j++) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t k = 0; LOADER_INSTANCE_EXTENSIONS[k] != NULL; k++) {
if (strcmp(icd_exts.list[j].extensionName, LOADER_INSTANCE_EXTENSIONS[k]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, remove it
if (!found) {
for (uint32_t k = j + 1; k < icd_exts.count; k++) {
icd_exts.list[k - 1] = icd_exts.list[k];
}
--icd_exts.count;
--j;
}
}
}
res = loader_add_to_ext_list(inst, inst_exts, icd_exts.count, icd_exts.list);
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
if (VK_SUCCESS != res) {
goto out;
}
};
// Traverse loader's extensions, adding non-duplicate extensions to the list
debug_utils_AddInstanceExtensions(inst, inst_exts);
out:
return res;
}
struct loader_icd_term *loader_get_icd_and_device(const void *device, struct loader_device **found_dev, uint32_t *icd_index) {
*found_dev = NULL;
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
uint32_t index = 0;
for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term; icd_term = icd_term->next) {
for (struct loader_device *dev = icd_term->logical_device_list; dev; dev = dev->next)
// Value comparison of device prevents object wrapping by layers
if (loader_get_dispatch(dev->icd_device) == loader_get_dispatch(device) ||
(dev->chain_device != VK_NULL_HANDLE &&
loader_get_dispatch(dev->chain_device) == loader_get_dispatch(device))) {
*found_dev = dev;
if (NULL != icd_index) {
*icd_index = index;
}
return icd_term;
}
index++;
}
}
return NULL;
}
void loader_destroy_logical_device(const struct loader_instance *inst, struct loader_device *dev,
const VkAllocationCallbacks *pAllocator) {
if (pAllocator) {
dev->alloc_callbacks = *pAllocator;
}
if (NULL != dev->expanded_activated_layer_list.list) {
loaderDeactivateLayers(inst, dev, &dev->expanded_activated_layer_list);
}
if (NULL != dev->app_activated_layer_list.list) {
loaderDestroyLayerList(inst, dev, &dev->app_activated_layer_list);
}
loader_device_heap_free(dev, dev);
}
struct loader_device *loader_create_logical_device(const struct loader_instance *inst, const VkAllocationCallbacks *pAllocator) {
struct loader_device *new_dev;
#if (DEBUG_DISABLE_APP_ALLOCATORS == 1)
{
#else
if (pAllocator) {
new_dev = (struct loader_device *)pAllocator->pfnAllocation(pAllocator->pUserData, sizeof(struct loader_device),
sizeof(int *), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
} else {
#endif
new_dev = (struct loader_device *)malloc(sizeof(struct loader_device));
}
if (!new_dev) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_logical_device: Failed to alloc struct "
"loader_device");
return NULL;
}
memset(new_dev, 0, sizeof(struct loader_device));
if (pAllocator) {
new_dev->alloc_callbacks = *pAllocator;
}
return new_dev;
}
void loader_add_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term, struct loader_device *dev) {
dev->next = icd_term->logical_device_list;
icd_term->logical_device_list = dev;
}
void loader_remove_logical_device(const struct loader_instance *inst, struct loader_icd_term *icd_term,
struct loader_device *found_dev, const VkAllocationCallbacks *pAllocator) {
struct loader_device *dev, *prev_dev;
if (!icd_term || !found_dev) return;
prev_dev = NULL;
dev = icd_term->logical_device_list;
while (dev && dev != found_dev) {
prev_dev = dev;
dev = dev->next;
}
if (prev_dev)
prev_dev->next = found_dev->next;
else
icd_term->logical_device_list = found_dev->next;
loader_destroy_logical_device(inst, found_dev, pAllocator);
}
static void loader_icd_destroy(struct loader_instance *ptr_inst, struct loader_icd_term *icd_term,
const VkAllocationCallbacks *pAllocator) {
ptr_inst->total_icd_count--;
for (struct loader_device *dev = icd_term->logical_device_list; dev;) {
struct loader_device *next_dev = dev->next;
loader_destroy_logical_device(ptr_inst, dev, pAllocator);
dev = next_dev;
}
loader_instance_heap_free(ptr_inst, icd_term);
}
static struct loader_icd_term *loader_icd_create(const struct loader_instance *inst) {
struct loader_icd_term *icd_term;
icd_term = loader_instance_heap_alloc(inst, sizeof(struct loader_icd_term), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!icd_term) {
return NULL;
}
memset(icd_term, 0, sizeof(struct loader_icd_term));
return icd_term;
}
static struct loader_icd_term *loader_icd_add(struct loader_instance *ptr_inst, const struct loader_scanned_icd *scanned_icd) {
struct loader_icd_term *icd_term;
icd_term = loader_icd_create(ptr_inst);
if (!icd_term) {
return NULL;
}
icd_term->scanned_icd = scanned_icd;
icd_term->this_instance = ptr_inst;
// Prepend to the list
icd_term->next = ptr_inst->icd_terms;
ptr_inst->icd_terms = icd_term;
ptr_inst->total_icd_count++;
return icd_term;
}
// Determine the ICD interface version to use.
// @param icd
// @param pVersion Output parameter indicating which version to use or 0 if
// the negotiation API is not supported by the ICD
// @return bool indicating true if the selected interface version is supported
// by the loader, false indicates the version is not supported
bool loader_get_icd_interface_version(PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version, uint32_t *pVersion) {
if (fp_negotiate_icd_version == NULL) {
// ICD does not support the negotiation API, it supports version 0 or 1
// calling code must determine if it is version 0 or 1
*pVersion = 0;
} else {
// ICD supports the negotiation API, so call it with the loader's
// latest version supported
*pVersion = CURRENT_LOADER_ICD_INTERFACE_VERSION;
VkResult result = fp_negotiate_icd_version(pVersion);
if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
// ICD no longer supports the loader's latest interface version so
// fail loading the ICD
return false;
}
}
#if MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION > 0
if (*pVersion < MIN_SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
// Loader no longer supports the ICD's latest interface version so fail
// loading the ICD
return false;
}
#endif
return true;
}
void loader_scanned_icd_clear(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
if (0 != icd_tramp_list->capacity) {
for (uint32_t i = 0; i < icd_tramp_list->count; i++) {
loader_platform_close_library(icd_tramp_list->scanned_list[i].handle);
loader_instance_heap_free(inst, icd_tramp_list->scanned_list[i].lib_name);
}
loader_instance_heap_free(inst, icd_tramp_list->scanned_list);
icd_tramp_list->capacity = 0;
icd_tramp_list->count = 0;
icd_tramp_list->scanned_list = NULL;
}
}
static VkResult loader_scanned_icd_init(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
VkResult err = VK_SUCCESS;
loader_scanned_icd_clear(inst, icd_tramp_list);
icd_tramp_list->capacity = 8 * sizeof(struct loader_scanned_icd);
icd_tramp_list->scanned_list = loader_instance_heap_alloc(inst, icd_tramp_list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == icd_tramp_list->scanned_list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_init: Realloc failed for layer list when "
"attempting to add new layer");
err = VK_ERROR_OUT_OF_HOST_MEMORY;
}
return err;
}
static VkResult loader_scanned_icd_add(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list,
const char *filename, uint32_t api_version) {
loader_platform_dl_handle handle;
PFN_vkCreateInstance fp_create_inst;
PFN_vkEnumerateInstanceExtensionProperties fp_get_inst_ext_props;
PFN_vkGetInstanceProcAddr fp_get_proc_addr;
PFN_GetPhysicalDeviceProcAddr fp_get_phys_dev_proc_addr = NULL;
PFN_vkNegotiateLoaderICDInterfaceVersion fp_negotiate_icd_version;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
PFN_vk_icdEnumerateAdapterPhysicalDevices fp_enum_dxgi_adapter_phys_devs = NULL;
#endif
struct loader_scanned_icd *new_scanned_icd;
uint32_t interface_vers;
VkResult res = VK_SUCCESS;
// TODO implement smarter opening/closing of libraries. For now this
// function leaves libraries open and the scanned_icd_clear closes them
#if defined(__Fuchsia__)
handle = loader_platform_open_driver(filename);
#else
handle = loader_platform_open_library(filename);
#endif
if (NULL == handle) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, loader_platform_open_library_error(filename));
goto out;
}
// Get and settle on an ICD interface version
fp_negotiate_icd_version = loader_platform_get_proc_address(handle, "vk_icdNegotiateLoaderICDInterfaceVersion");
if (!loader_get_icd_interface_version(fp_negotiate_icd_version, &interface_vers)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: ICD %s doesn't support interface"
" version compatible with loader, skip this ICD.",
filename);
goto out;
}
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetInstanceProcAddr");
if (NULL == fp_get_proc_addr) {
assert(interface_vers == 0);
// Use deprecated interface from version 0
fp_get_proc_addr = loader_platform_get_proc_address(handle, "vkGetInstanceProcAddr");
if (NULL == fp_get_proc_addr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Attempt to retrieve either "
"\'vkGetInstanceProcAddr\' or "
"\'vk_icdGetInstanceProcAddr\' from ICD %s failed.",
filename);
goto out;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_scanned_icd_add: Using deprecated ICD "
"interface of \'vkGetInstanceProcAddr\' instead of "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
}
fp_create_inst = loader_platform_get_proc_address(handle, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Failed querying "
"\'vkCreateInstance\' via dlsym/loadlibrary for "
"ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props = loader_platform_get_proc_address(handle, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerate"
"InstanceExtensionProperties\' via dlsym/loadlibrary "
"for ICD %s",
filename);
goto out;
}
} else {
// Use newer interface version 1 or later
if (interface_vers == 0) {
interface_vers = 1;
}
fp_create_inst = (PFN_vkCreateInstance)fp_get_proc_addr(NULL, "vkCreateInstance");
if (NULL == fp_create_inst) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Could not get "
"\'vkCreateInstance\' via \'vk_icdGetInstanceProcAddr\'"
" for ICD %s",
filename);
goto out;
}
fp_get_inst_ext_props =
(PFN_vkEnumerateInstanceExtensionProperties)fp_get_proc_addr(NULL, "vkEnumerateInstanceExtensionProperties");
if (NULL == fp_get_inst_ext_props) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Could not get \'vkEnumerate"
"InstanceExtensionProperties\' via "
"\'vk_icdGetInstanceProcAddr\' for ICD %s",
filename);
goto out;
}
fp_get_phys_dev_proc_addr = loader_platform_get_proc_address(handle, "vk_icdGetPhysicalDeviceProcAddr");
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (interface_vers >= 6) {
fp_enum_dxgi_adapter_phys_devs = loader_platform_get_proc_address(handle, "vk_icdEnumerateAdapterPhysicalDevices");
}
#endif
}
// check for enough capacity
if ((icd_tramp_list->count * sizeof(struct loader_scanned_icd)) >= icd_tramp_list->capacity) {
void *new_ptr = loader_instance_heap_realloc(inst, icd_tramp_list->scanned_list, icd_tramp_list->capacity,
icd_tramp_list->capacity * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_scanned_icd_add: Realloc failed on icd library list for ICD %s", filename);
goto out;
}
icd_tramp_list->scanned_list = new_ptr;
// double capacity
icd_tramp_list->capacity *= 2;
}
new_scanned_icd = &(icd_tramp_list->scanned_list[icd_tramp_list->count]);
new_scanned_icd->handle = handle;
new_scanned_icd->api_version = api_version;
new_scanned_icd->GetInstanceProcAddr = fp_get_proc_addr;
new_scanned_icd->GetPhysicalDeviceProcAddr = fp_get_phys_dev_proc_addr;
new_scanned_icd->EnumerateInstanceExtensionProperties = fp_get_inst_ext_props;
new_scanned_icd->CreateInstance = fp_create_inst;
#if defined(VK_USE_PLATFORM_WIN32_KHR)
new_scanned_icd->EnumerateAdapterPhysicalDevices = fp_enum_dxgi_adapter_phys_devs;
#endif
new_scanned_icd->interface_version = interface_vers;
new_scanned_icd->lib_name = (char *)loader_instance_heap_alloc(inst, strlen(filename) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_scanned_icd->lib_name) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_scanned_icd_add: Out of memory can't add ICD %s", filename);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(new_scanned_icd->lib_name, filename);
icd_tramp_list->count++;
out:
return res;
}
static void loader_debug_init(void) {
char *env, *orig;
if (g_loader_debug > 0) return;
g_loader_debug = 0;
// Parse comma-separated debug options
orig = env = loader_getenv("VK_LOADER_DEBUG", NULL);
while (env) {
char *p = strchr(env, ',');
size_t len;
if (p)
len = p - env;
else
len = strlen(env);
if (len > 0) {
if (strncmp(env, "all", len) == 0) {
g_loader_debug = ~0u;
g_loader_log_msgs = ~0u;
} else if (strncmp(env, "warn", len) == 0) {
g_loader_debug |= LOADER_WARN_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_WARNING_BIT_EXT;
} else if (strncmp(env, "info", len) == 0) {
g_loader_debug |= LOADER_INFO_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_INFORMATION_BIT_EXT;
} else if (strncmp(env, "perf", len) == 0) {
g_loader_debug |= LOADER_PERF_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_PERFORMANCE_WARNING_BIT_EXT;
} else if (strncmp(env, "error", len) == 0) {
g_loader_debug |= LOADER_ERROR_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_ERROR_BIT_EXT;
} else if (strncmp(env, "debug", len) == 0) {
g_loader_debug |= LOADER_DEBUG_BIT;
g_loader_log_msgs |= VK_DEBUG_REPORT_DEBUG_BIT_EXT;
}
}
if (!p) break;
env = p + 1;
}
loader_free_getenv(orig, NULL);
}
void loader_initialize(void) {
// initialize mutexes
loader_platform_thread_create_mutex(&loader_lock);
loader_platform_thread_create_mutex(&loader_json_lock);
loader_platform_thread_create_mutex(&loader_preload_icd_lock);
// initialize logging
loader_debug_init();
// initial cJSON to use alloc callbacks
cJSON_Hooks alloc_fns = {
.malloc_fn = loader_instance_tls_heap_alloc, .free_fn = loader_instance_tls_heap_free,
};
cJSON_InitHooks(&alloc_fns);
#if defined(_WIN32)
// This is needed to ensure that newer APIs are available right away
// and not after the first call that has been statically linked
LoadLibrary("gdi32.dll");
TCHAR systemPath[MAX_PATH] = "";
GetSystemDirectory(systemPath, MAX_PATH);
StringCchCat(systemPath, MAX_PATH, TEXT("\\dxgi.dll"));
HMODULE dxgi_module = LoadLibrary(systemPath);
fpCreateDXGIFactory1 = dxgi_module == NULL ? NULL :
(PFN_CreateDXGIFactory1)GetProcAddress(dxgi_module, "CreateDXGIFactory1");
#endif
}
struct loader_data_files {
uint32_t count;
uint32_t alloc_count;
char **filename_list;
};
void loader_release() {
// Guarantee release of the preloaded ICD libraries. This may have already been called in vkDestroyInstance.
loader_unload_preloaded_icds();
// release mutexes
loader_platform_thread_delete_mutex(&loader_lock);
loader_platform_thread_delete_mutex(&loader_json_lock);
loader_platform_thread_delete_mutex(&loader_preload_icd_lock);
}
// Preload the ICD libraries that are likely to be needed so we don't repeatedly load/unload them later
void loader_preload_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
// Already preloaded, skip loading again.
if (scanned_icds.scanned_list != NULL) {
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
return;
}
memset(&scanned_icds, 0, sizeof(scanned_icds));
VkResult result = loader_icd_scan(NULL, &scanned_icds);
if (result != VK_SUCCESS) {
loader_scanned_icd_clear(NULL, &scanned_icds);
}
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
// Release the ICD libraries that were preloaded
void loader_unload_preloaded_icds(void) {
loader_platform_thread_lock_mutex(&loader_preload_icd_lock);
loader_scanned_icd_clear(NULL, &scanned_icds);
loader_platform_thread_unlock_mutex(&loader_preload_icd_lock);
}
// Get next file or dirname given a string list or registry key path
//
// \returns
// A pointer to first char in the next path.
// The next path (or NULL) in the list is returned in next_path.
// Note: input string is modified in some cases. PASS IN A COPY!
static char *loader_get_next_path(char *path) {
uint32_t len;
char *next;
if (path == NULL) return NULL;
next = strchr(path, PATH_SEPARATOR);
if (next == NULL) {
len = (uint32_t)strlen(path);
next = path + len;
} else {
*next = '\0';
next++;
}
return next;
}
// Given a path which is absolute or relative, expand the path if relative or
// leave the path unmodified if absolute. The base path to prepend to relative
// paths is given in rel_base.
//
// @return - A string in out_fullpath of the full absolute path
static void loader_expand_path(const char *path, const char *rel_base, size_t out_size, char *out_fullpath) {
if (loader_platform_is_path_absolute(path)) {
// do not prepend a base to an absolute path
rel_base = "";
}
loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL);
}
// Given a filename (file) and a list of paths (dir), try to find an existing
// file in the paths. If filename already is a path then no searching in the given paths.
//
// @return - A string in out_fullpath of either the full path or file.
static void loader_get_fullpath(const char *file, const char *dirs, size_t out_size, char *out_fullpath) {
if (!loader_platform_is_path(file) && *dirs) {
char *dirs_copy, *dir, *next_dir;
dirs_copy = loader_stack_alloc(strlen(dirs) + 1);
strcpy(dirs_copy, dirs);
// find if file exists after prepending paths in given list
for (dir = dirs_copy; *dir && (next_dir = loader_get_next_path(dir)); dir = next_dir) {
loader_platform_combine_path(out_fullpath, out_size, dir, file, NULL);
if (loader_platform_file_exists(out_fullpath)) {
return;
}
}
}
(void)snprintf(out_fullpath, out_size, "%s", file);
}
// Read a JSON file into a buffer.
//
// @return - A pointer to a cJSON object representing the JSON parse tree.
// This returned buffer should be freed by caller.
static VkResult loader_get_json(const struct loader_instance *inst, const char *filename, cJSON **json) {
FILE *file = NULL;
char *json_buf;
size_t len;
VkResult res = VK_SUCCESS;
if (NULL == json) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Received invalid JSON file");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
*json = NULL;
file = fopen(filename, "rb");
if (!file) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to open JSON file %s", filename);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// NOTE: We can't just use fseek(file, 0, SEEK_END) because that isn't guaranteed to be supported on all systems
do {
// We're just seeking the end of the file, so this buffer is never used
char buffer[256];
fread(buffer, 1, sizeof(buffer), file);
} while (!feof(file));
len = ftell(file);
fseek(file, 0, SEEK_SET);
json_buf = (char *)loader_stack_alloc(len + 1);
if (json_buf == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_get_json: Failed to allocate space for "
"JSON file %s buffer of length %d",
filename, len);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (fread(json_buf, sizeof(char), len, file) != len) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_get_json: Failed to read JSON file %s.", filename);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
json_buf[len] = '\0';
// Can't be a valid json if the string is of length zero
if (len == 0) {
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Parse text from file
*json = cJSON_Parse(json_buf);
if (*json == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_get_json: Failed to parse JSON file %s, "
"this is usually because something ran out of "
"memory.",
filename);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
out:
if (NULL != file) {
fclose(file);
}
return res;
}
// Verify that all component layers in a meta-layer are valid.
static bool verifyMetaLayerComponentLayers(const struct loader_instance *inst, struct loader_layer_properties *prop,
struct loader_layer_list *instance_layers) {
bool success = true;
const uint32_t expected_major = VK_VERSION_MAJOR(prop->info.specVersion);
const uint32_t expected_minor = VK_VERSION_MINOR(prop->info.specVersion);
for (uint32_t comp_layer = 0; comp_layer < prop->num_component_layers; comp_layer++) {
if (!loaderFindLayerNameInList(prop->component_layer_names[comp_layer], instance_layers)) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"verifyMetaLayerComponentLayers: Meta-layer %s can't find component layer %s at index %d."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer);
}
success = false;
break;
} else {
struct loader_layer_properties *comp_prop =
loaderFindLayerProperty(prop->component_layer_names[comp_layer], instance_layers);
if (comp_prop == NULL) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"verifyMetaLayerComponentLayers: Meta-layer %s can't find property for component layer "
"%s at index %d. Skipping this layer.",
prop->info.layerName, prop->component_layer_names[comp_layer], comp_layer);
}
success = false;
break;
}
// Check the version of each layer, they need to at least match MAJOR and MINOR
uint32_t cur_major = VK_VERSION_MAJOR(comp_prop->info.specVersion);
uint32_t cur_minor = VK_VERSION_MINOR(comp_prop->info.specVersion);
if (cur_major != expected_major || cur_minor != expected_minor) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"verifyMetaLayerComponentLayers: Meta-layer uses API version %d.%d, but component "
"layer %d uses API version %d.%d. Skipping this layer.",
expected_major, expected_minor, comp_layer, cur_major, cur_minor);
}
success = false;
break;
}
// Make sure the layer isn't using it's own name
if (!strcmp(prop->info.layerName, prop->component_layer_names[comp_layer])) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"verifyMetaLayerComponentLayers: Meta-layer %s lists itself in its component layer "
"list at index %d. Skipping this layer.",
prop->info.layerName, comp_layer);
}
success = false;
break;
}
if (comp_prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"verifyMetaLayerComponentLayers: Adding meta-layer %s which also contains meta-layer %s",
prop->info.layerName, comp_prop->info.layerName);
}
// Make sure if the layer is using a meta-layer in its component list that we also verify that.
if (!verifyMetaLayerComponentLayers(inst, comp_prop, instance_layers)) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Meta-layer %s component layer %s can not find all component layers."
" Skipping this layer.",
prop->info.layerName, prop->component_layer_names[comp_layer]);
}
success = false;
break;
}
}
// Add any instance and device extensions from component layers to this layer
// list, so that anyone querying extensions will only need to look at the meta-layer
for (uint32_t ext = 0; ext < comp_prop->instance_extension_list.count; ext++) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Meta-layer %s component layer %s adding instance extension %s", prop->info.layerName,
prop->component_layer_names[comp_layer], comp_prop->instance_extension_list.list[ext].extensionName);
}
if (!has_vk_extension_property(&comp_prop->instance_extension_list.list[ext], &prop->instance_extension_list)) {
loader_add_to_ext_list(inst, &prop->instance_extension_list, 1, &comp_prop->instance_extension_list.list[ext]);
}
}
for (uint32_t ext = 0; ext < comp_prop->device_extension_list.count; ext++) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Meta-layer %s component layer %s adding device extension %s", prop->info.layerName,
prop->component_layer_names[comp_layer],
comp_prop->device_extension_list.list[ext].props.extensionName);
}
if (!has_vk_dev_ext_property(&comp_prop->device_extension_list.list[ext].props, &prop->device_extension_list)) {
loader_add_to_dev_ext_list(inst, &prop->device_extension_list,
&comp_prop->device_extension_list.list[ext].props, 0, NULL);
}
}
}
}
if (success) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Meta-layer %s all %d component layers appear to be valid.",
prop->info.layerName, prop->num_component_layers);
}
return success;
}
// Verify that all meta-layers in a layer list are valid.
static void VerifyAllMetaLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers,
bool *override_layer_present) {
*override_layer_present = false;
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
// If this is a meta-layer, make sure it is valid
if ((prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) && !verifyMetaLayerComponentLayers(inst, prop, instance_layers)) {
if (NULL != inst) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"Removing meta-layer %s from instance layer list since it appears invalid.", prop->info.layerName);
}
// Delete the component layers
loader_instance_heap_free(inst, prop->component_layer_names);
if (prop->blacklist_layer_names != NULL) {
loader_instance_heap_free(inst, prop->blacklist_layer_names);
}
if (prop->override_paths != NULL) {
loader_instance_heap_free(inst, prop->override_paths);
}
// Remove the current invalid meta-layer from the layer list. Use memmove since we are
// overlapping the source and destination addresses.
memmove(&instance_layers->list[i], &instance_layers->list[i + 1],
sizeof(struct loader_layer_properties) * (instance_layers->count - 1 - i));
// Decrement the count (because we now have one less) and decrement the loop index since we need to
// re-check this index.
instance_layers->count--;
i--;
} else if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop)) {
*override_layer_present = true;
}
}
}
// If the current working directory matches any app_key_path of the layers, remove all other override layers.
// Otherwise if no matching app_key was found, remove all but the global override layer, which has no app_key_path.
static void RemoveAllNonValidOverrideLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
if (instance_layers == NULL) {
return;
}
char cur_path[MAX_STRING_SIZE];
char *ret = loader_platform_executable_path(cur_path, sizeof(cur_path));
if (ret == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"RemoveAllNonValidOverrideLayers: Failed to get executable path and name");
return;
}
// Find out if there is an override layer with same the app_key_path as the path to the current executable.
// If more than one is found, remove it and use the first layer
// Remove any layers which aren't global and do not have the same app_key_path as the path to the current executable.
bool found_active_override_layer = false;
int global_layer_index = -1;
for (uint32_t i = 0; i < instance_layers->count; i++) {
struct loader_layer_properties *props = &instance_layers->list[i];
if (strcmp(props->info.layerName, VK_OVERRIDE_LAYER_NAME) == 0) {
if (props->num_app_key_paths > 0) { // not the global layer
for (uint32_t j = 0; j < props->num_app_key_paths; j++) {
if (strcmp(props->app_key_paths[j], cur_path) == 0) {
if (!found_active_override_layer) {
found_active_override_layer = true;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"RemoveAllNonValidOverrideLayers: Multiple override layers where the same"
"path in app_keys was found. Using the first layer found");
// Remove duplicate active override layers that have the same app_key_path
loaderRemoveLayerInList(inst, instance_layers, i);
i--;
}
}
}
if (!found_active_override_layer) {
// Remove non-global override layers that don't have an app_key that matches cur_path
loaderRemoveLayerInList(inst, instance_layers, i);
i--;
}
} else {
if (global_layer_index == -1) {
global_layer_index = i;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"RemoveAllNonValidOverrideLayers: Multiple global override layers "
"found. Using the first global layer found");
loaderRemoveLayerInList(inst, instance_layers, i);
i--;
}
}
}
}
// Remove global layer if layer with same the app_key_path as the path to the current executable is found
if (found_active_override_layer && global_layer_index >= 0) {
loaderRemoveLayerInList(inst, instance_layers, global_layer_index);
}
// Should be at most 1 override layer in the list now.
if (found_active_override_layer) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Using the override layer for app key %s", cur_path);
} else if (global_layer_index >= 0) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Using the global override layer");
}
}
// This structure is used to store the json file version
// in a more manageable way.
typedef struct {
uint16_t major;
uint16_t minor;
uint16_t patch;
} layer_json_version;
static inline bool layer_json_supports_pre_instance_tag(const layer_json_version *layer_json) {
// Supported versions started in 1.1.2, so anything newer
return layer_json->major > 1 || layer_json->minor > 1 || (layer_json->minor == 1 && layer_json->patch > 1);
}
static VkResult loaderReadLayerJson(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list,
cJSON *layer_node, layer_json_version version, cJSON *item, cJSON *disable_environment,
bool is_implicit, char *filename) {
char *temp;
char *name, *type, *library_path_str, *api_version;
char *implementation_version, *description;
cJSON *ext_item;
cJSON *library_path;
cJSON *component_layers;
cJSON *override_paths;
cJSON *blacklisted_layers;
VkExtensionProperties ext_prop;
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
struct loader_layer_properties *props = NULL;
int i, j;
// The following are required in the "layer" object:
// (required) "name"
// (required) "type"
// (required) "library_path"
// (required) "api_version"
// (required) "implementation_version"
// (required) "description"
// (required for implicit layers) "disable_environment"
#define GET_JSON_OBJECT(node, var) \
{ \
var = cJSON_GetObjectItem(node, #var); \
if (var == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Didn't find required layer object %s in manifest " \
"JSON file, skipping this layer", \
#var); \
goto out; \
} \
}
#define GET_JSON_ITEM(node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Didn't find required layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
goto out; \
} \
temp = cJSON_Print(item); \
if (temp == NULL) { \
layer_node = layer_node->next; \
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, \
"Problem accessing layer value %s in manifest JSON " \
"file, skipping this layer", \
#var); \
result = VK_ERROR_OUT_OF_HOST_MEMORY; \
goto out; \
} \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(temp); \
}
GET_JSON_ITEM(layer_node, name)
GET_JSON_ITEM(layer_node, type)
GET_JSON_ITEM(layer_node, api_version)
GET_JSON_ITEM(layer_node, implementation_version)
GET_JSON_ITEM(layer_node, description)
// Add list entry
if (!strcmp(type, "DEVICE")) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Device layers are deprecated skipping this layer");
layer_node = layer_node->next;
goto out;
}
// Allow either GLOBAL or INSTANCE type interchangeably to handle
// layers that must work with older loaders
if (!strcmp(type, "INSTANCE") || !strcmp(type, "GLOBAL")) {
if (layer_instance_list == NULL) {
layer_node = layer_node->next;
goto out;
}
props = loaderGetNextLayerPropertySlot(inst, layer_instance_list);
if (NULL == props) {
// Error already triggered in loaderGetNextLayerPropertySlot.
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
props->type_flags = VK_LAYER_TYPE_FLAG_INSTANCE_LAYER;
if (!is_implicit) {
props->type_flags |= VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER;
}
} else {
layer_node = layer_node->next;
goto out;
}
// Expiration date for override layer. Field starte with JSON file 1.1.2 and
// is completely optional. So, no check put in place.
if (!strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
cJSON *expiration;
if (version.major < 1 && version.minor < 1 && version.patch < 2) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Override layer expiration date not added until version 1.1.2. Please update JSON file version appropriately.");
}
props->is_override = true;
expiration = cJSON_GetObjectItem(layer_node, "expiration_date");
if (NULL != expiration) {
char date_copy[32];
uint8_t cur_item = 0;
// Get the string for the current item
temp = cJSON_Print(expiration);
if (temp == NULL) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Problem accessing layer value 'expiration_date' in manifest JSON file, skipping this layer");
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strcpy(date_copy, &temp[1]);
cJSON_Free(temp);
if (strlen(date_copy) == 16) {
char *cur_start = &date_copy[0];
char *next_dash = strchr(date_copy, '-');
if (NULL != next_dash) {
while (cur_item < 5 && strlen(cur_start)) {
if (next_dash != NULL) {
*next_dash = '\0';
}
switch (cur_item) {
case 0: // Year
props->expiration.year = atoi(cur_start);
break;
case 1: // Month
props->expiration.month = atoi(cur_start);
break;
case 2: // Day
props->expiration.day = atoi(cur_start);
break;
case 3: // Hour
props->expiration.hour = atoi(cur_start);
break;
case 4: // Minute
props->expiration.minute = atoi(cur_start);
props->has_expiration = true;
break;
default: // Ignore
break;
}
if (next_dash != NULL) {
cur_start = next_dash + 1;
next_dash = strchr(cur_start, '-');
}
cur_item++;
}
}
}
}
}
// Library path no longer required unless component_layers is also not defined
library_path = cJSON_GetObjectItem(layer_node, "library_path");
component_layers = cJSON_GetObjectItem(layer_node, "component_layers");
if (NULL != library_path) {
if (NULL != component_layers) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Indicating meta-layer-specific component_layers, but also "
"defining layer library path. Both are not compatible, so "
"skipping this layer");
goto out;
}
props->num_component_layers = 0;
props->component_layer_names = NULL;
temp = cJSON_Print(library_path);
if (NULL == temp) {
layer_node = layer_node->next;
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Problem accessing layer value library_path in manifest JSON "
"file, skipping this layer");
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
library_path_str = loader_stack_alloc(strlen(temp) + 1);
strcpy(library_path_str, &temp[1]);
cJSON_Free(temp);
char *fullpath = props->lib_name;
char *rel_base;
if (NULL != library_path_str) {
if (loader_platform_is_path(library_path_str)) {
// A relative or absolute path
char *name_copy = loader_stack_alloc(strlen(filename) + 1);
strcpy(name_copy, filename);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path_str, rel_base, MAX_STRING_SIZE, fullpath);
} else {
// A filename which is assumed in a system directory
#if defined(DEFAULT_VK_LAYERS_PATH)
loader_get_fullpath(library_path_str, DEFAULT_VK_LAYERS_PATH, MAX_STRING_SIZE, fullpath);
#else
loader_get_fullpath(library_path_str, "", MAX_STRING_SIZE, fullpath);
#endif
}
}
} else if (NULL != component_layers) {
if (version.major == 1 && (version.minor < 1 || version.patch < 1)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Indicating meta-layer-specific component_layers, but using older "
"JSON file version.");
}
int count = cJSON_GetArraySize(component_layers);
props->num_component_layers = count;
// Allocate buffer for layer names
props->component_layer_names =
loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == props->component_layer_names) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the component layers into the array
for (i = 0; i < count; i++) {
cJSON *comp_layer = cJSON_GetArrayItem(component_layers, i);
if (NULL != comp_layer) {
temp = cJSON_Print(comp_layer);
if (NULL == temp) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->component_layer_names[i], temp + 1, MAX_STRING_SIZE - 1);
props->component_layer_names[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(temp);
}
}
// This is now, officially, a meta-layer
props->type_flags |= VK_LAYER_TYPE_FLAG_META_LAYER;
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Encountered meta-layer %s", name);
// Make sure we set up other things so we head down the correct branches below
library_path_str = NULL;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Layer missing both library_path and component_layers fields. One or the "
"other MUST be defined. Skipping this layer");
goto out;
}
props->num_blacklist_layers = 0;
props->blacklist_layer_names = NULL;
blacklisted_layers = cJSON_GetObjectItem(layer_node, "blacklisted_layers");
if (blacklisted_layers != NULL) {
if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Layer %s contains a blacklist, but a blacklist can only be provided by the override metalayer. "
"This blacklist will be ignored.",
name);
} else {
props->num_blacklist_layers = cJSON_GetArraySize(blacklisted_layers);
if (props->num_blacklist_layers > 0) {
// Allocate the blacklist array
props->blacklist_layer_names = loader_instance_heap_alloc(
inst, sizeof(char[MAX_STRING_SIZE]) * props->num_blacklist_layers, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (props->blacklist_layer_names == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the blacklisted layers into the array
for (i = 0; i < (int)props->num_blacklist_layers; ++i) {
cJSON *black_layer = cJSON_GetArrayItem(blacklisted_layers, i);
if (black_layer == NULL) {
continue;
}
temp = cJSON_Print(black_layer);
if (temp == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->blacklist_layer_names[i], temp + 1, MAX_STRING_SIZE - 1);
props->blacklist_layer_names[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(temp);
}
}
}
}
override_paths = cJSON_GetObjectItem(layer_node, "override_paths");
if (NULL != override_paths) {
if (version.major == 1 && (version.minor < 1 || version.patch < 1)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Indicating meta-layer-specific override paths, but using older "
"JSON file version.");
}
int count = cJSON_GetArraySize(override_paths);
props->num_override_paths = count;
if (count > 0) {
// Allocate buffer for override paths
props->override_paths =
loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * count, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == props->override_paths) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the override paths into the array
for (i = 0; i < count; i++) {
cJSON *override_path = cJSON_GetArrayItem(override_paths, i);
if (NULL != override_path) {
temp = cJSON_Print(override_path);
if (NULL == temp) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->override_paths[i], temp + 1, MAX_STRING_SIZE - 1);
props->override_paths[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(temp);
}
}
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, disable_environment)
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
strncpy(props->info.layerName, name, sizeof(props->info.layerName));
props->info.layerName[sizeof(props->info.layerName) - 1] = '\0';
props->info.specVersion = loader_make_version(api_version);
props->info.implementationVersion = atoi(implementation_version);
strncpy((char *)props->info.description, description, sizeof(props->info.description));
props->info.description[sizeof(props->info.description) - 1] = '\0';
if (is_implicit) {
if (!disable_environment || !disable_environment->child) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Didn't find required layer child value disable_environment"
"in manifest JSON file, skipping this layer");
layer_node = layer_node->next;
goto out;
}
strncpy(props->disable_env_var.name, disable_environment->child->string, sizeof(props->disable_env_var.name));
props->disable_env_var.name[sizeof(props->disable_env_var.name) - 1] = '\0';
strncpy(props->disable_env_var.value, disable_environment->child->valuestring, sizeof(props->disable_env_var.value));
props->disable_env_var.value[sizeof(props->disable_env_var.value) - 1] = '\0';
}
// Now get all optional items and objects and put in list:
// functions
// instance_extensions
// device_extensions
// enable_environment (implicit layers only)
#define GET_JSON_OBJECT(node, var) \
{ var = cJSON_GetObjectItem(node, #var); }
#define GET_JSON_ITEM(node, var) \
{ \
item = cJSON_GetObjectItem(node, #var); \
if (item != NULL) { \
temp = cJSON_Print(item); \
if (temp != NULL) { \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
cJSON_Free(temp); \
} else { \
result = VK_ERROR_OUT_OF_HOST_MEMORY; \
goto out; \
} \
} \
}
cJSON *instance_extensions, *device_extensions, *functions, *enable_environment;
cJSON *entrypoints = NULL;
char *vkGetInstanceProcAddr = NULL;
char *vkGetDeviceProcAddr = NULL;
char *vkNegotiateLoaderLayerInterfaceVersion = NULL;
char *spec_version = NULL;
char **entry_array = NULL;
cJSON *app_keys = NULL;
// Layer interface functions
// vkGetInstanceProcAddr
// vkGetDeviceProcAddr
// vkNegotiateLoaderLayerInterfaceVersion (starting with JSON file 1.1.0)
GET_JSON_OBJECT(layer_node, functions)
if (functions != NULL) {
if (version.major > 1 || version.minor >= 1) {
GET_JSON_ITEM(functions, vkNegotiateLoaderLayerInterfaceVersion)
if (vkNegotiateLoaderLayerInterfaceVersion != NULL)
strncpy(props->functions.str_negotiate_interface, vkNegotiateLoaderLayerInterfaceVersion,
sizeof(props->functions.str_negotiate_interface));
props->functions.str_negotiate_interface[sizeof(props->functions.str_negotiate_interface) - 1] = '\0';
} else {
props->functions.str_negotiate_interface[0] = '\0';
}
GET_JSON_ITEM(functions, vkGetInstanceProcAddr)
GET_JSON_ITEM(functions, vkGetDeviceProcAddr)
if (vkGetInstanceProcAddr != NULL) {
strncpy(props->functions.str_gipa, vkGetInstanceProcAddr, sizeof(props->functions.str_gipa));
if (version.major > 1 || version.minor >= 1) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Layer \"%s\" using deprecated \'vkGetInstanceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
name);
}
}
props->functions.str_gipa[sizeof(props->functions.str_gipa) - 1] = '\0';
if (vkGetDeviceProcAddr != NULL) {
strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr, sizeof(props->functions.str_gdpa));
if (version.major > 1 || version.minor >= 1) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"Layer \"%s\" using deprecated \'vkGetDeviceProcAddr\' tag which was deprecated starting with JSON "
"file version 1.1.0. The new vkNegotiateLoaderLayerInterfaceVersion function is preferred, though for "
"compatibility reasons it may be desirable to continue using the deprecated tag.",
name);
}
}
props->functions.str_gdpa[sizeof(props->functions.str_gdpa) - 1] = '\0';
}
// instance_extensions
// array of {
// name
// spec_version
// }
GET_JSON_OBJECT(layer_node, instance_extensions)
if (instance_extensions != NULL) {
int count = cJSON_GetArraySize(instance_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(instance_extensions, i);
GET_JSON_ITEM(ext_item, name)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0';
}
GET_JSON_ITEM(ext_item, spec_version)
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
bool ext_unsupported = wsi_unsupported_instance_extension(&ext_prop);
if (!ext_unsupported) {
loader_add_to_ext_list(inst, &props->instance_extension_list, 1, &ext_prop);
}
}
}
// device_extensions
// array of {
// name
// spec_version
// entrypoints
// }
GET_JSON_OBJECT(layer_node, device_extensions)
if (device_extensions != NULL) {
int count = cJSON_GetArraySize(device_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(device_extensions, i);
GET_JSON_ITEM(ext_item, name)
GET_JSON_ITEM(ext_item, spec_version)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof(ext_prop.extensionName));
ext_prop.extensionName[sizeof(ext_prop.extensionName) - 1] = '\0';
}
if (NULL != spec_version) {
ext_prop.specVersion = atoi(spec_version);
} else {
ext_prop.specVersion = 0;
}
// entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints");
GET_JSON_OBJECT(ext_item, entrypoints)
int entry_count;
if (entrypoints == NULL) {
loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, 0, NULL);
continue;
}
entry_count = cJSON_GetArraySize(entrypoints);
if (entry_count) {
entry_array = (char **)loader_stack_alloc(sizeof(char *) * entry_count);
}
for (j = 0; j < entry_count; j++) {
ext_item = cJSON_GetArrayItem(entrypoints, j);
if (ext_item != NULL) {
temp = cJSON_Print(ext_item);
if (NULL == temp) {
entry_array[j] = NULL;
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
entry_array[j] = loader_stack_alloc(strlen(temp) + 1);
strcpy(entry_array[j], &temp[1]);
cJSON_Free(temp);
}
}
loader_add_to_dev_ext_list(inst, &props->device_extension_list, &ext_prop, entry_count, entry_array);
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, enable_environment)
// enable_environment is optional
if (enable_environment) {
strncpy(props->enable_env_var.name, enable_environment->child->string, sizeof(props->enable_env_var.name));
props->enable_env_var.name[sizeof(props->enable_env_var.name) - 1] = '\0';
strncpy(props->enable_env_var.value, enable_environment->child->valuestring, sizeof(props->enable_env_var.value));
props->enable_env_var.value[sizeof(props->enable_env_var.value) - 1] = '\0';
}
}
// Read in the pre-instance stuff
cJSON *pre_instance = cJSON_GetObjectItem(layer_node, "pre_instance_functions");
if (pre_instance) {
if (!layer_json_supports_pre_instance_tag(&version)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Found pre_instance_functions section in layer from \"%s\". "
"This section is only valid in manifest version 1.1.2 or later. The section will be ignored",
filename);
} else if (!is_implicit) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Found pre_instance_functions section in explicit layer from "
"\"%s\". This section is only valid in implicit layers. The section will be ignored",
filename);
} else {
cJSON *inst_ext_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceExtensionProperties");
if (inst_ext_json) {
char *inst_ext_name = cJSON_Print(inst_ext_json);
if (inst_ext_name == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_ext_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_ext_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_extension_properties, inst_ext_name + 1, len);
props->pre_instance_functions.enumerate_instance_extension_properties[len] = '\0';
cJSON_Free(inst_ext_name);
}
cJSON *inst_layer_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceLayerProperties");
if (inst_layer_json) {
char *inst_layer_name = cJSON_Print(inst_layer_json);
if (inst_layer_name == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_layer_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_layer_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_layer_properties, inst_layer_name + 1, len);
props->pre_instance_functions.enumerate_instance_layer_properties[len] = '\0';
cJSON_Free(inst_layer_name);
}
cJSON *inst_version_json = cJSON_GetObjectItem(pre_instance, "vkEnumerateInstanceVersion");
if (inst_version_json) {
char *inst_version_name = cJSON_Print(inst_version_json);
if (inst_version_json) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
size_t len = strlen(inst_version_name) >= MAX_STRING_SIZE ? MAX_STRING_SIZE - 3 : strlen(inst_version_name) - 2;
strncpy(props->pre_instance_functions.enumerate_instance_version, inst_version_name + 1, len);
props->pre_instance_functions.enumerate_instance_version[len] = '\0';
cJSON_Free(inst_version_name);
}
}
}
props->num_app_key_paths = 0;
props->app_key_paths = NULL;
app_keys = cJSON_GetObjectItem(layer_node, "app_keys");
if (app_keys != NULL) {
if (strcmp(name, VK_OVERRIDE_LAYER_NAME)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Layer %s contains app_keys, but any app_keys can only be provided by the override metalayer. "
"These will be ignored.",
name);
} else {
props->num_app_key_paths = cJSON_GetArraySize(app_keys);
// Allocate the blacklist array
props->app_key_paths = loader_instance_heap_alloc(inst, sizeof(char[MAX_STRING_SIZE]) * props->num_app_key_paths,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (props->app_key_paths == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the app_key_paths into the array
for (i = 0; i < (int)props->num_app_key_paths; ++i) {
cJSON *app_key_path = cJSON_GetArrayItem(app_keys, i);
if (app_key_path == NULL) {
continue;
}
temp = cJSON_Print(app_key_path);
if (temp == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
temp[strlen(temp) - 1] = '\0';
strncpy(props->app_key_paths[i], temp + 1, MAX_STRING_SIZE - 1);
props->app_key_paths[i][MAX_STRING_SIZE - 1] = '\0';
cJSON_Free(temp);
}
}
}
result = VK_SUCCESS;
out:
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
if (VK_SUCCESS != result && NULL != props) {
if (NULL != props->blacklist_layer_names) {
loader_instance_heap_free(inst, props->blacklist_layer_names);
}
if (NULL != props->component_layer_names) {
loader_instance_heap_free(inst, props->component_layer_names);
}
if (NULL != props->override_paths) {
loader_instance_heap_free(inst, props->override_paths);
}
if (NULL != props->app_key_paths) {
loader_instance_heap_free(inst, props->app_key_paths);
}
props->num_blacklist_layers = 0;
props->blacklist_layer_names = NULL;
props->num_component_layers = 0;
props->component_layer_names = NULL;
props->num_override_paths = 0;
props->override_paths = NULL;
props->num_app_key_paths = 0;
props->app_key_paths = NULL;
}
return result;
}
static inline bool isValidLayerJsonVersion(const layer_json_version *layer_json) {
// Supported versions are: 1.0.0, 1.0.1, and 1.1.0 - 1.1.2.
if ((layer_json->major == 1 && layer_json->minor == 1 && layer_json->patch < 3) ||
(layer_json->major == 1 && layer_json->minor == 0 && layer_json->patch < 2)) {
return true;
}
return false;
}
static inline bool layerJsonSupportsMultipleLayers(const layer_json_version *layer_json) {
// Supported versions started in 1.0.1, so anything newer
if ((layer_json->major > 1 || layer_json->minor > 0 || layer_json->patch > 1)) {
return true;
}
return false;
}
// Given a cJSON struct (json) of the top level JSON object from layer manifest
// file, add entry to the layer_list. Fill out the layer_properties in this list
// entry from the input cJSON object.
//
// \returns
// void
// layer_list has a new entry and initialized accordingly.
// If the json input object does not have all the required fields no entry
// is added to the list.
static VkResult loaderAddLayerProperties(const struct loader_instance *inst, struct loader_layer_list *layer_instance_list,
cJSON *json, bool is_implicit, char *filename) {
// The following Fields in layer manifest file that are required:
// - "file_format_version"
// - If more than one "layer" object are used, then the "layers" array is
// required
VkResult result = VK_ERROR_INITIALIZATION_FAILED;
cJSON *item, *layers_node, *layer_node;
layer_json_version json_version = {0, 0, 0};
char *vers_tok;
cJSON *disable_environment = NULL;
// Make sure sure the top level json value is an object
if (!json || json->type != 6) {
goto out;
}
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
goto out;
}
char *file_vers = cJSON_PrintUnformatted(item);
if (NULL == file_vers) {
goto out;
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Found manifest file %s, version %s", filename, file_vers);
// Get the major/minor/and patch as integers for easier comparison
vers_tok = strtok(file_vers, ".\"\n\r");
if (NULL != vers_tok) {
json_version.major = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
json_version.minor = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
json_version.patch = (uint16_t)atoi(vers_tok);
}
}
}
if (!isValidLayerJsonVersion(&json_version)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddLayerProperties: %s invalid layer manifest file version %d.%d.%d. May cause errors.", filename,
json_version.major, json_version.minor, json_version.patch);
}
cJSON_Free(file_vers);
// If "layers" is present, read in the array of layer objects
layers_node = cJSON_GetObjectItem(json, "layers");
if (layers_node != NULL) {
int numItems = cJSON_GetArraySize(layers_node);
if (!layerJsonSupportsMultipleLayers(&json_version)) {
loader_log(
inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddLayerProperties: \'layers\' tag not supported until file version 1.0.1, but %s is reporting version %s",
filename, file_vers);
}
for (int curLayer = 0; curLayer < numItems; curLayer++) {
layer_node = cJSON_GetArrayItem(layers_node, curLayer);
if (layer_node == NULL) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddLayerProperties: Can not find 'layers' array element %d object in manifest JSON file %s. "
"Skipping this file",
curLayer, filename);
goto out;
}
result = loaderReadLayerJson(inst, layer_instance_list, layer_node, json_version, item, disable_environment,
is_implicit, filename);
}
} else {
// Otherwise, try to read in individual layers
layer_node = cJSON_GetObjectItem(json, "layer");
if (layer_node == NULL) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderAddLayerProperties: Can not find 'layer' object in manifest JSON file %s. Skipping this file.",
filename);
goto out;
}
// Loop through all "layer" objects in the file to get a count of them
// first.
uint16_t layer_count = 0;
cJSON *tempNode = layer_node;
do {
tempNode = tempNode->next;
layer_count++;
} while (tempNode != NULL);
// Throw a warning if we encounter multiple "layer" objects in file
// versions newer than 1.0.0. Having multiple objects with the same
// name at the same level is actually a JSON standard violation.
if (layer_count > 1 && layerJsonSupportsMultipleLayers(&json_version)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderAddLayerProperties: Multiple 'layer' nodes are deprecated starting in file version \"1.0.1\". "
"Please use 'layers' : [] array instead in %s.",
filename);
} else {
do {
result = loaderReadLayerJson(inst, layer_instance_list, layer_node, json_version, item, disable_environment,
is_implicit, filename);
layer_node = layer_node->next;
} while (layer_node != NULL);
}
}
out:
return result;
}
static inline size_t DetermineDataFilePathSize(const char *cur_path, size_t relative_path_size) {
size_t path_size = 0;
if (NULL != cur_path) {
// For each folder in cur_path, (detected by finding additional
// path separators in the string) we need to add the relative path on
// the end. Plus, leave an additional two slots on the end to add an
// additional directory slash and path separator if needed
path_size += strlen(cur_path) + relative_path_size + 2;
for (const char *x = cur_path; *x; ++x) {
if (*x == PATH_SEPARATOR) {
path_size += relative_path_size + 2;
}
}
}
return path_size;
}
static inline void CopyDataFilePath(const char *cur_path, const char *relative_path, size_t relative_path_size,
char **output_path) {
if (NULL != cur_path) {
uint32_t start = 0;
uint32_t stop = 0;
char *cur_write = *output_path;
while (cur_path[start] != '\0') {
while (cur_path[start] == PATH_SEPARATOR) {
start++;
}
stop = start;
while (cur_path[stop] != PATH_SEPARATOR && cur_path[stop] != '\0') {
stop++;
}
const size_t s = stop - start;
if (s) {
memcpy(cur_write, &cur_path[start], s);
cur_write += s;
// If last symbol written was not a directory symbol, add it.
if (*(cur_write - 1) != DIRECTORY_SYMBOL) {
*cur_write++ = DIRECTORY_SYMBOL;
}
if (relative_path_size > 0) {
memcpy(cur_write, relative_path, relative_path_size);
cur_write += relative_path_size;
}
*cur_write++ = PATH_SEPARATOR;
start = stop;
}
}
*output_path = cur_write;
}
}
// Check to see if there's enough space in the data file list. If not, add some.
static inline VkResult CheckAndAdjustDataFileList(const struct loader_instance *inst, struct loader_data_files *out_files) {
if (out_files->count == 0) {
out_files->filename_list = loader_instance_heap_alloc(inst, 64 * sizeof(char *), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == out_files->filename_list) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"CheckAndAdjustDataFileList: Failed to allocate space for manifest file name list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
out_files->alloc_count = 64;
} else if (out_files->count == out_files->alloc_count) {
size_t new_size = out_files->alloc_count * sizeof(char *) * 2;
void *new_ptr = loader_instance_heap_realloc(inst, out_files->filename_list, out_files->alloc_count * sizeof(char *),
new_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"CheckAndAdjustDataFileList: Failed to reallocate space for manifest file name list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
out_files->filename_list = new_ptr;
out_files->alloc_count *= 2;
}
return VK_SUCCESS;
}
// If the file found is a manifest file name, add it to the out_files manifest list.
static VkResult AddIfManifestFile(const struct loader_instance *inst, const char *file_name, struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
if (NULL == file_name || NULL == out_files) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "AddIfManfistFile: Received NULL pointer");
vk_result = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Look for files ending with ".json" suffix
size_t name_len = strlen(file_name);
const char *name_suffix = file_name + name_len - 5;
if ((name_len < 5) || 0 != strncmp(name_suffix, ".json", 5)) {
// Use incomplete to indicate invalid name, but to keep going.
vk_result = VK_INCOMPLETE;
goto out;
}
// Check and allocate space in the manifest list if necessary
vk_result = CheckAndAdjustDataFileList(inst, out_files);
if (VK_SUCCESS != vk_result) {
goto out;
}
out_files->filename_list[out_files->count] =
loader_instance_heap_alloc(inst, strlen(file_name) + 1, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (out_files->filename_list[out_files->count] == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "AddIfManfistFile: Failed to allocate space for manifest file %d list",
out_files->count);
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(out_files->filename_list[out_files->count++], file_name);
out:
return vk_result;
}
static VkResult AddDataFilesInPath(const struct loader_instance *inst, char *search_path, bool is_directory_list,
struct loader_data_files *out_files, bool use_first_found_manifest) {
VkResult vk_result = VK_SUCCESS;
DIR *dir_stream = NULL;
struct dirent *dir_entry;
char *cur_file;
char *next_file;
char *name;
char full_path[2048];
#ifndef _WIN32
char temp_path[2048];
#endif
// Now, parse the paths
next_file = search_path;
while (NULL != next_file && *next_file != '\0') {
name = NULL;
cur_file = next_file;
next_file = loader_get_next_path(cur_file);
// Get the next name in the list and verify it's valid
if (is_directory_list) {
dir_stream = opendir(cur_file);
if (NULL == dir_stream) {
continue;
}
while (1) {
dir_entry = readdir(dir_stream);
if (NULL == dir_entry) {
break;
}
name = &(dir_entry->d_name[0]);
loader_get_fullpath(name, cur_file, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = AddIfManifestFile(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
}
closedir(dir_stream);
if (vk_result != VK_SUCCESS) {
goto out;
}
} else {
#ifdef _WIN32
name = cur_file;
#else
// Only Linux has relative paths, make a copy of location so it isn't modified
size_t str_len;
if (NULL != next_file) {
str_len = next_file - cur_file + 1;
} else {
str_len = strlen(cur_file) + 1;
}
if (str_len > sizeof(temp_path)) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "AddDataFilesInPath: Path to %s too long\n", cur_file);
continue;
}
strcpy(temp_path, cur_file);
name = temp_path;
#endif
loader_get_fullpath(cur_file, name, sizeof(full_path), full_path);
name = full_path;
VkResult local_res;
local_res = AddIfManifestFile(inst, name, out_files);
// Incomplete means this was not a valid data file.
if (local_res == VK_INCOMPLETE) {
continue;
} else if (local_res != VK_SUCCESS) {
vk_result = local_res;
break;
}
}
if (use_first_found_manifest && out_files->count > 0) {
break;
}
}
out:
return vk_result;
}
// Look for data files in the provided paths, but first check the environment override to determine if we should use that
// instead.
static VkResult ReadDataFilesInSearchPaths(const struct loader_instance *inst, enum loader_data_files_type data_file_type,
const char *env_override, const char *path_override, const char *relative_location,
bool *override_active, struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
bool is_directory_list = true;
bool is_icd = (data_file_type == LOADER_DATA_FILE_MANIFEST_ICD);
char *override_env = NULL;
const char *override_path = NULL;
size_t search_path_size = 0;
char *search_path = NULL;
char *cur_path_ptr = NULL;
size_t rel_size = 0;
bool use_first_found_manifest = false;
#ifndef _WIN32
bool xdgconfig_alloc = true;
bool xdgdata_alloc = true;
#endif
#ifndef _WIN32
// Determine how much space is needed to generate the full search path
// for the current manifest files.
char *xdgconfdirs = loader_secure_getenv("XDG_CONFIG_DIRS", inst);
char *xdgdatadirs = loader_secure_getenv("XDG_DATA_DIRS", inst);
char *xdgdatahome = loader_secure_getenv("XDG_DATA_HOME", inst);
char *home = NULL;
char* home_root = NULL;
if (xdgconfdirs == NULL) {
xdgconfig_alloc = false;
}
if (xdgdatadirs == NULL) {
xdgdata_alloc = false;
}
#if !defined(__Fuchsia__)
if (xdgconfdirs == NULL || xdgconfdirs[0] == '\0') {
xdgconfdirs = FALLBACK_CONFIG_DIRS;
}
if (xdgdatadirs == NULL || xdgdatadirs[0] == '\0') {
xdgdatadirs = FALLBACK_DATA_DIRS;
}
#endif
// Only use HOME if XDG_DATA_HOME is not present on the system
if (NULL == xdgdatahome) {
home = loader_secure_getenv("HOME", inst);
if (home != NULL) {
home_root = loader_instance_heap_alloc(inst, strlen(home) + 14, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (home_root == NULL) {
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
strcpy(home_root, home);
strcat(home_root, "/.local/share");
}
}
#endif
if (path_override != NULL) {
override_path = path_override;
} else if (env_override != NULL) {
#ifndef _WIN32
if (geteuid() != getuid() || getegid() != getgid()) {
// Don't allow setuid apps to use the env var:
env_override = NULL;
} else
#endif
{
override_env = loader_secure_getenv(env_override, inst);
// The ICD override is actually a specific list of filenames, not directories
if (is_icd && NULL != override_env) {
is_directory_list = false;
}
override_path = override_env;
}
}
// Add two by default for NULL terminator and one path separator on end (just in case)
search_path_size = 2;
// If there's an override, use that (and the local folder if required) and nothing else
if (NULL != override_path) {
// Local folder and null terminator
search_path_size += strlen(override_path) + 1;
} else if (NULL == relative_location) {
// If there's no override, and no relative location, bail out. This is usually
// the case when we're on Windows and the default path is to use the registry.
goto out;
} else {
// Add the general search folders (with the appropriate relative folder added)
rel_size = strlen(relative_location);
if (rel_size == 0) {
goto out;
} else {
#if defined(__APPLE__)
search_path_size += MAXPATHLEN;
#endif
#ifndef _WIN32
search_path_size += DetermineDataFilePathSize(xdgconfdirs, rel_size);
search_path_size += DetermineDataFilePathSize(xdgdatadirs, rel_size);
search_path_size += DetermineDataFilePathSize(SYSCONFDIR, rel_size);
#if defined(EXTRASYSCONFDIR)
search_path_size += DetermineDataFilePathSize(EXTRASYSCONFDIR, rel_size);
#endif
if (is_directory_list) {
if (!IsHighIntegrity()) {
search_path_size += DetermineDataFilePathSize(xdgdatahome, rel_size);
search_path_size += DetermineDataFilePathSize(home_root, rel_size);
}
}
#endif
}
}
// Allocate the required space
search_path = loader_instance_heap_alloc(inst, search_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == search_path) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"ReadDataFilesInSearchPaths: Failed to allocate space for search path of length %d", (uint32_t)search_path_size);
vk_result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
cur_path_ptr = search_path;
// Add the remaining paths to the list
if (NULL != override_path) {
strcpy(cur_path_ptr, override_path);
} else {
#ifndef _WIN32
if (rel_size > 0) {
#if defined(__APPLE__)
// Add the bundle's Resources dir to the beginning of the search path.
// Looks for manifests in the bundle first, before any system directories.
CFBundleRef main_bundle = CFBundleGetMainBundle();
if (NULL != main_bundle) {
CFURLRef ref = CFBundleCopyResourcesDirectoryURL(main_bundle);
if (NULL != ref) {
if (CFURLGetFileSystemRepresentation(ref, TRUE, (UInt8 *)cur_path_ptr, search_path_size)) {
cur_path_ptr += strlen(cur_path_ptr);
*cur_path_ptr++ = DIRECTORY_SYMBOL;
memcpy(cur_path_ptr, relative_location, rel_size);
cur_path_ptr += rel_size;
*cur_path_ptr++ = PATH_SEPARATOR;
// only for ICD manifests
if (env_override != NULL && strcmp(VK_ICD_FILENAMES_ENV_VAR, env_override) == 0) {
use_first_found_manifest = true;
}
}
CFRelease(ref);
}
}
#endif
CopyDataFilePath(xdgconfdirs, relative_location, rel_size, &cur_path_ptr);
CopyDataFilePath(SYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#if defined(EXTRASYSCONFDIR)
CopyDataFilePath(EXTRASYSCONFDIR, relative_location, rel_size, &cur_path_ptr);
#endif
CopyDataFilePath(xdgdatadirs, relative_location, rel_size, &cur_path_ptr);
if (is_directory_list) {
CopyDataFilePath(xdgdatahome, relative_location, rel_size, &cur_path_ptr);
CopyDataFilePath(home_root, relative_location, rel_size, &cur_path_ptr);
}
}
// Remove the last path separator
--cur_path_ptr;
assert(cur_path_ptr - search_path < (ptrdiff_t)search_path_size);
*cur_path_ptr = '\0';
#endif
}
// Remove duplicate paths, or it would result in duplicate extensions, duplicate devices, etc.
// This uses minimal memory, but is O(N^2) on the number of paths. Expect only a few paths.
char path_sep_str[2] = {PATH_SEPARATOR, '\0'};
size_t search_path_updated_size = strlen(search_path);
for (size_t first = 0; first < search_path_updated_size;) {
// If this is an empty path, erase it
if (search_path[first] == PATH_SEPARATOR) {
memmove(&search_path[first], &search_path[first + 1], search_path_updated_size - first + 1);
search_path_updated_size -= 1;
continue;
}
size_t first_end = first + 1;
first_end += strcspn(&search_path[first_end], path_sep_str);
for (size_t second = first_end + 1; second < search_path_updated_size;) {
size_t second_end = second + 1;
second_end += strcspn(&search_path[second_end], path_sep_str);
if (first_end - first == second_end - second &&
!strncmp(&search_path[first], &search_path[second], second_end - second)) {
// Found duplicate. Include PATH_SEPARATOR in second_end, then erase it from search_path.
if (search_path[second_end] == PATH_SEPARATOR) {
second_end++;
}
memmove(&search_path[second], &search_path[second_end], search_path_updated_size - second_end + 1);
search_path_updated_size -= second_end - second;
} else {
second = second_end + 1;
}
}
first = first_end + 1;
}
search_path_size = search_path_updated_size;
// Print out the paths being searched if debugging is enabled
if (search_path_size > 0) {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"ReadDataFilesInSearchPaths: Searching the following paths for manifest files: %s\n", search_path);
}
// Now, parse the paths and add any manifest files found in them.
vk_result = AddDataFilesInPath(inst, search_path, is_directory_list, out_files, use_first_found_manifest);
if (NULL != override_path) {
*override_active = true;
} else {
*override_active = false;
}
out:
if (NULL != override_env) {
loader_free_getenv(override_env, inst);
}
#ifndef _WIN32
if (xdgconfig_alloc) {
loader_free_getenv(xdgconfdirs, inst);
}
if (xdgdata_alloc) {
loader_free_getenv(xdgdatadirs, inst);
}
if (NULL != xdgdatahome) {
loader_free_getenv(xdgdatahome, inst);
}
if (NULL != home) {
loader_free_getenv(home, inst);
}
if (NULL != home_root) {
loader_instance_heap_free(inst, home_root);
}
#endif
if (NULL != search_path) {
loader_instance_heap_free(inst, search_path);
}
return vk_result;
}
#ifdef _WIN32
// Read manifest JSON files using the Windows driver interface
static VkResult ReadManifestsFromD3DAdapters(const struct loader_instance *inst, char **reg_data, PDWORD reg_data_size,
const wchar_t *value_name) {
VkResult result = VK_INCOMPLETE;
LoaderEnumAdapters2 adapters = {.adapter_count = 0, .adapters = NULL};
LoaderQueryRegistryInfo *full_info = NULL;
size_t full_info_size = 0;
char *json_path = NULL;
size_t json_path_size = 0;
PFN_LoaderEnumAdapters2 fpLoaderEnumAdapters2 =
(PFN_LoaderEnumAdapters2)GetProcAddress(GetModuleHandle("gdi32.dll"), "D3DKMTEnumAdapters2");
PFN_LoaderQueryAdapterInfo fpLoaderQueryAdapterInfo =
(PFN_LoaderQueryAdapterInfo)GetProcAddress(GetModuleHandle("gdi32.dll"), "D3DKMTQueryAdapterInfo");
if (fpLoaderEnumAdapters2 == NULL || fpLoaderQueryAdapterInfo == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Get all of the adapters
NTSTATUS status = fpLoaderEnumAdapters2(&adapters);
if (status == STATUS_SUCCESS && adapters.adapter_count > 0) {
adapters.adapters = loader_instance_heap_alloc(inst, sizeof(*adapters.adapters) * adapters.adapter_count,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (adapters.adapters == NULL) {
goto out;
}
status = fpLoaderEnumAdapters2(&adapters);
}
if (status != STATUS_SUCCESS) {
goto out;
}
// If that worked, we need to get the manifest file(s) for each adapter
for (ULONG i = 0; i < adapters.adapter_count; ++i) {
// The first query should just check if the field exists and how big it is
LoaderQueryRegistryInfo filename_info = {
.query_type = LOADER_QUERY_REGISTRY_ADAPTER_KEY,
.query_flags =
{
.translate_path = true,
},
.value_type = REG_MULTI_SZ,
.physical_adapter_index = 0,
};
wcsncpy(filename_info.value_name, value_name, sizeof(filename_info.value_name) / sizeof(WCHAR));
LoaderQueryAdapterInfo query_info = {
.handle = adapters.adapters[i].handle,
.type = LOADER_QUERY_TYPE_REGISTRY,
.private_data = &filename_info,
.private_data_size = sizeof(filename_info),
};
status = fpLoaderQueryAdapterInfo(&query_info);
// This error indicates that the type didn't match, so we'll try a REG_SZ
if (status != STATUS_SUCCESS) {
filename_info.value_type = REG_SZ;
status = fpLoaderQueryAdapterInfo(&query_info);
}
if (status != STATUS_SUCCESS || filename_info.status != LOADER_QUERY_REGISTRY_STATUS_BUFFER_OVERFLOW) {
continue;
}
while (status == STATUS_SUCCESS &&
((LoaderQueryRegistryInfo *)query_info.private_data)->status == LOADER_QUERY_REGISTRY_STATUS_BUFFER_OVERFLOW) {
bool needs_copy = (full_info == NULL);
size_t full_size = sizeof(LoaderQueryRegistryInfo) + filename_info.output_value_size;
void *buffer =
loader_instance_heap_realloc(inst, full_info, full_info_size, full_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (buffer == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
full_info = buffer;
full_info_size = full_size;
if (needs_copy) {
memcpy(full_info, &filename_info, sizeof(LoaderQueryRegistryInfo));
}
query_info.private_data = full_info;
query_info.private_data_size = (UINT)full_info_size;
status = fpLoaderQueryAdapterInfo(&query_info);
}
if (status != STATUS_SUCCESS || full_info->status != LOADER_QUERY_REGISTRY_STATUS_SUCCESS) {
goto out;
}
// Convert the wide string to a narrow string
void *buffer = loader_instance_heap_realloc(inst, json_path, json_path_size, full_info->output_value_size,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (buffer == NULL) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
json_path = buffer;
json_path_size = full_info->output_value_size;
// Iterate over each component string
for (const wchar_t *curr_path = full_info->output_string; curr_path[0] != '\0'; curr_path += wcslen(curr_path) + 1) {
WideCharToMultiByte(CP_UTF8, 0, curr_path, -1, json_path, (int)json_path_size, NULL, NULL);
// Add the string to the output list
result = VK_SUCCESS;
loaderAddJsonEntry(inst, reg_data, reg_data_size, (LPCTSTR)L"EnumAdapters", REG_SZ, json_path,
(DWORD)strlen(json_path) + 1, &result);
if (result != VK_SUCCESS) {
goto out;
}
// If this is a string and not a multi-string, we don't want to go throught the loop more than once
if (full_info->value_type == REG_SZ) {
break;
}
}
}
out:
if (json_path != NULL) {
loader_instance_heap_free(inst, json_path);
}
if (full_info != NULL) {
loader_instance_heap_free(inst, full_info);
}
if (adapters.adapters != NULL) {
loader_instance_heap_free(inst, adapters.adapters);
}
return result;
}
// Look for data files in the registry.
static VkResult ReadDataFilesInRegistry(const struct loader_instance *inst, enum loader_data_files_type data_file_type,
bool warn_if_not_present, char *registry_location, struct loader_data_files *out_files) {
VkResult vk_result = VK_SUCCESS;
char *search_path = NULL;
// These calls look at the PNP/Device section of the registry.
VkResult regHKR_result = VK_SUCCESS;
DWORD reg_size = 4096;
if (!strncmp(registry_location, VK_DRIVERS_INFO_REGISTRY_LOC, sizeof(VK_DRIVERS_INFO_REGISTRY_LOC))) {
// If we're looking for drivers we need to try enumerating adapters
regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, &reg_size, LoaderPnpDriverRegistryWide());
if (regHKR_result == VK_INCOMPLETE) {
regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, &reg_size, LoaderPnpDriverRegistry());
}
} else if (!strncmp(registry_location, VK_ELAYERS_INFO_REGISTRY_LOC, sizeof(VK_ELAYERS_INFO_REGISTRY_LOC))) {
regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, &reg_size, LoaderPnpELayerRegistryWide());
if (regHKR_result == VK_INCOMPLETE) {
regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, &reg_size, LoaderPnpELayerRegistry());
}
} else if (!strncmp(registry_location, VK_ILAYERS_INFO_REGISTRY_LOC, sizeof(VK_ILAYERS_INFO_REGISTRY_LOC))) {
regHKR_result = ReadManifestsFromD3DAdapters(inst, &search_path, &reg_size, LoaderPnpILayerRegistryWide());
if (regHKR_result == VK_INCOMPLETE) {
regHKR_result = loaderGetDeviceRegistryFiles(inst, &search_path, &reg_size, LoaderPnpILayerRegistry());
}
}
// This call looks into the Khronos non-device specific section of the registry.
bool use_secondary_hive = (data_file_type == LOADER_DATA_FILE_MANIFEST_LAYER) && (!IsHighIntegrity());
VkResult reg_result = loaderGetRegistryFiles(inst, registry_location, use_secondary_hive, &search_path, &reg_size);
if ((VK_SUCCESS != reg_result && VK_SUCCESS != regHKR_result) || NULL == search_path) {
if (data_file_type == LOADER_DATA_FILE_MANIFEST_ICD) {
loader_log(
inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"ReadDataFilesInRegistry: Registry lookup failed to get ICD manifest files. Possibly missing Vulkan driver?");
if (VK_SUCCESS == reg_result || VK_ERROR_OUT_OF_HOST_MEMORY == reg_result) {
vk_result = reg_result;
} else {
vk_result = regHKR_result;
}
} else {
if (warn_if_not_present) {
if (data_file_type == LOADER_DATA_FILE_MANIFEST_LAYER) {
// This is only a warning for layers
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"ReadDataFilesInRegistry: Registry lookup failed to get layer manifest files.");
} else {
// This is only a warning for general data files
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"ReadDataFilesInRegistry: Registry lookup failed to get data files.");
}
}
if (reg_result == VK_ERROR_OUT_OF_HOST_MEMORY) {
vk_result = reg_result;
} else {
// Return success for now since it's not critical for layers
vk_result = VK_SUCCESS;
}
}
goto out;
}
// Now, parse the paths and add any manifest files found in them.
vk_result = AddDataFilesInPath(inst, search_path, false, out_files, false);
out:
if (NULL != search_path) {
loader_instance_heap_free(inst, search_path);
}
return vk_result;
}
#endif // _WIN32
// Find the Vulkan library manifest files.
//
// This function scans the "location" or "env_override" directories/files
// for a list of JSON manifest files. If env_override is non-NULL
// and has a valid value. Then the location is ignored. Otherwise
// location is used to look for manifest files. The location
// is interpreted as Registry path on Windows and a directory path(s)
// on Linux. "home_location" is an additional directory in the users home
// directory to look at. It is expanded into the dir path
// $XDG_DATA_HOME/home_location or $HOME/.local/share/home_location depending
// on environment variables. This "home_location" is only used on Linux.
//
// \returns
// VKResult
// A string list of manifest files to be opened in out_files param.
// List has a pointer to string for each manifest filename.
// When done using the list in out_files, pointers should be freed.
// Location or override string lists can be either files or directories as
// follows:
// | location | override
// --------------------------------
// Win ICD | files | files
// Win Layer | files | dirs
// Linux ICD | dirs | files
// Linux Layer| dirs | dirs
static VkResult loaderGetDataFiles(const struct loader_instance *inst, enum loader_data_files_type data_file_type,
bool warn_if_not_present, const char *env_override, const char *path_override,
char *registry_location, const char *relative_location, struct loader_data_files *out_files) {
VkResult res = VK_SUCCESS;
bool override_active = false;
// Free and init the out_files information so there's no false data left from uninitialized variables.
if (out_files->filename_list != NULL) {
for (uint32_t i = 0; i < out_files->count; i++) {
if (NULL != out_files->filename_list[i]) {
loader_instance_heap_free(inst, out_files->filename_list[i]);
out_files->filename_list[i] = NULL;
}
}
loader_instance_heap_free(inst, out_files->filename_list);
}
out_files->count = 0;
out_files->alloc_count = 0;
out_files->filename_list = NULL;
res = ReadDataFilesInSearchPaths(inst, data_file_type, env_override, path_override, relative_location, &override_active,
out_files);
if (VK_SUCCESS != res) {
goto out;
}
#ifdef _WIN32
// Read the registry if the override wasn't active.
if (!override_active) {
res = ReadDataFilesInRegistry(inst, data_file_type, warn_if_not_present, registry_location, out_files);
if (VK_SUCCESS != res) {
goto out;
}
}
#endif
out:
if (VK_SUCCESS != res && NULL != out_files->filename_list) {
for (uint32_t remove = 0; remove < out_files->count; remove++) {
loader_instance_heap_free(inst, out_files->filename_list[remove]);
}
loader_instance_heap_free(inst, out_files->filename_list);
out_files->count = 0;
out_files->alloc_count = 0;
out_files->filename_list = NULL;
}
return res;
}
void loader_init_icd_lib_list() {}
void loader_destroy_icd_lib_list() {}
// Try to find the Vulkan ICD driver(s).
//
// This function scans the default system loader path(s) or path
// specified by the \c VK_ICD_FILENAMES environment variable in
// order to find loadable VK ICDs manifest files. From these
// manifest files it finds the ICD libraries.
//
// \returns
// Vulkan result
// (on result == VK_SUCCESS) a list of icds that were discovered
VkResult loader_icd_scan(const struct loader_instance *inst, struct loader_icd_tramp_list *icd_tramp_list) {
char *file_str;
uint16_t file_major_vers = 0;
uint16_t file_minor_vers = 0;
uint16_t file_patch_vers = 0;
char *vers_tok;
struct loader_data_files manifest_files;
VkResult res = VK_SUCCESS;
bool lockedMutex = false;
cJSON *json = NULL;
uint32_t num_good_icds = 0;
memset(&manifest_files, 0, sizeof(struct loader_data_files));
res = loader_scanned_icd_init(inst, icd_tramp_list);
if (VK_SUCCESS != res) {
goto out;
}
// Get a list of manifest files for ICDs
res = loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_ICD, true, VK_ICD_FILENAMES_ENV_VAR, NULL,
VK_DRIVERS_INFO_REGISTRY_LOC, VK_DRIVERS_INFO_RELATIVE_DIR, &manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
goto out;
}
loader_platform_thread_lock_mutex(&loader_json_lock);
lockedMutex = true;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
VkResult temp_res = loader_get_json(inst, file_str, &json);
if (NULL == json || temp_res != VK_SUCCESS) {
if (NULL != json) {
cJSON_Delete(json);
json = NULL;
}
// If we haven't already found an ICD, copy this result to
// the returned result.
if (num_good_icds == 0) {
res = temp_res;
}
if (temp_res == VK_ERROR_OUT_OF_HOST_MEMORY) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
break;
} else {
continue;
}
}
res = temp_res;
cJSON *item, *itemICD;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
if (num_good_icds == 0) {
res = VK_ERROR_INITIALIZATION_FAILED;
}
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: ICD JSON %s does not have a"
" \'file_format_version\' field. Skipping ICD JSON.",
file_str);
cJSON_Delete(json);
json = NULL;
continue;
}
char *file_vers = cJSON_Print(item);
if (NULL == file_vers) {
// Only reason the print can fail is if there was an allocation issue
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s"
" \'file_format_version\' field. Skipping ICD JSON",
file_str);
cJSON_Delete(json);
json = NULL;
continue;
}
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Found ICD manifest file %s, version %s", file_str, file_vers);
// Get the major/minor/and patch as integers for easier comparison
vers_tok = strtok(file_vers, ".\"\n\r");
if (NULL != vers_tok) {
file_major_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_minor_vers = (uint16_t)atoi(vers_tok);
vers_tok = strtok(NULL, ".\"\n\r");
if (NULL != vers_tok) {
file_patch_vers = (uint16_t)atoi(vers_tok);
}
}
}
if (file_major_vers != 1 || file_minor_vers != 0 || file_patch_vers > 1) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Unexpected manifest file version "
"(expected 1.0.0 or 1.0.1), may cause errors");
}
cJSON_Free(file_vers);
itemICD = cJSON_GetObjectItem(json, "ICD");
if (itemICD != NULL) {
item = cJSON_GetObjectItem(itemICD, "library_path");
if (item != NULL) {
char *temp = cJSON_Print(item);
if (!temp || strlen(temp) == 0) {
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s"
" \'library_path\' field. Skipping ICD JSON.",
file_str);
cJSON_Free(temp);
cJSON_Delete(json);
json = NULL;
continue;
}
// strip out extra quotes
temp[strlen(temp) - 1] = '\0';
char *library_path = loader_stack_alloc(strlen(temp) + 1);
if (NULL == library_path) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_icd_scan: Failed to allocate space for "
"ICD JSON %s \'library_path\' value. Skipping "
"ICD JSON.",
file_str);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
cJSON_Free(temp);
cJSON_Delete(json);
json = NULL;
goto out;
}
strcpy(library_path, &temp[1]);
cJSON_Free(temp);
if (strlen(library_path) == 0) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: ICD JSON %s \'library_path\'"
" field is empty. Skipping ICD JSON.",
file_str);
cJSON_Delete(json);
json = NULL;
continue;
}
char fullpath[MAX_STRING_SIZE];
// Print out the paths being searched if debugging is enabled
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Searching for ICD drivers named %s", library_path);
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(file_str) + 1);
char *rel_base;
strcpy(name_copy, file_str);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, sizeof(fullpath), fullpath);
} else {
// a filename which is assumed in a system directory
#if defined(DEFAULT_VK_DRIVERS_PATH)
loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH, sizeof(fullpath), fullpath);
#else
loader_get_fullpath(library_path, "", sizeof(fullpath), fullpath);
#endif
}
uint32_t vers = 0;
item = cJSON_GetObjectItem(itemICD, "api_version");
if (item != NULL) {
temp = cJSON_Print(item);
if (NULL == temp) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Failed retrieving ICD JSON %s"
" \'api_version\' field. Skipping ICD JSON.",
file_str);
// Only reason the print can fail is if there was an
// allocation issue
if (num_good_icds == 0) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
}
cJSON_Free(temp);
cJSON_Delete(json);
json = NULL;
continue;
}
vers = loader_make_version(temp);
cJSON_Free(temp);
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: ICD JSON %s does not have an"
" \'api_version\' field.",
file_str);
}
res = loader_scanned_icd_add(inst, icd_tramp_list, fullpath, vers);
if (VK_SUCCESS != res) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_icd_scan: Failed to add ICD JSON %s. "
" Skipping ICD JSON.",
fullpath);
cJSON_Delete(json);
json = NULL;
continue;
}
num_good_icds++;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Failed to find \'library_path\' "
"object in ICD JSON file %s. Skipping ICD JSON.",
file_str);
}
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_icd_scan: Can not find \'ICD\' object in ICD JSON "
"file %s. Skipping ICD JSON",
file_str);
}
cJSON_Delete(json);
json = NULL;
}
out:
if (NULL != json) {
cJSON_Delete(json);
}
if (NULL != manifest_files.filename_list) {
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
loader_instance_heap_free(inst, manifest_files.filename_list);
}
if (lockedMutex) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
return res;
}
void loaderScanForLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_data_files manifest_files;
cJSON *json;
bool override_layer_valid = false;
char *override_paths = NULL;
uint32_t total_count = 0;
memset(&manifest_files, 0, sizeof(struct loader_data_files));
// Cleanup any previously scanned libraries
loaderDeleteLayerListAndProperties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
// Get a list of manifest files for any implicit layers
// Pass NULL for environment variable override - implicit layers are not overridden by LAYERS_PATH_ENV
if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, false, NULL, NULL, VK_ILAYERS_INFO_REGISTRY_LOC,
VK_ILAYERS_INFO_RELATIVE_DIR, &manifest_files)) {
goto out;
}
if (manifest_files.count != 0) {
total_count += manifest_files.count;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// Parse file into JSON struct
VkResult res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
VkResult local_res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str);
cJSON_Delete(json);
// If the error is anything other than out of memory we still want to try to load the other layers
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
goto out;
}
}
}
// Remove any extraneous override layers.
RemoveAllNonValidOverrideLayers(inst, instance_layers);
// Check to see if the override layer is present, and use it's override paths.
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop) && prop->num_override_paths > 0) {
char *cur_write_ptr = NULL;
size_t override_path_size = 0;
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
override_path_size += DetermineDataFilePathSize(prop->override_paths[j], 0);
}
override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (override_paths == NULL) {
goto out;
}
cur_write_ptr = &override_paths[0];
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
CopyDataFilePath(prop->override_paths[j], NULL, 0, &cur_write_ptr);
}
// Remove the last path separator
--cur_write_ptr;
assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size);
*cur_write_ptr = '\0';
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loaderScanForLayers: Override layer has override paths set to %s",
override_paths);
}
}
// Get a list of manifest files for explicit layers
if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, true, VK_LAYER_PATH_ENV_VAR, override_paths,
VK_ELAYERS_INFO_REGISTRY_LOC, VK_ELAYERS_INFO_RELATIVE_DIR, &manifest_files)) {
goto out;
}
// Make sure we have at least one layer, if not, go ahead and return
if (manifest_files.count == 0 && total_count == 0) {
goto out;
} else {
total_count += manifest_files.count;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// Parse file into JSON struct
VkResult res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
VkResult local_res = loaderAddLayerProperties(inst, instance_layers, json, false, file_str);
cJSON_Delete(json);
// If the error is anything other than out of memory we still want to try to load the other layers
if (VK_ERROR_OUT_OF_HOST_MEMORY == local_res) {
goto out;
}
}
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
VerifyAllMetaLayers(inst, instance_layers, &override_layer_valid);
if (override_layer_valid) {
loaderRemoveLayersInBlacklist(inst, instance_layers);
if (NULL != inst) {
inst->override_layer_present = true;
}
}
out:
if (NULL != override_paths) {
loader_instance_heap_free(inst, override_paths);
}
if (NULL != manifest_files.filename_list) {
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
loader_instance_heap_free(inst, manifest_files.filename_list);
}
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
void loaderScanForImplicitLayers(struct loader_instance *inst, struct loader_layer_list *instance_layers) {
char *file_str;
struct loader_data_files manifest_files;
cJSON *json;
bool override_layer_valid = false;
char *override_paths = NULL;
bool implicit_metalayer_present = false;
bool have_json_lock = false;
// Before we begin anything, init manifest_files to avoid a delete of garbage memory if
// a failure occurs before allocating the manifest filename_list.
memset(&manifest_files, 0, sizeof(struct loader_data_files));
// Pass NULL for environment variable override - implicit layers are not overridden by LAYERS_PATH_ENV
VkResult res = loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, false, NULL, NULL, VK_ILAYERS_INFO_REGISTRY_LOC,
VK_ILAYERS_INFO_RELATIVE_DIR, &manifest_files);
if (VK_SUCCESS != res || manifest_files.count == 0) {
goto out;
}
// Cleanup any previously scanned libraries
loaderDeleteLayerListAndProperties(inst, instance_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
have_json_lock = true;
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// parse file into JSON struct
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str);
loader_instance_heap_free(inst, file_str);
manifest_files.filename_list[i] = NULL;
cJSON_Delete(json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
}
}
// Remove any extraneous override layers.
RemoveAllNonValidOverrideLayers(inst, instance_layers);
// Check to see if either the override layer is present, or another implicit meta-layer.
// Each of these may require explicit layers to be enabled at this time.
for (int32_t i = 0; i < (int32_t)instance_layers->count; i++) {
struct loader_layer_properties *prop = &instance_layers->list[i];
if (prop->is_override && loaderImplicitLayerIsEnabled(inst, prop)) {
override_layer_valid = true;
if (prop->num_override_paths > 0) {
char *cur_write_ptr = NULL;
size_t override_path_size = 0;
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
override_path_size += DetermineDataFilePathSize(prop->override_paths[j], 0);
}
override_paths = loader_instance_heap_alloc(inst, override_path_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (override_paths == NULL) {
goto out;
}
cur_write_ptr = &override_paths[0];
for (uint32_t j = 0; j < prop->num_override_paths; j++) {
CopyDataFilePath(prop->override_paths[j], NULL, 0, &cur_write_ptr);
}
// Remove the last path separator
--cur_write_ptr;
assert(cur_write_ptr - override_paths < (ptrdiff_t)override_path_size);
*cur_write_ptr = '\0';
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loaderScanForImplicitLayers: Override layer has override paths set to %s", override_paths);
}
} else if (!prop->is_override && prop->type_flags & VK_LAYER_TYPE_FLAG_META_LAYER) {
implicit_metalayer_present = true;
}
}
// If either the override layer or an implicit meta-layer are present, we need to add
// explicit layer info as well. Not to worry, though, all explicit layers not included
// in the override layer will be removed below in loaderRemoveLayersInBlacklist().
if (override_layer_valid || implicit_metalayer_present) {
if (VK_SUCCESS != loaderGetDataFiles(inst, LOADER_DATA_FILE_MANIFEST_LAYER, true, VK_LAYER_PATH_ENV_VAR, override_paths,
VK_ELAYERS_INFO_REGISTRY_LOC, VK_ELAYERS_INFO_RELATIVE_DIR, &manifest_files)) {
goto out;
}
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL) {
continue;
}
// parse file into JSON struct
res = loader_get_json(inst, file_str, &json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
} else if (VK_SUCCESS != res || NULL == json) {
continue;
}
res = loaderAddLayerProperties(inst, instance_layers, json, true, file_str);
loader_instance_heap_free(inst, file_str);
manifest_files.filename_list[i] = NULL;
cJSON_Delete(json);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
goto out;
}
}
}
// Verify any meta-layers in the list are valid and all the component layers are
// actually present in the available layer list
VerifyAllMetaLayers(inst, instance_layers, &override_layer_valid);
if (override_layer_valid || implicit_metalayer_present) {
loaderRemoveLayersNotInImplicitMetaLayers(inst, instance_layers);
if (override_layer_valid && inst != NULL) {
inst->override_layer_present = true;
}
}
out:
if (NULL != override_paths) {
loader_instance_heap_free(inst, override_paths);
}
for (uint32_t i = 0; i < manifest_files.count; i++) {
if (NULL != manifest_files.filename_list[i]) {
loader_instance_heap_free(inst, manifest_files.filename_list[i]);
}
}
if (NULL != manifest_files.filename_list) {
loader_instance_heap_free(inst, manifest_files.filename_list);
}
if (have_json_lock) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_internal(VkInstance inst, const char *pName) {
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
if (loader_phys_dev_ext_gpa(loader_get_instance(inst), pName, true, NULL, &addr)) return addr;
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpdpa_instance_internal() unrecognized name %s", pName);
return NULL;
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpdpa_instance_terminator(VkInstance inst, const char *pName) {
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Get the terminator, but don't perform checking since it should already
// have been setup if we get here.
if (loader_phys_dev_ext_gpa(loader_get_instance(inst), pName, false, NULL, &addr)) {
return addr;
}
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpdpa_instance_terminator() unrecognized name %s", pName);
return NULL;
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_internal(VkInstance inst, const char *pName) {
if (!strcmp(pName, "vkGetInstanceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_instance_internal;
}
if (!strcmp(pName, "vk_layerGetPhysicalDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpdpa_instance_terminator;
}
if (!strcmp(pName, "vkCreateInstance")) {
return (PFN_vkVoidFunction)terminator_CreateInstance;
}
if (!strcmp(pName, "vkCreateDevice")) {
return (PFN_vkVoidFunction)terminator_CreateDevice;
}
// The VK_EXT_debug_utils functions need a special case here so the terminators can still be found from vkGetInstanceProcAddr
if (!strcmp(pName, "vkSetDebugUtilsObjectNameEXT")) {
return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectNameEXT;
}
if (!strcmp(pName, "vkSetDebugUtilsObjectTagEXT")) {
return (PFN_vkVoidFunction)terminator_SetDebugUtilsObjectTagEXT;
}
if (!strcmp(pName, "vkQueueBeginDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueBeginDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkQueueEndDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueEndDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkQueueInsertDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_QueueInsertDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdBeginDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdBeginDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdEndDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdEndDebugUtilsLabelEXT;
}
if (!strcmp(pName, "vkCmdInsertDebugUtilsLabelEXT")) {
return (PFN_vkVoidFunction)terminator_CmdInsertDebugUtilsLabelEXT;
}
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable *disp_table = *(VkLayerInstanceDispatchTable **)inst;
void *addr;
if (disp_table == NULL) return NULL;
bool found_name;
addr = loader_lookup_instance_dispatch_table(disp_table, pName, &found_name);
if (found_name) {
return addr;
}
// Don't call down the chain, this would be an infinite loop
loader_log(NULL, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "loader_gpa_instance_internal() unrecognized name %s", pName);
return NULL;
}
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_device_internal(VkDevice device, const char *pName) {
struct loader_device *dev;
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
// Return this function if a layer above here is asking for the vkGetDeviceProcAddr.
// This is so we can properly intercept any device commands needing a terminator.
if (!strcmp(pName, "vkGetDeviceProcAddr")) {
return (PFN_vkVoidFunction)loader_gpa_device_internal;
}
// NOTE: Device Funcs needing Trampoline/Terminator.
// Overrides for device functions needing a trampoline and
// a terminator because certain device entry-points still need to go
// through a terminator before hitting the ICD. This could be for
// several reasons, but the main one is currently unwrapping an
// object before passing the appropriate info along to the ICD.
// This is why we also have to override the direct ICD call to
// vkGetDeviceProcAddr to intercept those calls.
PFN_vkVoidFunction addr = get_extension_device_proc_terminator(dev, pName);
if (NULL != addr) {
return addr;
}
return icd_term->dispatch.GetDeviceProcAddr(device, pName);
}
// Initialize device_ext dispatch table entry as follows:
// If dev == NULL find all logical devices created within this instance and
// init the entry (given by idx) in the ext dispatch table.
// If dev != NULL only initialize the entry in the given dev's dispatch table.
// The initialization value is gotten by calling down the device chain with
// GDPA.
// If GDPA returns NULL then don't initialize the dispatch table entry.
static void loader_init_dispatch_dev_ext_entry(struct loader_instance *inst, struct loader_device *dev, uint32_t idx,
const char *funcName)
{
void *gdpa_value;
if (dev != NULL) {
gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(dev->chain_device, funcName);
if (gdpa_value != NULL) dev->loader_dispatch.ext_dispatch.dev_ext[idx] = (PFN_vkDevExt)gdpa_value;
} else {
for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term != NULL; icd_term = icd_term->next) {
struct loader_device *ldev = icd_term->logical_device_list;
while (ldev) {
gdpa_value = ldev->loader_dispatch.core_dispatch.GetDeviceProcAddr(ldev->chain_device, funcName);
if (gdpa_value != NULL) ldev->loader_dispatch.ext_dispatch.dev_ext[idx] = (PFN_vkDevExt)gdpa_value;
ldev = ldev->next;
}
}
}
}
// Find all dev extension in the hash table and initialize the dispatch table
// for dev for each of those extension entrypoints found in hash table.
void loader_init_dispatch_dev_ext(struct loader_instance *inst, struct loader_device *dev) {
for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) {
if (inst->dev_ext_disp_hash[i].func_name != NULL)
loader_init_dispatch_dev_ext_entry(inst, dev, i, inst->dev_ext_disp_hash[i].func_name);
}
}
static bool loader_check_icds_for_dev_ext_address(struct loader_instance *inst, const char *funcName) {
struct loader_icd_term *icd_term;
icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (icd_term->scanned_icd->GetInstanceProcAddr(icd_term->instance, funcName))
// this icd supports funcName
return true;
icd_term = icd_term->next;
}
return false;
}
static bool loader_check_layer_list_for_dev_ext_address(const struct loader_layer_list *const layers, const char *funcName) {
// Iterate over the layers.
for (uint32_t layer = 0; layer < layers->count; ++layer) {
// Iterate over the extensions.
const struct loader_device_extension_list *const extensions = &(layers->list[layer].device_extension_list);
for (uint32_t extension = 0; extension < extensions->count; ++extension) {
// Iterate over the entry points.
const struct loader_dev_ext_props *const property = &(extensions->list[extension]);
for (uint32_t entry = 0; entry < property->entrypoint_count; ++entry) {
if (strcmp(property->entrypoints[entry], funcName) == 0) {
return true;
}
}
}
}
return false;
}
static void loader_free_dev_ext_table(struct loader_instance *inst) {
for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) {
loader_instance_heap_free(inst, inst->dev_ext_disp_hash[i].func_name);
loader_instance_heap_free(inst, inst->dev_ext_disp_hash[i].list.index);
}
memset(inst->dev_ext_disp_hash, 0, sizeof(inst->dev_ext_disp_hash));
}
static bool loader_add_dev_ext_table(struct loader_instance *inst, uint32_t *ptr_idx, const char *funcName) {
uint32_t i;
uint32_t idx = *ptr_idx;
struct loader_dispatch_hash_list *list = &inst->dev_ext_disp_hash[idx].list;
if (!inst->dev_ext_disp_hash[idx].func_name) {
// no entry here at this idx, so use it
assert(list->capacity == 0);
inst->dev_ext_disp_hash[idx].func_name =
(char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->dev_ext_disp_hash[idx].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table: Failed to allocate memory "
"for func_name %s",
funcName);
return false;
}
strncpy(inst->dev_ext_disp_hash[idx].func_name, funcName, strlen(funcName) + 1);
return true;
}
// check for enough capacity
if (list->capacity == 0) {
list->index = loader_instance_heap_alloc(inst, 8 * sizeof(*(list->index)), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table: Failed to allocate memory for list index of function %s", funcName);
return false;
}
list->capacity = 8 * sizeof(*(list->index));
} else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) {
void *new_ptr = loader_instance_heap_realloc(inst, list->index, list->capacity, list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table: Failed to reallocate memory for list index of function %s", funcName);
return false;
}
list->index = new_ptr;
list->capacity *= 2;
}
// find an unused index in the hash table and use it
i = (idx + 1) % MAX_NUM_UNKNOWN_EXTS;
do {
if (!inst->dev_ext_disp_hash[i].func_name) {
assert(inst->dev_ext_disp_hash[i].list.capacity == 0);
inst->dev_ext_disp_hash[i].func_name =
(char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->dev_ext_disp_hash[i].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table: Failed to allocate memory "
"for func_name %s",
funcName);
return false;
}
strncpy(inst->dev_ext_disp_hash[i].func_name, funcName, strlen(funcName) + 1);
list->index[list->count] = i;
list->count++;
*ptr_idx = i;
return true;
}
i = (i + 1) % MAX_NUM_UNKNOWN_EXTS;
} while (i != idx);
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table: Could not insert into hash table; is "
"it full?");
return false;
}
static bool loader_name_in_dev_ext_table(struct loader_instance *inst, uint32_t *idx, const char *funcName) {
uint32_t alt_idx;
if (inst->dev_ext_disp_hash[*idx].func_name && !strcmp(inst->dev_ext_disp_hash[*idx].func_name, funcName)) return true;
// funcName wasn't at the primary spot in the hash table
// search the list of secondary locations (shallow search, not deep search)
for (uint32_t i = 0; i < inst->dev_ext_disp_hash[*idx].list.count; i++) {
alt_idx = inst->dev_ext_disp_hash[*idx].list.index[i];
if (!strcmp(inst->dev_ext_disp_hash[*idx].func_name, funcName)) {
*idx = alt_idx;
return true;
}
}
return false;
}
// This function returns generic trampoline code address for unknown entry
// points.
// Presumably, these unknown entry points (as given by funcName) are device
// extension entrypoints. A hash table is used to keep a list of unknown entry
// points and their mapping to the device extension dispatch table
// (struct loader_dev_ext_dispatch_table).
// \returns
// For a given entry point string (funcName), if an existing mapping is found
// the
// trampoline address for that mapping is returned. Otherwise, this unknown
// entry point
// has not been seen yet. Next check if a layer or ICD supports it. If so then
// a
// new entry in the hash table is initialized and that trampoline address for
// the new entry is returned. Null is returned if the hash table is full or
// if no discovered layer or ICD returns a non-NULL GetProcAddr for it.
void *loader_dev_ext_gpa(struct loader_instance *inst, const char *funcName) {
uint32_t idx;
uint32_t seed = 0;
idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_UNKNOWN_EXTS;
if (loader_name_in_dev_ext_table(inst, &idx, funcName))
// found funcName already in hash
return loader_get_dev_ext_trampoline(idx);
// Check if funcName is supported in either ICDs or a layer library
if (!loader_check_icds_for_dev_ext_address(inst, funcName) &&
!loader_check_layer_list_for_dev_ext_address(&inst->app_activated_layer_list, funcName)) {
// if support found in layers continue on
return NULL;
}
if (loader_add_dev_ext_table(inst, &idx, funcName)) {
// successfully added new table entry
// init any dev dispatch table entries as needed
loader_init_dispatch_dev_ext_entry(inst, NULL, idx, funcName);
return loader_get_dev_ext_trampoline(idx);
}
return NULL;
}
static bool loader_check_icds_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) {
struct loader_icd_term *icd_term;
icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (icd_term->scanned_icd->interface_version >= MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION &&
icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName))
// this icd supports funcName
return true;
icd_term = icd_term->next;
}
return false;
}
static bool loader_check_layer_list_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) {
struct loader_layer_properties *layer_prop_list = inst->expanded_activated_layer_list.list;
for (uint32_t layer = 0; layer < inst->expanded_activated_layer_list.count; ++layer) {
// If this layer supports the vk_layerGetPhysicalDeviceProcAddr, then call
// it and see if it returns a valid pointer for this function name.
if (layer_prop_list[layer].interface_version > 1) {
const struct loader_layer_functions *const functions = &(layer_prop_list[layer].functions);
if (NULL != functions->get_physical_device_proc_addr &&
NULL != functions->get_physical_device_proc_addr((VkInstance)inst->instance, funcName)) {
return true;
}
}
}
return false;
}
static void loader_free_phys_dev_ext_table(struct loader_instance *inst) {
for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) {
loader_instance_heap_free(inst, inst->phys_dev_ext_disp_hash[i].func_name);
loader_instance_heap_free(inst, inst->phys_dev_ext_disp_hash[i].list.index);
}
memset(inst->phys_dev_ext_disp_hash, 0, sizeof(inst->phys_dev_ext_disp_hash));
}
static bool loader_add_phys_dev_ext_table(struct loader_instance *inst, uint32_t *ptr_idx, const char *funcName) {
uint32_t i;
uint32_t idx = *ptr_idx;
struct loader_dispatch_hash_list *list = &inst->phys_dev_ext_disp_hash[idx].list;
if (!inst->phys_dev_ext_disp_hash[idx].func_name) {
// no entry here at this idx, so use it
assert(list->capacity == 0);
inst->phys_dev_ext_disp_hash[idx].func_name =
(char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->phys_dev_ext_disp_hash[idx].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_phys_dev_ext_table() can't allocate memory for "
"func_name");
return false;
}
strncpy(inst->phys_dev_ext_disp_hash[idx].func_name, funcName, strlen(funcName) + 1);
return true;
}
// check for enough capacity
if (list->capacity == 0) {
list->index = loader_instance_heap_alloc(inst, 8 * sizeof(*(list->index)), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() can't allocate list memory");
return false;
}
list->capacity = 8 * sizeof(*(list->index));
} else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) {
void *new_ptr = loader_instance_heap_realloc(inst, list->index, list->capacity, list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_ptr) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "loader_add_phys_dev_ext_table() can't reallocate list memory");
return false;
}
list->index = new_ptr;
list->capacity *= 2;
}
// find an unused index in the hash table and use it
i = (idx + 1) % MAX_NUM_UNKNOWN_EXTS;
do {
if (!inst->phys_dev_ext_disp_hash[i].func_name) {
assert(inst->phys_dev_ext_disp_hash[i].list.capacity == 0);
inst->phys_dev_ext_disp_hash[i].func_name =
(char *)loader_instance_heap_alloc(inst, strlen(funcName) + 1, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->phys_dev_ext_disp_hash[i].func_name == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_dev_ext_table() can't reallocate "
"func_name memory");
return false;
}
strncpy(inst->phys_dev_ext_disp_hash[i].func_name, funcName, strlen(funcName) + 1);
list->index[list->count] = i;
list->count++;
*ptr_idx = i;
return true;
}
i = (i + 1) % MAX_NUM_UNKNOWN_EXTS;
} while (i != idx);
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_add_phys_dev_ext_table() couldn't insert into hash table; is "
"it full?");
return false;
}
static bool loader_name_in_phys_dev_ext_table(struct loader_instance *inst, uint32_t *idx, const char *funcName) {
uint32_t alt_idx;
if (inst->phys_dev_ext_disp_hash[*idx].func_name && !strcmp(inst->phys_dev_ext_disp_hash[*idx].func_name, funcName))
return true;
// funcName wasn't at the primary spot in the hash table
// search the list of secondary locations (shallow search, not deep search)
for (uint32_t i = 0; i < inst->phys_dev_ext_disp_hash[*idx].list.count; i++) {
alt_idx = inst->phys_dev_ext_disp_hash[*idx].list.index[i];
if (!strcmp(inst->phys_dev_ext_disp_hash[*idx].func_name, funcName)) {
*idx = alt_idx;
return true;
}
}
return false;
}
// This function returns a generic trampoline and/or terminator function
// address for any unknown physical device extension commands. A hash
// table is used to keep a list of unknown entry points and their
// mapping to the physical device extension dispatch table (struct
// loader_phys_dev_ext_dispatch_table).
// For a given entry point string (funcName), if an existing mapping is
// found, then the trampoline address for that mapping is returned in
// tramp_addr (if it is not NULL) and the terminator address for that
// mapping is returned in term_addr (if it is not NULL). Otherwise,
// this unknown entry point has not been seen yet.
// If it has not been seen before, and perform_checking is 'true',
// check if a layer or and ICD supports it. If so then a new entry in
// the hash table is initialized and the trampoline and/or terminator
// addresses are returned.
// Null is returned if the hash table is full or if no discovered layer or
// ICD returns a non-NULL GetProcAddr for it.
bool loader_phys_dev_ext_gpa(struct loader_instance *inst, const char *funcName, bool perform_checking, void **tramp_addr,
void **term_addr) {
uint32_t idx;
uint32_t seed = 0;
bool success = false;
if (inst == NULL) {
goto out;
}
if (NULL != tramp_addr) {
*tramp_addr = NULL;
}
if (NULL != term_addr) {
*term_addr = NULL;
}
// We should always check to see if any ICD supports it.
if (!loader_check_icds_for_phys_dev_ext_address(inst, funcName)) {
// If we're not checking layers, or we are and it's not in a layer, just
// return
if (!perform_checking || !loader_check_layer_list_for_phys_dev_ext_address(inst, funcName)) {
goto out;
}
}
idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_UNKNOWN_EXTS;
if (perform_checking && !loader_name_in_phys_dev_ext_table(inst, &idx, funcName)) {
uint32_t i;
bool added = false;
// Only need to add first one to get index in Instance. Others will use
// the same index.
if (!added && loader_add_phys_dev_ext_table(inst, &idx, funcName)) {
added = true;
}
// Setup the ICD function pointers
struct loader_icd_term *icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION <= icd_term->scanned_icd->interface_version &&
NULL != icd_term->scanned_icd->GetPhysicalDeviceProcAddr) {
icd_term->phys_dev_ext[idx] =
(PFN_PhysDevExt)icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName);
// Make sure we set the instance dispatch to point to the
// loader's terminator now since we can at least handle it
// in one ICD.
inst->disp->phys_dev_ext[idx] = loader_get_phys_dev_ext_termin(idx);
} else {
icd_term->phys_dev_ext[idx] = NULL;
}
icd_term = icd_term->next;
}
// Now, search for the first layer attached and query using it to get
// the first entry point.
for (i = 0; i < inst->expanded_activated_layer_list.count; i++) {
struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i];
if (layer_prop->interface_version > 1 && NULL != layer_prop->functions.get_physical_device_proc_addr) {
inst->disp->phys_dev_ext[idx] =
(PFN_PhysDevExt)layer_prop->functions.get_physical_device_proc_addr((VkInstance)inst->instance, funcName);
if (NULL != inst->disp->phys_dev_ext[idx]) {
break;
}
}
}
}
if (NULL != tramp_addr) {
*tramp_addr = loader_get_phys_dev_ext_tramp(idx);
}
if (NULL != term_addr) {
*term_addr = loader_get_phys_dev_ext_termin(idx);
}
success = true;
out:
return success;
}
struct loader_instance *loader_get_instance(const VkInstance instance) {
// look up the loader_instance in our list by comparing dispatch tables, as
// there is no guarantee the instance is still a loader_instance* after any
// layers which wrap the instance object.
const VkLayerInstanceDispatchTable *disp;
struct loader_instance *ptr_instance = NULL;
disp = loader_get_instance_layer_dispatch(instance);
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
if (&inst->disp->layer_inst_disp == disp) {
ptr_instance = inst;
break;
}
}
return ptr_instance;
}
static loader_platform_dl_handle loaderOpenLayerFile(const struct loader_instance *inst, const char *chain_type,
struct loader_layer_properties *prop) {
if ((prop->lib_handle = loader_platform_open_library(prop->lib_name)) == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, loader_platform_open_library_error(prop->lib_name));
} else {
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Loading layer library %s", prop->lib_name);
}
return prop->lib_handle;
}
static void loaderCloseLayerFile(const struct loader_instance *inst, struct loader_layer_properties *prop) {
if (prop->lib_handle) {
loader_platform_close_library(prop->lib_handle);
loader_log(inst, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Unloading layer library %s", prop->lib_name);
prop->lib_handle = NULL;
}
}
void loaderDeactivateLayers(const struct loader_instance *instance, struct loader_device *device, struct loader_layer_list *list) {
// Delete instance list of enabled layers and close any layer libraries
for (uint32_t i = 0; i < list->count; i++) {
struct loader_layer_properties *layer_prop = &list->list[i];
loaderCloseLayerFile(instance, layer_prop);
}
loaderDestroyLayerList(instance, device, list);
}
// Go through the search_list and find any layers which match type. If layer
// type match is found in then add it to ext_list.
static void loaderAddImplicitLayers(const struct loader_instance *inst, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list, const struct loader_layer_list *source_list) {
for (uint32_t src_layer = 0; src_layer < source_list->count; src_layer++) {
const struct loader_layer_properties *prop = &source_list->list[src_layer];
if (0 == (prop->type_flags & VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER)) {
loaderAddImplicitLayer(inst, prop, target_list, expanded_target_list, source_list);
}
}
}
// Get the layer name(s) from the env_name environment variable. If layer is found in
// search_list then add it to layer_list. But only add it to layer_list if type_flags matches.
static VkResult loaderAddEnvironmentLayers(struct loader_instance *inst, const enum layer_type_flags type_flags,
const char *env_name, struct loader_layer_list *target_list,
struct loader_layer_list *expanded_target_list,
const struct loader_layer_list *source_list) {
VkResult res = VK_SUCCESS;
char *next, *name;
char *layer_env = loader_getenv(env_name, inst);
if (layer_env == NULL) {
goto out;
}
name = loader_stack_alloc(strlen(layer_env) + 1);
if (name == NULL) {
goto out;
}
strcpy(name, layer_env);
while (name && *name) {
next = loader_get_next_path(name);
res = loaderAddLayerNameToList(inst, name, type_flags, source_list, target_list, expanded_target_list);
if (res != VK_SUCCESS) {
goto out;
}
name = next;
}
out:
if (layer_env != NULL) {
loader_free_getenv(layer_env, inst);
}
return res;
}
VkResult loaderEnableInstanceLayers(struct loader_instance *inst, const VkInstanceCreateInfo *pCreateInfo,
const struct loader_layer_list *instance_layers) {
VkResult err = VK_SUCCESS;
uint16_t layer_api_major_version;
uint16_t layer_api_minor_version;
uint32_t i;
struct loader_layer_properties *prop;
assert(inst && "Cannot have null instance");
if (!loaderInitLayerList(inst, &inst->app_activated_layer_list)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderEnableInstanceLayers: Failed to initialize application version of the layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (!loaderInitLayerList(inst, &inst->expanded_activated_layer_list)) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderEnableInstanceLayers: Failed to initialize expanded version of the layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Add any implicit layers first
loaderAddImplicitLayers(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list, instance_layers);
// Add any layers specified via environment variable next
err = loaderAddEnvironmentLayers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, "VK_INSTANCE_LAYERS", &inst->app_activated_layer_list,
&inst->expanded_activated_layer_list, instance_layers);
if (err != VK_SUCCESS) {
goto out;
}
// Add layers specified by the application
err = loaderAddLayerNamesToList(inst, &inst->app_activated_layer_list, &inst->expanded_activated_layer_list,
pCreateInfo->enabledLayerCount, pCreateInfo->ppEnabledLayerNames, instance_layers);
for (i = 0; i < inst->expanded_activated_layer_list.count; i++) {
// Verify that the layer api version is at least that of the application's request, if not, throw a warning since
// undefined behavior could occur.
prop = inst->expanded_activated_layer_list.list + i;
layer_api_major_version = VK_VERSION_MAJOR(prop->info.specVersion);
layer_api_minor_version = VK_VERSION_MINOR(prop->info.specVersion);
if (inst->app_api_major_version > layer_api_major_version ||
(inst->app_api_major_version == layer_api_major_version && inst->app_api_minor_version > layer_api_minor_version)) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"loader_add_to_layer_list: Explicit layer %s is using an old API version %" PRIu16 ".%" PRIu16
" versus application requested %" PRIu16 ".%" PRIu16,
prop->info.layerName, layer_api_major_version, layer_api_minor_version, inst->app_api_major_version,
inst->app_api_minor_version);
}
}
out:
return err;
}
// Determine the layer interface version to use.
bool loaderGetLayerInterfaceVersion(PFN_vkNegotiateLoaderLayerInterfaceVersion fp_negotiate_layer_version,
VkNegotiateLayerInterface *interface_struct) {
memset(interface_struct, 0, sizeof(VkNegotiateLayerInterface));
interface_struct->sType = LAYER_NEGOTIATE_INTERFACE_STRUCT;
interface_struct->loaderLayerInterfaceVersion = 1;
interface_struct->pNext = NULL;
if (fp_negotiate_layer_version != NULL) {
// Layer supports the negotiation API, so call it with the loader's
// latest version supported
interface_struct->loaderLayerInterfaceVersion = CURRENT_LOADER_LAYER_INTERFACE_VERSION;
VkResult result = fp_negotiate_layer_version(interface_struct);
if (result != VK_SUCCESS) {
// Layer no longer supports the loader's latest interface version so
// fail loading the Layer
return false;
}
}
if (interface_struct->loaderLayerInterfaceVersion < MIN_SUPPORTED_LOADER_LAYER_INTERFACE_VERSION) {
// Loader no longer supports the layer's latest interface version so
// fail loading the layer
return false;
}
return true;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_layer_create_device(VkInstance instance, VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice,
PFN_vkGetInstanceProcAddr layerGIPA, PFN_vkGetDeviceProcAddr *nextGDPA) {
VkResult res;
VkPhysicalDevice internal_device = VK_NULL_HANDLE;
struct loader_device *dev = NULL;
struct loader_instance *inst = NULL;
if (instance != NULL) {
inst = loader_get_instance(instance);
internal_device = physicalDevice;
} else {
struct loader_physical_device_tramp *phys_dev = (struct loader_physical_device_tramp *)physicalDevice;
internal_device = phys_dev->phys_dev;
inst = (struct loader_instance *)phys_dev->this_instance;
}
// Get the physical device (ICD) extensions
struct loader_extension_list icd_exts;
icd_exts.list = NULL;
res = loader_init_generic_list(inst, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to create ICD extension list");
goto out;
}
PFN_vkEnumerateDeviceExtensionProperties enumDeviceExtensionProperties = NULL;
if (layerGIPA != NULL) {
enumDeviceExtensionProperties =
(PFN_vkEnumerateDeviceExtensionProperties)layerGIPA(instance, "vkEnumerateDeviceExtensionProperties");
} else {
enumDeviceExtensionProperties = inst->disp->layer_inst_disp.EnumerateDeviceExtensionProperties;
}
res = loader_add_device_extensions(inst, enumDeviceExtensionProperties, internal_device, "Unknown", &icd_exts);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to add extensions to list");
goto out;
}
// Make sure requested extensions to be enabled are supported
res = loader_validate_device_extensions(inst, &inst->expanded_activated_layer_list, &icd_exts, pCreateInfo);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to validate extensions in list");
goto out;
}
dev = loader_create_logical_device(inst, pAllocator);
if (dev == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Copy the application enabled instance layer list into the device
if (NULL != inst->app_activated_layer_list.list) {
dev->app_activated_layer_list.capacity = inst->app_activated_layer_list.capacity;
dev->app_activated_layer_list.count = inst->app_activated_layer_list.count;
dev->app_activated_layer_list.list =
loader_device_heap_alloc(dev, inst->app_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (dev->app_activated_layer_list.list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkCreateDevice: Failed to allocate application activated layer list of size %d.",
inst->app_activated_layer_list.capacity);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(dev->app_activated_layer_list.list, inst->app_activated_layer_list.list,
sizeof(*dev->app_activated_layer_list.list) * dev->app_activated_layer_list.count);
} else {
dev->app_activated_layer_list.capacity = 0;
dev->app_activated_layer_list.count = 0;
dev->app_activated_layer_list.list = NULL;
}
// Copy the expanded enabled instance layer list into the device
if (NULL != inst->expanded_activated_layer_list.list) {
dev->expanded_activated_layer_list.capacity = inst->expanded_activated_layer_list.capacity;
dev->expanded_activated_layer_list.count = inst->expanded_activated_layer_list.count;
dev->expanded_activated_layer_list.list =
loader_device_heap_alloc(dev, inst->expanded_activated_layer_list.capacity, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (dev->expanded_activated_layer_list.list == NULL) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkCreateDevice: Failed to allocate expanded activated layer list of size %d.",
inst->expanded_activated_layer_list.capacity);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(dev->expanded_activated_layer_list.list, inst->expanded_activated_layer_list.list,
sizeof(*dev->expanded_activated_layer_list.list) * dev->expanded_activated_layer_list.count);
} else {
dev->expanded_activated_layer_list.capacity = 0;
dev->expanded_activated_layer_list.count = 0;
dev->expanded_activated_layer_list.list = NULL;
}
res = loader_create_device_chain(internal_device, pCreateInfo, pAllocator, inst, dev, layerGIPA, nextGDPA);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0, "vkCreateDevice: Failed to create device chain.");
goto out;
}
*pDevice = dev->chain_device;
// Initialize any device extension dispatch entry's from the instance list
loader_init_dispatch_dev_ext(inst, dev);
// Initialize WSI device extensions as part of core dispatch since loader
// has dedicated trampoline code for these
loader_init_device_extension_dispatch_table(&dev->loader_dispatch, inst->disp->layer_inst_disp.GetInstanceProcAddr,
dev->loader_dispatch.core_dispatch.GetDeviceProcAddr, inst->instance, *pDevice);
out:
// Failure cleanup
if (VK_SUCCESS != res) {
if (NULL != dev) {
loader_destroy_logical_device(inst, dev, pAllocator);
}
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(inst, (struct loader_generic_list *)&icd_exts);
}
return res;
}
VKAPI_ATTR void VKAPI_CALL loader_layer_destroy_device(VkDevice device, const VkAllocationCallbacks *pAllocator,
PFN_vkDestroyDevice destroyFunction) {
struct loader_device *dev;
if (device == VK_NULL_HANDLE) {
return;
}
struct loader_icd_term *icd_term = loader_get_icd_and_device(device, &dev, NULL);
const struct loader_instance *inst = icd_term->this_instance;
destroyFunction(device, pAllocator);
dev->chain_device = NULL;
dev->icd_device = NULL;
loader_remove_logical_device(inst, icd_term, dev, pAllocator);
}
// Given the list of layers to activate in the loader_instance
// structure. This function will add a VkLayerInstanceCreateInfo
// structure to the VkInstanceCreateInfo.pNext pointer.
// Each activated layer will have it's own VkLayerInstanceLink
// structure that tells the layer what Get*ProcAddr to call to
// get function pointers to the next layer down.
// Once the chain info has been created this function will
// execute the CreateInstance call chain. Each layer will
// then have an opportunity in it's CreateInstance function
// to setup it's dispatch table when the lower layer returns
// successfully.
// Each layer can wrap or not-wrap the returned VkInstance object
// as it sees fit.
// The instance chain is terminated by a loader function
// that will call CreateInstance on all available ICD's and
// cache those VkInstance objects for future use.
VkResult loader_create_instance_chain(const VkInstanceCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
struct loader_instance *inst, VkInstance *created_instance) {
uint32_t activated_layers = 0;
VkLayerInstanceCreateInfo chain_info;
VkLayerInstanceLink *layer_instance_link_info = NULL;
VkInstanceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetInstanceProcAddr next_gipa = loader_gpa_instance_internal;
PFN_vkGetInstanceProcAddr cur_gipa = loader_gpa_instance_internal;
PFN_vkGetDeviceProcAddr cur_gdpa = loader_gpa_device_internal;
PFN_GetPhysicalDeviceProcAddr next_gpdpa = loader_gpdpa_instance_internal;
PFN_GetPhysicalDeviceProcAddr cur_gpdpa = loader_gpdpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkInstanceCreateInfo));
if (inst->expanded_activated_layer_list.count > 0) {
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = pCreateInfo->pNext;
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
loader_create_info.pNext = &chain_info;
layer_instance_link_info = loader_stack_alloc(sizeof(VkLayerInstanceLink) * inst->expanded_activated_layer_list.count);
if (!layer_instance_link_info) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_instance_chain: Failed to alloc Instance"
" objects for layer");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Create instance chain of enabled layers
for (int32_t i = inst->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &inst->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
lib_handle = loaderOpenLayerFile(inst, "instance", layer_prop);
if (!lib_handle) {
continue;
}
if (NULL == layer_prop->functions.negotiate_layer_interface) {
PFN_vkNegotiateLoaderLayerInterfaceVersion negotiate_interface = NULL;
bool functions_in_interface = false;
if (strlen(layer_prop->functions.str_negotiate_interface) == 0) {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, "vkNegotiateLoaderLayerInterfaceVersion");
} else {
negotiate_interface = (PFN_vkNegotiateLoaderLayerInterfaceVersion)loader_platform_get_proc_address(
lib_handle, layer_prop->functions.str_negotiate_interface);
}
// If we can negotiate an interface version, then we can also
// get everything we need from the one function call, so try
// that first, and see if we can get all the function pointers
// necessary from that one call.
if (NULL != negotiate_interface) {
layer_prop->functions.negotiate_layer_interface = negotiate_interface;
VkNegotiateLayerInterface interface_struct;
if (loaderGetLayerInterfaceVersion(negotiate_interface, &interface_struct)) {
// Go ahead and set the properties version to the
// correct value.
layer_prop->interface_version = interface_struct.loaderLayerInterfaceVersion;
// If the interface is 2 or newer, we have access to the
// new GetPhysicalDeviceProcAddr function, so grab it,
// and the other necessary functions, from the
// structure.
if (interface_struct.loaderLayerInterfaceVersion > 1) {
cur_gipa = interface_struct.pfnGetInstanceProcAddr;
cur_gdpa = interface_struct.pfnGetDeviceProcAddr;
cur_gpdpa = interface_struct.pfnGetPhysicalDeviceProcAddr;
if (cur_gipa != NULL) {
// We've set the functions, so make sure we
// don't do the unnecessary calls later.
functions_in_interface = true;
}
}
}
}
if (!functions_in_interface) {
if ((cur_gipa = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gipa) == 0) {
cur_gipa =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = cur_gipa;
} else {
cur_gipa = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle,
layer_prop->functions.str_gipa);
}
if (NULL == cur_gipa) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_instance_chain: Failed to"
" find \'vkGetInstanceProcAddr\' in "
"layer %s",
layer_prop->lib_name);
continue;
}
}
}
}
layer_instance_link_info[activated_layers].pNext = chain_info.u.pLayerInfo;
layer_instance_link_info[activated_layers].pfnNextGetInstanceProcAddr = next_gipa;
layer_instance_link_info[activated_layers].pfnNextGetPhysicalDeviceProcAddr = next_gpdpa;
next_gipa = cur_gipa;
if (layer_prop->interface_version > 1 && cur_gpdpa != NULL) {
layer_prop->functions.get_physical_device_proc_addr = cur_gpdpa;
next_gpdpa = cur_gpdpa;
}
if (layer_prop->interface_version > 1 && cur_gipa != NULL) {
layer_prop->functions.get_instance_proc_addr = cur_gipa;
}
if (layer_prop->interface_version > 1 && cur_gdpa != NULL) {
layer_prop->functions.get_device_proc_addr = cur_gdpa;
}
chain_info.u.pLayerInfo = &layer_instance_link_info[activated_layers];
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Insert instance layer %s (%s)", layer_prop->info.layerName,
layer_prop->lib_name);
activated_layers++;
}
}
VkLoaderFeatureFlags feature_flags = 0;
#if defined(_WIN32)
IDXGIFactory6* dxgi_factory = NULL;
HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory6, (void **)&dxgi_factory);
if (hres == S_OK) {
feature_flags |= VK_LOADER_FEATURE_PHYSICAL_DEVICE_SORTING;
dxgi_factory->lpVtbl->Release(dxgi_factory);
}
#endif
PFN_vkCreateInstance fpCreateInstance = (PFN_vkCreateInstance)next_gipa(*created_instance, "vkCreateInstance");
if (fpCreateInstance) {
const VkLayerInstanceCreateInfo instance_dispatch = {
.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO,
.pNext = loader_create_info.pNext,
.function = VK_LOADER_DATA_CALLBACK,
.u = {
.pfnSetInstanceLoaderData = vkSetInstanceDispatch,
},
};
const VkLayerInstanceCreateInfo device_callback = {
.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO,
.pNext = &instance_dispatch,
.function = VK_LOADER_LAYER_CREATE_DEVICE_CALLBACK,
.u = {
.layerDevice = {
.pfnLayerCreateDevice = loader_layer_create_device,
.pfnLayerDestroyDevice = loader_layer_destroy_device,
},
},
};
const VkLayerInstanceCreateInfo loader_features = {
.sType = VK_STRUCTURE_TYPE_LOADER_INSTANCE_CREATE_INFO,
.pNext = &device_callback,
.function = VK_LOADER_FEATURES,
.u = {
.loaderFeatures = feature_flags,
},
};
loader_create_info.pNext = &loader_features;
res = fpCreateInstance(&loader_create_info, pAllocator, created_instance);
} else {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_instance_chain: Failed to find "
"\'vkCreateInstance\'");
// Couldn't find CreateInstance function!
res = VK_ERROR_INITIALIZATION_FAILED;
}
if (res == VK_SUCCESS) {
loader_init_instance_core_dispatch_table(&inst->disp->layer_inst_disp, next_gipa, *created_instance);
inst->instance = *created_instance;
}
return res;
}
void loaderActivateInstanceLayerExtensions(struct loader_instance *inst, VkInstance created_inst) {
loader_init_instance_extension_dispatch_table(&inst->disp->layer_inst_disp, inst->disp->layer_inst_disp.GetInstanceProcAddr,
created_inst);
}
VkResult loader_create_device_chain(const VkPhysicalDevice pd, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, const struct loader_instance *inst,
struct loader_device *dev, PFN_vkGetInstanceProcAddr callingLayer,
PFN_vkGetDeviceProcAddr *layerNextGDPA) {
uint32_t activated_layers = 0;
VkLayerDeviceLink *layer_device_link_info;
VkLayerDeviceCreateInfo chain_info;
VkDeviceCreateInfo loader_create_info;
VkResult res;
PFN_vkGetDeviceProcAddr fpGDPA = NULL, nextGDPA = loader_gpa_device_internal;
PFN_vkGetInstanceProcAddr fpGIPA = NULL, nextGIPA = loader_gpa_instance_internal;
memcpy(&loader_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo));
// Before we continue, we need to find out if the KHR_device_group extension is in the enabled list. If it is, we then
// need to look for the corresponding VkDeviceGroupDeviceCreateInfoKHR struct in the device list. This is because we
// need to replace all the incoming physical device values (which are really loader trampoline physical device values)
// with the layer/ICD version.
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)loader_create_info.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&loader_create_info;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfoKHR *cur_struct = (VkDeviceGroupDeviceCreateInfoKHR *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfoKHR *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfoKHR));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfoKHR));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader trampoline
// physical devices) with the next layer (or possibly even the terminator) physical device values.
struct loader_physical_device_tramp *cur_tramp;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_tramp = (struct loader_physical_device_tramp *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_tramp->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
layer_device_link_info = loader_stack_alloc(sizeof(VkLayerDeviceLink) * dev->expanded_activated_layer_list.count);
if (!layer_device_link_info) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_device_chain: Failed to alloc Device objects"
" for layer. Skipping Layer.");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (dev->expanded_activated_layer_list.count > 0) {
chain_info.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
chain_info.function = VK_LAYER_LINK_INFO;
chain_info.u.pLayerInfo = NULL;
chain_info.pNext = loader_create_info.pNext;
loader_create_info.pNext = &chain_info;
bool done = false;
// Create instance chain of enabled layers
for (int32_t i = dev->expanded_activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &dev->expanded_activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
lib_handle = loaderOpenLayerFile(inst, "device", layer_prop);
if (!lib_handle || done) {
continue;
}
// The Get*ProcAddr pointers will already be filled in if they were received from either the json file or the
// version negotiation
if ((fpGIPA = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gipa) == 0) {
fpGIPA = (PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = fpGIPA;
} else
fpGIPA =
(PFN_vkGetInstanceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa);
if (!fpGIPA) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_device_chain: Failed to find "
"\'vkGetInstanceProcAddr\' in layer %s. Skipping"
" layer.",
layer_prop->lib_name);
continue;
}
}
if (fpGIPA == callingLayer) {
if (layerNextGDPA != NULL) {
*layerNextGDPA = nextGDPA;
}
done = true;
continue;
}
if ((fpGDPA = layer_prop->functions.get_device_proc_addr) == NULL) {
if (strlen(layer_prop->functions.str_gdpa) == 0) {
fpGDPA = (PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr");
layer_prop->functions.get_device_proc_addr = fpGDPA;
} else
fpGDPA =
(PFN_vkGetDeviceProcAddr)loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa);
if (!fpGDPA) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Failed to find vkGetDeviceProcAddr in layer %s",
layer_prop->lib_name);
continue;
}
}
layer_device_link_info[activated_layers].pNext = chain_info.u.pLayerInfo;
layer_device_link_info[activated_layers].pfnNextGetInstanceProcAddr = nextGIPA;
layer_device_link_info[activated_layers].pfnNextGetDeviceProcAddr = nextGDPA;
chain_info.u.pLayerInfo = &layer_device_link_info[activated_layers];
nextGIPA = fpGIPA;
nextGDPA = fpGDPA;
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Inserted device layer %s (%s)", layer_prop->info.layerName,
layer_prop->lib_name);
activated_layers++;
}
}
VkDevice created_device = (VkDevice)dev;
PFN_vkCreateDevice fpCreateDevice = (PFN_vkCreateDevice)nextGIPA(inst->instance, "vkCreateDevice");
if (fpCreateDevice) {
VkLayerDeviceCreateInfo create_info_disp;
create_info_disp.sType = VK_STRUCTURE_TYPE_LOADER_DEVICE_CREATE_INFO;
create_info_disp.function = VK_LOADER_DATA_CALLBACK;
create_info_disp.u.pfnSetDeviceLoaderData = vkSetDeviceDispatch;
create_info_disp.pNext = loader_create_info.pNext;
loader_create_info.pNext = &create_info_disp;
res = fpCreateDevice(pd, &loader_create_info, pAllocator, &created_device);
if (res != VK_SUCCESS) {
return res;
}
dev->chain_device = created_device;
} else {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_create_device_chain: Failed to find \'vkCreateDevice\' "
"in layers or ICD");
// Couldn't find CreateDevice function!
return VK_ERROR_INITIALIZATION_FAILED;
}
// Initialize device dispatch table
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGDPA, dev->chain_device);
return res;
}
VkResult loaderValidateLayers(const struct loader_instance *inst, const uint32_t layer_count,
const char *const *ppEnabledLayerNames, const struct loader_layer_list *list) {
struct loader_layer_properties *prop;
for (uint32_t i = 0; i < layer_count; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, ppEnabledLayerNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderValidateLayers: Device ppEnabledLayerNames "
"contains string that is too long or is badly formed");
return VK_ERROR_LAYER_NOT_PRESENT;
}
prop = loaderFindLayerProperty(ppEnabledLayerNames[i], list);
if (NULL == prop) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loaderValidateLayers: Layer %d does not exist in the list of available layers", i);
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_instance_extensions(struct loader_instance *inst, const struct loader_extension_list *icd_exts,
const struct loader_layer_list *instance_layers,
const VkInstanceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
char *env_value;
bool check_if_known = true;
VkResult res = VK_SUCCESS;
struct loader_layer_list active_layers;
struct loader_layer_list expanded_layers;
memset(&active_layers, 0, sizeof(active_layers));
memset(&expanded_layers, 0, sizeof(expanded_layers));
if (!loaderInitLayerList(inst, &active_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
if (!loaderInitLayerList(inst, &expanded_layers)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Build the lists of active layers (including metalayers) and expanded layers (with metalayers resolved to their components)
loaderAddImplicitLayers(inst, &active_layers, &expanded_layers, instance_layers);
res = loaderAddEnvironmentLayers(inst, VK_LAYER_TYPE_FLAG_EXPLICIT_LAYER, ENABLED_LAYERS_ENV, &active_layers, &expanded_layers,
instance_layers);
if (res != VK_SUCCESS) {
goto out;
}
res = loaderAddLayerNamesToList(inst, &active_layers, &expanded_layers, pCreateInfo->enabledLayerCount,
pCreateInfo->ppEnabledLayerNames, instance_layers);
if (VK_SUCCESS != res) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_validate_instance_extensions: Instance ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
// Check if a user wants to disable the instance extension filtering behavior
env_value = loader_getenv("VK_LOADER_DISABLE_INST_EXT_FILTER", inst);
if (NULL != env_value && atoi(env_value) != 0) {
check_if_known = false;
}
loader_free_getenv(env_value, inst);
if (check_if_known) {
// See if the extension is in the list of supported extensions
bool found = false;
for (uint32_t j = 0; LOADER_INSTANCE_EXTENSIONS[j] != NULL; j++) {
if (strcmp(pCreateInfo->ppEnabledExtensionNames[i], LOADER_INSTANCE_EXTENSIONS[j]) == 0) {
found = true;
break;
}
}
// If it isn't in the list, return an error
if (!found) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_validate_instance_extensions: Extension %s not found in list of known instance extensions.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], icd_exts);
if (extension_prop) {
continue;
}
extension_prop = NULL;
// Not in global list, search layer extension lists
struct loader_layer_properties *layer_prop = NULL;
for (uint32_t j = 0; NULL == extension_prop && j < expanded_layers.count; ++j) {
extension_prop =
get_extension_property(pCreateInfo->ppEnabledExtensionNames[i], &expanded_layers.list[j].instance_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
layer_prop = loaderFindLayerProperty(expanded_layers.list[j].info.layerName, instance_layers);
if (NULL == layer_prop) {
// Should NOT get here, loaderValidateLayers should have already filtered this case out.
continue;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the global layers, error out
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_validate_instance_extensions: Instance extension %s not supported by available ICDs or enabled "
"layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
}
out:
loaderDestroyLayerList(inst, NULL, &active_layers);
loaderDestroyLayerList(inst, NULL, &expanded_layers);
return res;
}
VkResult loader_validate_device_extensions(struct loader_instance *this_instance,
const struct loader_layer_list *activated_device_layers,
const struct loader_extension_list *icd_exts, const VkDeviceCreateInfo *pCreateInfo) {
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
VkStringErrorFlags result = vk_string_validate(MaxLoaderStringLength, pCreateInfo->ppEnabledExtensionNames[i]);
if (result != VK_STRING_ERROR_NONE) {
loader_log(this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_validate_device_extensions: Device ppEnabledExtensionNames contains "
"string that is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
extension_prop = get_extension_property(extension_name, icd_exts);
if (extension_prop) {
continue;
}
// Not in global list, search activated layer extension lists
for (uint32_t j = 0; j < activated_device_layers->count; j++) {
layer_prop = &activated_device_layers->list[j];
extension_prop = get_dev_extension_property(extension_name, &layer_prop->device_extension_list);
if (extension_prop) {
// Found the extension in one of the layers enabled by the app.
break;
}
}
if (!extension_prop) {
// Didn't find extension name in any of the device layers, error out
loader_log(this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"loader_validate_device_extensions: Device extension %s not supported by selected physical device "
"or enabled layers.",
pCreateInfo->ppEnabledExtensionNames[i]);
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
// Terminator functions for the Instance chain
// All named terminator_<Vulkan API name>
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkInstance *pInstance) {
struct loader_icd_term *icd_term;
VkExtensionProperties *prop;
char **filtered_extension_names = NULL;
VkInstanceCreateInfo icd_create_info;
VkResult res = VK_SUCCESS;
bool one_icd_successful = false;
struct loader_instance *ptr_instance = (struct loader_instance *)*pInstance;
memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info));
icd_create_info.enabledLayerCount = 0;
icd_create_info.ppEnabledLayerNames = NULL;
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could
// support a layer, but it would be independent of the actual ICD,
// just in the same library.
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (!filtered_extension_names) {
loader_log(ptr_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"terminator_CreateInstance: Failed create extension name array for %d extensions",
pCreateInfo->enabledExtensionCount);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_create_info.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
for (uint32_t i = 0; i < ptr_instance->icd_tramp_list.count; i++) {
icd_term = loader_icd_add(ptr_instance, &ptr_instance->icd_tramp_list.scanned_list[i]);
if (NULL == icd_term) {
loader_log(ptr_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"terminator_CreateInstance: Failed to add ICD %d to ICD trampoline list.", i);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// If any error happens after here, we need to remove the ICD from the list,
// because we've already added it, but haven't validated it
// Make sure that we reset the pApplicationInfo so we don't get an old pointer
icd_create_info.pApplicationInfo = pCreateInfo->pApplicationInfo;
icd_create_info.enabledExtensionCount = 0;
struct loader_extension_list icd_exts;
loader_log(ptr_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the list
res = loader_init_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else if (VK_SUCCESS != res) {
// Something bad happened with this ICD, so free it and try the
// next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
res = loader_add_instance_extensions(ptr_instance, icd_term->scanned_icd->EnumerateInstanceExtensionProperties,
icd_term->scanned_icd->lib_name, &icd_exts);
if (VK_SUCCESS != res) {
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
if (VK_ERROR_OUT_OF_HOST_MEMORY == res) {
// If out of memory, bail immediately.
goto out;
} else {
// Something bad happened with this ICD, so free it and try the next.
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
}
for (uint32_t j = 0; j < pCreateInfo->enabledExtensionCount; j++) {
prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[j], &icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionCount] = (char *)pCreateInfo->ppEnabledExtensionNames[j];
icd_create_info.enabledExtensionCount++;
}
}
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&icd_exts);
// Get the driver version from vkEnumerateInstanceVersion
uint32_t icd_version = VK_API_VERSION_1_0;
VkResult icd_result = VK_SUCCESS;
if (icd_term->scanned_icd->api_version >= VK_API_VERSION_1_1) {
PFN_vkEnumerateInstanceVersion icd_enumerate_instance_version = (PFN_vkEnumerateInstanceVersion)
icd_term->scanned_icd->GetInstanceProcAddr(NULL, "vkEnumerateInstanceVersion");
if (icd_enumerate_instance_version != NULL) {
icd_result = icd_enumerate_instance_version(&icd_version);
if (icd_result != VK_SUCCESS) {
icd_version = VK_API_VERSION_1_0;
loader_log(ptr_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0, "terminator_CreateInstance: ICD \"%s\" "
"vkEnumerateInstanceVersion returned error. The ICD will be treated as a 1.0 ICD",
icd_term->scanned_icd->lib_name);
}
}
}
// Create an instance, substituting the version to 1.0 if necessary
VkApplicationInfo icd_app_info;
uint32_t icd_version_nopatch = VK_MAKE_VERSION(VK_VERSION_MAJOR(icd_version), VK_VERSION_MINOR(icd_version), 0);
uint32_t requested_version = pCreateInfo == NULL || pCreateInfo->pApplicationInfo == NULL ? VK_API_VERSION_1_0 : pCreateInfo->pApplicationInfo->apiVersion;
if ((requested_version != 0) && (icd_version_nopatch == VK_API_VERSION_1_0)) {
if (icd_create_info.pApplicationInfo == NULL) {
memset(&icd_app_info, 0, sizeof(icd_app_info));
} else {
memcpy(&icd_app_info, icd_create_info.pApplicationInfo, sizeof(icd_app_info));
}
icd_app_info.apiVersion = icd_version;
icd_create_info.pApplicationInfo = &icd_app_info;
}
icd_result = ptr_instance->icd_tramp_list.scanned_list[i].CreateInstance(&icd_create_info, pAllocator, &(icd_term->instance));
if (VK_ERROR_OUT_OF_HOST_MEMORY == icd_result) {
// If out of memory, bail immediately.
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else if (VK_SUCCESS != icd_result) {
loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"terminator_CreateInstance: Failed to CreateInstance in "
"ICD %d. Skipping ICD.",
i);
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
if (!loader_icd_init_entries(icd_term, icd_term->instance,
ptr_instance->icd_tramp_list.scanned_list[i].GetInstanceProcAddr)) {
loader_log(ptr_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"terminator_CreateInstance: Failed to CreateInstance and find "
"entrypoints with ICD. Skipping ICD.");
ptr_instance->icd_terms = icd_term->next;
icd_term->next = NULL;
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
continue;
}
// If we made it this far, at least one ICD was successful
one_icd_successful = true;
}
// If no ICDs were added to instance list and res is unchanged from it's initial value, the loader was unable to
// find a suitable ICD.
if (VK_SUCCESS == res && (ptr_instance->icd_terms == NULL || !one_icd_successful)) {
res = VK_ERROR_INCOMPATIBLE_DRIVER;
}
out:
if (VK_SUCCESS != res) {
while (NULL != ptr_instance->icd_terms) {
icd_term = ptr_instance->icd_terms;
ptr_instance->icd_terms = icd_term->next;
if (NULL != icd_term->instance) {
icd_term->dispatch.DestroyInstance(icd_term->instance, pAllocator);
}
loader_icd_destroy(ptr_instance, icd_term, pAllocator);
}
}
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_DestroyInstance(VkInstance instance, const VkAllocationCallbacks *pAllocator) {
struct loader_instance *ptr_instance = loader_instance(instance);
if (NULL == ptr_instance) {
return;
}
struct loader_icd_term *icd_terms = ptr_instance->icd_terms;
struct loader_icd_term *next_icd_term;
// Remove this instance from the list of instances:
struct loader_instance *prev = NULL;
struct loader_instance *next = loader.instances;
while (next != NULL) {
if (next == ptr_instance) {
// Remove this instance from the list:
if (prev)
prev->next = next->next;
else
loader.instances = next->next;
break;
}
prev = next;
next = next->next;
}
while (NULL != icd_terms) {
if (icd_terms->instance) {
icd_terms->dispatch.DestroyInstance(icd_terms->instance, pAllocator);
}
next_icd_term = icd_terms->next;
icd_terms->instance = VK_NULL_HANDLE;
loader_icd_destroy(ptr_instance, icd_terms, pAllocator);
icd_terms = next_icd_term;
}
loaderDeleteLayerListAndProperties(ptr_instance, &ptr_instance->instance_layer_list);
loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_tramp_list);
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)&ptr_instance->ext_list);
if (NULL != ptr_instance->phys_devs_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_devs_term);
}
if (NULL != ptr_instance->phys_dev_groups_term) {
for (uint32_t i = 0; i < ptr_instance->phys_dev_group_count_term; i++) {
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term[i]);
}
loader_instance_heap_free(ptr_instance, ptr_instance->phys_dev_groups_term);
}
loader_free_dev_ext_table(ptr_instance);
loader_free_phys_dev_ext_table(ptr_instance);
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice) {
VkResult res = VK_SUCCESS;
struct loader_physical_device_term *phys_dev_term;
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
struct loader_device *dev = (struct loader_device *)*pDevice;
PFN_vkCreateDevice fpCreateDevice = icd_term->dispatch.CreateDevice;
struct loader_extension_list icd_exts;
VkBaseOutStructure *caller_dgci_container = NULL;
VkDeviceGroupDeviceCreateInfoKHR *caller_dgci = NULL;
dev->phys_dev_term = phys_dev_term;
icd_exts.list = NULL;
if (fpCreateDevice == NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"terminator_CreateDevice: No vkCreateDevice command exposed "
"by ICD %s",
icd_term->scanned_icd->lib_name);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
VkDeviceCreateInfo localCreateInfo;
memcpy(&localCreateInfo, pCreateInfo, sizeof(localCreateInfo));
// NOTE: Need to filter the extensions to only those supported by the ICD.
// No ICD will advertise support for layers. An ICD library could support a layer,
// but it would be independent of the actual ICD, just in the same library.
char **filtered_extension_names = NULL;
if (0 < pCreateInfo->enabledExtensionCount) {
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionCount * sizeof(char *));
if (NULL == filtered_extension_names) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"terminator_CreateDevice: Failed to create extension name "
"storage for %d extensions",
pCreateInfo->enabledExtensionCount);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
localCreateInfo.enabledLayerCount = 0;
localCreateInfo.ppEnabledLayerNames = NULL;
localCreateInfo.enabledExtensionCount = 0;
localCreateInfo.ppEnabledExtensionNames = (const char *const *)filtered_extension_names;
// Get the physical device (ICD) extensions
res = loader_init_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts, sizeof(VkExtensionProperties));
if (VK_SUCCESS != res) {
goto out;
}
res = loader_add_device_extensions(icd_term->this_instance, icd_term->dispatch.EnumerateDeviceExtensionProperties,
phys_dev_term->phys_dev, icd_term->scanned_icd->lib_name, &icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *prop = get_extension_property(extension_name, &icd_exts);
if (prop) {
filtered_extension_names[localCreateInfo.enabledExtensionCount] = (char *)extension_name;
localCreateInfo.enabledExtensionCount++;
} else {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_DEBUG_BIT_EXT, 0,
"vkCreateDevice extension %s not available for "
"devices associated with ICD %s",
extension_name, icd_term->scanned_icd->lib_name);
}
}
// Before we continue, If KHX_device_group is the list of enabled and viable extensions, then we then need to look for the
// corresponding VkDeviceGroupDeviceCreateInfo struct in the device list and replace all the physical device values (which
// are really loader physical device terminator values) with the ICD versions.
//if (icd_term->this_instance->enabled_known_extensions.khr_device_group_creation == 1) {
{
VkBaseOutStructure *pNext = (VkBaseOutStructure *)localCreateInfo.pNext;
VkBaseOutStructure *pPrev = (VkBaseOutStructure *)&localCreateInfo;
while (NULL != pNext) {
if (VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO == pNext->sType) {
VkDeviceGroupDeviceCreateInfo *cur_struct = (VkDeviceGroupDeviceCreateInfo *)pNext;
if (0 < cur_struct->physicalDeviceCount && NULL != cur_struct->pPhysicalDevices) {
VkDeviceGroupDeviceCreateInfo *temp_struct = loader_stack_alloc(sizeof(VkDeviceGroupDeviceCreateInfo));
VkPhysicalDevice *phys_dev_array = NULL;
if (NULL == temp_struct) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
memcpy(temp_struct, cur_struct, sizeof(VkDeviceGroupDeviceCreateInfo));
phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * cur_struct->physicalDeviceCount);
if (NULL == phys_dev_array) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
// Before calling down, replace the incoming physical device values (which are really loader terminator
// physical devices) with the ICDs physical device values.
struct loader_physical_device_term *cur_term;
for (uint32_t phys_dev = 0; phys_dev < cur_struct->physicalDeviceCount; phys_dev++) {
cur_term = (struct loader_physical_device_term *)cur_struct->pPhysicalDevices[phys_dev];
phys_dev_array[phys_dev] = cur_term->phys_dev;
}
temp_struct->pPhysicalDevices = phys_dev_array;
// Keep track of pointers to restore pNext chain before returning
caller_dgci_container = pPrev;
caller_dgci = cur_struct;
// Replace the old struct in the pNext chain with this one.
pPrev->pNext = (VkBaseOutStructure *)temp_struct;
pNext = (VkBaseOutStructure *)temp_struct;
}
break;
}
pPrev = pNext;
pNext = pNext->pNext;
}
}
// Handle loader emulation for structs that are not supported by the ICD:
// Presently, the emulation leaves the pNext chain alone. This means that the ICD will receive items in the chain which
// are not recognized by the ICD. If this causes the ICD to fail, then the items would have to be removed here. The current
// implementation does not remove them because copying the pNext chain would be impossible if the loader does not recognize
// the any of the struct types, as the loader would not know the size to allocate and copy.
//if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
{
const void *pNext = localCreateInfo.pNext;
while (pNext != NULL) {
switch (*(VkStructureType *)pNext) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
const VkPhysicalDeviceFeatures2KHR *features = pNext;
if (icd_term->dispatch.GetPhysicalDeviceFeatures2 == NULL && icd_term->dispatch.GetPhysicalDeviceFeatures2KHR == NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceFeatures2 in pNext chain for ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// Verify that VK_KHR_get_physical_device_properties2 is enabled
if (icd_term->this_instance->enabled_known_extensions.khr_get_physical_device_properties2) {
localCreateInfo.pEnabledFeatures = &features->features;
}
}
// Leave this item in the pNext chain for now
pNext = features->pNext;
break;
}
case VK_STRUCTURE_TYPE_DEVICE_GROUP_DEVICE_CREATE_INFO: {
const VkDeviceGroupDeviceCreateInfoKHR *group_info = pNext;
if (icd_term->dispatch.EnumeratePhysicalDeviceGroups == NULL && icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR == NULL) {
loader_log(
icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkCreateDevice: Emulating handling of VkPhysicalDeviceGroupProperties in pNext chain for ICD \"%s\"",
icd_term->scanned_icd->lib_name);
// The group must contain only this one device, since physical device groups aren't actually supported
if (group_info->physicalDeviceCount != 1) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkCreateDevice: Emulation failed to create device from device group info");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
// Nothing needs to be done here because we're leaving the item in the pNext chain and because the spec states
// that the physicalDevice argument must be included in the device group, and we've already checked that it is
pNext = group_info->pNext;
break;
}
// Multiview properties are also allowed, but since VK_KHX_multiview is a device extension, we'll just let the ICD
// handle that error when the user enables the extension here
default: {
const VkBaseInStructure *header = pNext;
pNext = header->pNext;
break;
}
}
}
}
// Every extension that has a loader-defined terminator needs to be marked as enabled or disabled so that we know whether or
// not to return that terminator when vkGetDeviceProcAddr is called
for (uint32_t i = 0; i < localCreateInfo.enabledExtensionCount; ++i) {
if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_SWAPCHAIN_EXTENSION_NAME)) {
dev->extensions.khr_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DISPLAY_SWAPCHAIN_EXTENSION_NAME)) {
dev->extensions.khr_display_swapchain_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_KHR_DEVICE_GROUP_EXTENSION_NAME)) {
dev->extensions.khr_device_group_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], VK_EXT_DEBUG_MARKER_EXTENSION_NAME)) {
dev->extensions.ext_debug_marker_enabled = true;
} else if (!strcmp(localCreateInfo.ppEnabledExtensionNames[i], "VK_EXT_full_screen_exclusive")) {
dev->extensions.ext_full_screen_exclusive_enabled = true;
}
}
dev->extensions.ext_debug_utils_enabled = icd_term->this_instance->enabled_known_extensions.ext_debug_utils;
if (!dev->extensions.khr_device_group_enabled) {
VkPhysicalDeviceProperties properties;
icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &properties);
if (properties.apiVersion >= VK_API_VERSION_1_1) {
dev->extensions.khr_device_group_enabled = true;
}
}
res = fpCreateDevice(phys_dev_term->phys_dev, &localCreateInfo, pAllocator, &dev->icd_device);
if (res != VK_SUCCESS) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"terminator_CreateDevice: Failed in ICD %s vkCreateDevice"
"call",
icd_term->scanned_icd->lib_name);
goto out;
}
*pDevice = dev->icd_device;
loader_add_logical_device(icd_term->this_instance, icd_term, dev);
// Init dispatch pointer in new device object
loader_init_dispatch(*pDevice, &dev->loader_dispatch);
out:
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts);
}
// Restore pNext pointer to old VkDeviceGroupDeviceCreateInfoKHX
// in the chain to maintain consistency for the caller.
if (caller_dgci_container != NULL) {
caller_dgci_container->pNext = (VkBaseOutStructure *)caller_dgci;
}
return res;
}
VkResult setupLoaderTrampPhysDevs(VkInstance instance) {
VkResult res = VK_SUCCESS;
VkPhysicalDevice *local_phys_devs = NULL;
struct loader_instance *inst;
uint32_t total_count = 0;
struct loader_physical_device_tramp **new_phys_devs = NULL;
inst = loader_get_instance(instance);
if (NULL == inst) {
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// Query how many GPUs there
res = inst->disp->layer_inst_disp.EnumeratePhysicalDevices(instance, &total_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTrampPhysDevs: Failed during dispatch call "
"of \'vkEnumeratePhysicalDevices\' to lower layers or "
"loader to get count.");
goto out;
}
// Really use what the total GPU count is since Optimus and other layers may mess
// the count up.
total_count = inst->total_gpu_count;
// Create an array for the new physical devices, which will be stored
// in the instance for the trampoline code.
new_phys_devs = (struct loader_physical_device_tramp **)loader_instance_heap_alloc(
inst, total_count * sizeof(struct loader_physical_device_tramp *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTrampPhysDevs: Failed to allocate new physical device"
" array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_devs, 0, total_count * sizeof(struct loader_physical_device_tramp *));
// Create a temporary array (on the stack) to keep track of the
// returned VkPhysicalDevice values.
local_phys_devs = loader_stack_alloc(sizeof(VkPhysicalDevice) * total_count);
if (NULL == local_phys_devs) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTrampPhysDevs: Failed to allocate local "
"physical device array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(local_phys_devs, 0, sizeof(VkPhysicalDevice) * total_count);
res = inst->disp->layer_inst_disp.EnumeratePhysicalDevices(instance, &total_count, local_phys_devs);
if (VK_SUCCESS != res) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTrampPhysDevs: Failed during dispatch call "
"of \'vkEnumeratePhysicalDevices\' to lower layers or "
"loader to get content.");
goto out;
}
// Copy or create everything to fill the new array of physical devices
for (uint32_t new_idx = 0; new_idx < total_count; new_idx++) {
// Check if this physical device is already in the old buffer
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_tramp; old_idx++) {
if (local_phys_devs[new_idx] == inst->phys_devs_tramp[old_idx]->phys_dev) {
new_phys_devs[new_idx] = inst->phys_devs_tramp[old_idx];
break;
}
}
// If this physical device isn't in the old buffer, create it
if (NULL == new_phys_devs[new_idx]) {
new_phys_devs[new_idx] = (struct loader_physical_device_tramp *)loader_instance_heap_alloc(
inst, sizeof(struct loader_physical_device_tramp), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[new_idx]) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTrampPhysDevs: Failed to allocate "
"physical device trampoline object %d",
new_idx);
total_count = new_idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Initialize the new physicalDevice object
loader_set_dispatch((void *)new_phys_devs[new_idx], inst->disp);
new_phys_devs[new_idx]->this_instance = inst;
new_phys_devs[new_idx]->phys_dev = local_phys_devs[new_idx];
}
}
out:
if (VK_SUCCESS != res) {
if (NULL != new_phys_devs) {
for (uint32_t i = 0; i < total_count; i++) {
loader_instance_heap_free(inst, new_phys_devs[i]);
}
loader_instance_heap_free(inst, new_phys_devs);
}
total_count = 0;
} else {
// Free everything that didn't carry over to the new array of
// physical devices
if (NULL != inst->phys_devs_tramp) {
for (uint32_t i = 0; i < inst->phys_dev_count_tramp; i++) {
bool found = false;
for (uint32_t j = 0; j < total_count; j++) {
if (inst->phys_devs_tramp[i] == new_phys_devs[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_tramp[i]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_tramp);
}
// Swap in the new physical device list
inst->phys_dev_count_tramp = total_count;
inst->phys_devs_tramp = new_phys_devs;
}
return res;
}
struct LoaderSortedPhysicalDevice {
uint32_t device_count;
VkPhysicalDevice* physical_devices;
uint32_t icd_index;
struct loader_icd_term* icd_term;
};
// This function allocates an array in sorted_devices which must be freed by the caller if not null
VkResult ReadSortedPhysicalDevices(struct loader_instance *inst, struct LoaderSortedPhysicalDevice **sorted_devices, uint32_t* sorted_count)
{
VkResult res = VK_SUCCESS;
#if defined(_WIN32)
uint32_t sorted_alloc = 0;
struct loader_icd_term *icd_term = NULL;
IDXGIFactory6* dxgi_factory = NULL;
HRESULT hres = fpCreateDXGIFactory1(&IID_IDXGIFactory6, (void **)&dxgi_factory);
if (hres != S_OK) {
loader_log(inst, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0, "Failed to create DXGI factory 6. Physical devices will not be sorted");
}
else {
sorted_alloc = 16;
*sorted_devices = loader_instance_heap_alloc(inst, sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (*sorted_devices == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(*sorted_devices, 0, sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice));
*sorted_count = 0;
for (uint32_t i = 0; ; ++i) {
IDXGIAdapter1* adapter;
hres = dxgi_factory->lpVtbl->EnumAdapterByGpuPreference(dxgi_factory, i, DXGI_GPU_PREFERENCE_UNSPECIFIED, &IID_IDXGIAdapter1, (void **)&adapter);
if (hres == DXGI_ERROR_NOT_FOUND) {
break; // No more adapters
}
else if (hres != S_OK) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to enumerate adapters by GPU preference at index %u. This adapter will not be sorted", i);
break;
}
DXGI_ADAPTER_DESC1 description;
hres = adapter->lpVtbl->GetDesc1(adapter, &description);
if (hres != S_OK) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to get adapter LUID index %u. This adapter will not be sorted", i);
continue;
}
if (sorted_alloc <= i) {
uint32_t old_size = sorted_alloc * sizeof(struct LoaderSortedPhysicalDevice);
*sorted_devices = loader_instance_heap_realloc(inst, *sorted_devices, old_size, 2 * old_size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (*sorted_devices == NULL) {
adapter->lpVtbl->Release(adapter);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
sorted_alloc *= 2;
}
struct LoaderSortedPhysicalDevice *sorted_array = *sorted_devices;
sorted_array[*sorted_count].device_count = 0;
sorted_array[*sorted_count].physical_devices = NULL;
//*sorted_count = i;
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
// This is the new behavior, which cannot be run unless the ICD provides EnumerateAdapterPhysicalDevices
if (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices == NULL) {
continue;
}
uint32_t count;
VkResult vkres = icd_term->scanned_icd->EnumerateAdapterPhysicalDevices(icd_term->instance, description.AdapterLuid, &count, NULL);
if (vkres == VK_ERROR_INCOMPATIBLE_DRIVER) {
continue; // This driver doesn't support the adapter
} else if (vkres == VK_ERROR_OUT_OF_HOST_MEMORY) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else if (vkres != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0, "Failed to convert DXGI adapter into Vulkan physical device with unexpected error code");
continue;
}
// Get the actual physical devices
if (0 != count)
{
do {
sorted_array[*sorted_count].physical_devices = loader_instance_heap_realloc(inst, sorted_array[*sorted_count].physical_devices, sorted_array[*sorted_count].device_count * sizeof(VkPhysicalDevice), count * sizeof(VkPhysicalDevice), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (sorted_array[*sorted_count].physical_devices == NULL) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
break;
}
sorted_array[*sorted_count].device_count = count;
} while ((vkres = icd_term->scanned_icd->EnumerateAdapterPhysicalDevices(icd_term->instance, description.AdapterLuid, &count, sorted_array[*sorted_count].physical_devices)) == VK_INCOMPLETE);
}
if (vkres != VK_SUCCESS) {
loader_instance_heap_free(inst, sorted_array[*sorted_count].physical_devices);
sorted_array[*sorted_count].physical_devices = NULL;
if (vkres == VK_ERROR_OUT_OF_HOST_MEMORY) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
} else {
loader_log(inst, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"Failed to convert DXGI adapter into Vulkan physical device");
continue;
}
}
inst->total_gpu_count += (sorted_array[*sorted_count].device_count = count);
sorted_array[*sorted_count].icd_index = icd_idx;
sorted_array[*sorted_count].icd_term = icd_term;
++(*sorted_count);
}
adapter->lpVtbl->Release(adapter);
}
dxgi_factory->lpVtbl->Release(dxgi_factory);
}
out:
#endif
if (*sorted_count == 0 && *sorted_devices != NULL) {
loader_instance_heap_free(inst, *sorted_devices);
*sorted_devices = NULL;
}
return res;
}
VkResult setupLoaderTermPhysDevs(struct loader_instance *inst) {
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
struct loader_phys_dev_per_icd *icd_phys_dev_array = NULL;
struct loader_physical_device_term **new_phys_devs = NULL;
struct LoaderSortedPhysicalDevice *sorted_phys_dev_array = NULL;
uint32_t sorted_count = 0;
inst->total_gpu_count = 0;
// Allocate something to store the physical device characteristics
// that we read from each ICD.
icd_phys_dev_array =
(struct loader_phys_dev_per_icd *)loader_stack_alloc(sizeof(struct loader_phys_dev_per_icd) * inst->total_icd_count);
if (NULL == icd_phys_dev_array) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to allocate temporary "
"ICD Physical device info array of size %d",
inst->total_gpu_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(icd_phys_dev_array, 0, sizeof(struct loader_phys_dev_per_icd) * inst->total_icd_count);
// Get the physical devices supported by platform sorting mechanism into a separate list
res = ReadSortedPhysicalDevices(inst, &sorted_phys_dev_array, &sorted_count);
if (VK_SUCCESS != res) {
goto out;
}
// For each ICD, query the number of physical devices, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
icd_phys_dev_array[icd_idx].count = 0;
icd_phys_dev_array[icd_idx].phys_devs = NULL;
icd_phys_dev_array[icd_idx].this_icd_term = NULL;
// This is the legacy behavior which should be skipped if EnumerateAdapterPhysicalDevices is available
// and we successfully enumerated sorted adapters using ReadSortedPhysicalDevices.
#if defined(VK_USE_PLATFORM_WIN32_KHR)
if (sorted_count && icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL) {
continue;
}
#endif
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &icd_phys_dev_array[icd_idx].count, NULL);
if (VK_SUCCESS != res) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Call to "
"ICD %d's \'vkEnumeratePhysicalDevices\' failed with"
" error 0x%08x",
icd_idx, res);
goto out;
}
icd_phys_dev_array[icd_idx].phys_devs =
(VkPhysicalDevice *)loader_stack_alloc(icd_phys_dev_array[icd_idx].count * sizeof(VkPhysicalDevice));
if (NULL == icd_phys_dev_array[icd_idx].phys_devs) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to allocate temporary "
"ICD Physical device array for ICD %d of size %d",
icd_idx, inst->total_gpu_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &(icd_phys_dev_array[icd_idx].count),
icd_phys_dev_array[icd_idx].phys_devs);
if (VK_SUCCESS != res) {
goto out;
}
inst->total_gpu_count += icd_phys_dev_array[icd_idx].count;
icd_phys_dev_array[icd_idx].this_icd_term = icd_term;
}
if (0 == inst->total_gpu_count) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to detect any valid"
" GPUs in the current config");
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
new_phys_devs = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term *) * inst->total_gpu_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to allocate new physical"
" device array of size %d",
inst->total_gpu_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_devs, 0, sizeof(struct loader_physical_device_term *) * inst->total_gpu_count);
// Copy or create everything to fill the new array of physical devices
uint32_t idx = 0;
#if defined(_WIN32)
// Copy over everything found through sorted enumeration
for (uint32_t i = 0; i < sorted_count; ++i) {
for (uint32_t j = 0; j < sorted_phys_dev_array[i].device_count; ++j) {
// Check if this physical device is already in the old buffer
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (sorted_phys_dev_array[i].physical_devices[j] == inst->phys_devs_term[old_idx]->phys_dev) {
new_phys_devs[idx] = inst->phys_devs_term[old_idx];
break;
}
}
}
// If this physical device isn't in the old buffer, then we need to create it.
if (NULL == new_phys_devs[idx]) {
new_phys_devs[idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[idx]) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to allocate "
"physical device terminator object %d",
idx);
inst->total_gpu_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_set_dispatch((void *)new_phys_devs[idx], inst->disp);
new_phys_devs[idx]->this_icd_term = sorted_phys_dev_array[i].icd_term;
new_phys_devs[idx]->icd_index = (uint8_t)(sorted_phys_dev_array[i].icd_index);
new_phys_devs[idx]->phys_dev = sorted_phys_dev_array[i].physical_devices[j];
}
// Increment the count of new physical devices
idx++;
}
}
#endif
// Copy over everything found through EnumeratePhysicalDevices
for (uint32_t icd_idx = 0; icd_idx < inst->total_icd_count; icd_idx++) {
for (uint32_t pd_idx = 0; pd_idx < icd_phys_dev_array[icd_idx].count; pd_idx++) {
// Check if this physical device is already in the old buffer
if (NULL != inst->phys_devs_term) {
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_count_term; old_idx++) {
if (icd_phys_dev_array[icd_idx].phys_devs[pd_idx] == inst->phys_devs_term[old_idx]->phys_dev) {
new_phys_devs[idx] = inst->phys_devs_term[old_idx];
break;
}
}
}
// If this physical device isn't in the old buffer, then we
// need to create it.
if (NULL == new_phys_devs[idx]) {
new_phys_devs[idx] = loader_instance_heap_alloc(inst, sizeof(struct loader_physical_device_term),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_devs[idx]) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevs: Failed to allocate "
"physical device terminator object %d",
idx);
inst->total_gpu_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_set_dispatch((void *)new_phys_devs[idx], inst->disp);
new_phys_devs[idx]->this_icd_term = icd_phys_dev_array[icd_idx].this_icd_term;
new_phys_devs[idx]->icd_index = (uint8_t)(icd_idx);
new_phys_devs[idx]->phys_dev = icd_phys_dev_array[icd_idx].phys_devs[pd_idx];
}
idx++;
}
}
out:
if (VK_SUCCESS != res) {
if (NULL != new_phys_devs) {
// We've encountered an error, so we should free the new buffers.
for (uint32_t i = 0; i < inst->total_gpu_count; i++) {
loader_instance_heap_free(inst, new_phys_devs[i]);
}
loader_instance_heap_free(inst, new_phys_devs);
}
inst->total_gpu_count = 0;
} else {
// Free everything that didn't carry over to the new array of
// physical devices. Everything else will have been copied over
// to the new array.
if (NULL != inst->phys_devs_term) {
for (uint32_t cur_pd = 0; cur_pd < inst->phys_dev_count_term; cur_pd++) {
bool found = false;
for (uint32_t new_pd_idx = 0; new_pd_idx < inst->total_gpu_count; new_pd_idx++) {
if (inst->phys_devs_term[cur_pd] == new_phys_devs[new_pd_idx]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_devs_term[cur_pd]);
}
}
loader_instance_heap_free(inst, inst->phys_devs_term);
}
// Swap out old and new devices list
inst->phys_dev_count_term = inst->total_gpu_count;
inst->phys_devs_term = new_phys_devs;
}
if (sorted_phys_dev_array != NULL) {
for (uint32_t i = 0; i < sorted_count; ++i) {
if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, sorted_phys_dev_array);
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDevices(VkInstance instance, uint32_t *pPhysicalDeviceCount,
VkPhysicalDevice *pPhysicalDevices) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
// Always call the setup loader terminator physical devices because they may
// have changed at any point.
res = setupLoaderTermPhysDevs(inst);
if (VK_SUCCESS != res) {
goto out;
}
uint32_t copy_count = inst->total_gpu_count;
if (NULL != pPhysicalDevices) {
if (copy_count > *pPhysicalDeviceCount) {
copy_count = *pPhysicalDeviceCount;
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
pPhysicalDevices[i] = (VkPhysicalDevice)inst->phys_devs_term[i];
}
}
*pPhysicalDeviceCount = copy_count;
out:
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceProperties) {
icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, pProperties);
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
uint32_t *pQueueFamilyPropertyCount,
VkQueueFamilyProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties) {
icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, pProperties);
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceMemoryProperties) {
icd_term->dispatch.GetPhysicalDeviceMemoryProperties(phys_dev_term->phys_dev, pProperties);
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures *pFeatures) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceFeatures) {
icd_term->dispatch.GetPhysicalDeviceFeatures(phys_dev_term->phys_dev, pFeatures);
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
VkFormatProperties *pFormatInfo) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceFormatProperties) {
icd_term->dispatch.GetPhysicalDeviceFormatProperties(phys_dev_term->phys_dev, format, pFormatInfo);
}
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_GetPhysicalDeviceImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
VkImageType type, VkImageTiling tiling,
VkImageUsageFlags usage, VkImageCreateFlags flags,
VkImageFormatProperties *pImageFormatProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL == icd_term->dispatch.GetPhysicalDeviceImageFormatProperties) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Encountered the vkEnumerateDeviceLayerProperties "
"terminator. This means a layer improperly continued.");
return VK_ERROR_INITIALIZATION_FAILED;
}
return icd_term->dispatch.GetPhysicalDeviceImageFormatProperties(phys_dev_term->phys_dev, format, type, tiling, usage, flags,
pImageFormatProperties);
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceSparseImageFormatProperties(VkPhysicalDevice physicalDevice, VkFormat format,
VkImageType type, VkSampleCountFlagBits samples,
VkImageUsageFlags usage, VkImageTiling tiling,
uint32_t *pNumProperties,
VkSparseImageFormatProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
if (NULL != icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties) {
icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties(phys_dev_term->phys_dev, format, type, samples, usage,
tiling, pNumProperties, pProperties);
}
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceExtensionProperties(VkPhysicalDevice physicalDevice,
const char *pLayerName, uint32_t *pPropertyCount,
VkExtensionProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term;
struct loader_layer_list implicit_layer_list = {0};
struct loader_extension_list all_exts = {0};
struct loader_extension_list icd_exts = {0};
// Any layer or trampoline wrapping should be removed at this point in time can just cast to the expected
// type for VkPhysicalDevice.
phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
// if we got here with a non-empty pLayerName, look up the extensions
// from the json
if (pLayerName != NULL && strlen(pLayerName) > 0) {
uint32_t count;
uint32_t copy_size;
const struct loader_instance *inst = phys_dev_term->this_icd_term->this_instance;
struct loader_device_extension_list *dev_ext_list = NULL;
struct loader_device_extension_list local_ext_list;
memset(&local_ext_list, 0, sizeof(local_ext_list));
if (vk_string_validate(MaxLoaderStringLength, pLayerName) == VK_STRING_ERROR_NONE) {
for (uint32_t i = 0; i < inst->instance_layer_list.count; i++) {
struct loader_layer_properties *props = &inst->instance_layer_list.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
dev_ext_list = &props->device_extension_list;
}
}
count = (dev_ext_list == NULL) ? 0 : dev_ext_list->count;
if (pProperties == NULL) {
*pPropertyCount = count;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
return VK_SUCCESS;
}
copy_size = *pPropertyCount < count ? *pPropertyCount : count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &dev_ext_list->list[i].props, sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
loader_destroy_generic_list(inst, (struct loader_generic_list *)&local_ext_list);
if (copy_size < count) {
return VK_INCOMPLETE;
}
} else {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkEnumerateDeviceExtensionProperties: pLayerName "
"is too long or is badly formed");
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
return VK_SUCCESS;
}
// This case is during the call down the instance chain with pLayerName == NULL
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
uint32_t icd_ext_count = *pPropertyCount;
VkExtensionProperties *icd_props_list = pProperties;
VkResult res;
if (NULL == icd_props_list) {
// We need to find the count without duplicates. This requires querying the driver for the names of the extensions.
// A small amount of storage is then needed to facilitate the de-duplication.
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, NULL);
if (res != VK_SUCCESS) {
goto out;
}
icd_props_list = loader_instance_heap_alloc(icd_term->this_instance, sizeof(VkExtensionProperties) * icd_ext_count,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == icd_props_list) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
}
// Get the available device extension count, and if pProperties is not NULL, the extensions as well
res = icd_term->dispatch.EnumerateDeviceExtensionProperties(phys_dev_term->phys_dev, NULL, &icd_ext_count, icd_props_list);
if (res != VK_SUCCESS) {
goto out;
}
if (!loaderInitLayerList(icd_term->this_instance, &implicit_layer_list)) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loaderAddImplicitLayers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list);
// Initialize dev_extension list within the physicalDevice object
res = loader_init_device_extensions(icd_term->this_instance, phys_dev_term, icd_ext_count, icd_props_list, &icd_exts);
if (res != VK_SUCCESS) {
goto out;
}
// We need to determine which implicit layers are active, and then add their extensions. This can't be cached as
// it depends on results of environment variables (which can change).
res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, icd_exts.count, icd_exts.list);
if (res != VK_SUCCESS) {
goto out;
}
loaderAddImplicitLayers(icd_term->this_instance, &implicit_layer_list, NULL, &icd_term->this_instance->instance_layer_list);
for (uint32_t i = 0; i < implicit_layer_list.count; i++) {
for (uint32_t j = 0; j < implicit_layer_list.list[i].device_extension_list.count; j++) {
res = loader_add_to_ext_list(icd_term->this_instance, &all_exts, 1,
&implicit_layer_list.list[i].device_extension_list.list[j].props);
if (res != VK_SUCCESS) {
goto out;
}
}
}
uint32_t capacity = *pPropertyCount;
VkExtensionProperties *props = pProperties;
res = VK_SUCCESS;
if (NULL != pProperties) {
for (uint32_t i = 0; i < all_exts.count && i < capacity; i++) {
props[i] = all_exts.list[i];
}
// Wasn't enough space for the extensions, we did partial copy now return VK_INCOMPLETE
if (capacity < all_exts.count) {
res = VK_INCOMPLETE;
} else {
*pPropertyCount = all_exts.count;
}
} else {
*pPropertyCount = all_exts.count;
}
out:
if (NULL != implicit_layer_list.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&implicit_layer_list);
}
if (NULL != all_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&all_exts);
}
if (NULL != icd_exts.list) {
loader_destroy_generic_list(icd_term->this_instance, (struct loader_generic_list *)&icd_exts);
}
if (NULL == pProperties && NULL != icd_props_list) {
loader_instance_heap_free(icd_term->this_instance, icd_props_list);
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkLayerProperties *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"Encountered the vkEnumerateDeviceLayerProperties "
"terminator. This means a layer improperly continued.");
// Should never get here this call isn't dispatched down the chain
return VK_ERROR_INITIALIZATION_FAILED;
}
VkStringErrorFlags vk_string_validate(const int max_length, const char *utf8) {
VkStringErrorFlags result = VK_STRING_ERROR_NONE;
int num_char_bytes = 0;
int i, j;
if (utf8 == NULL) {
return VK_STRING_ERROR_NULL_PTR;
}
for (i = 0; i <= max_length; i++) {
if (utf8[i] == 0) {
break;
} else if (i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
} else if ((utf8[i] >= 0x20) && (utf8[i] < 0x7f)) {
num_char_bytes = 0;
} else if ((utf8[i] & UTF8_ONE_BYTE_MASK) == UTF8_ONE_BYTE_CODE) {
num_char_bytes = 1;
} else if ((utf8[i] & UTF8_TWO_BYTE_MASK) == UTF8_TWO_BYTE_CODE) {
num_char_bytes = 2;
} else if ((utf8[i] & UTF8_THREE_BYTE_MASK) == UTF8_THREE_BYTE_CODE) {
num_char_bytes = 3;
} else {
result = VK_STRING_ERROR_BAD_DATA;
}
// Validate the following num_char_bytes of data
for (j = 0; (j < num_char_bytes) && (i < max_length); j++) {
if (++i == max_length) {
result |= VK_STRING_ERROR_LENGTH;
break;
}
if ((utf8[i] & UTF8_DATA_BYTE_MASK) != UTF8_DATA_BYTE_CODE) {
result |= VK_STRING_ERROR_BAD_DATA;
}
}
}
return result;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumerateInstanceVersion(const VkEnumerateInstanceVersionChain *chain, uint32_t* pApiVersion) {
// NOTE: The Vulkan WG doesn't want us checking pApiVersion for NULL, but instead
// prefers us crashing.
*pApiVersion = VK_HEADER_VERSION_COMPLETE;
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL
terminator_EnumerateInstanceExtensionProperties(const VkEnumerateInstanceExtensionPropertiesChain *chain, const char *pLayerName,
uint32_t *pPropertyCount, VkExtensionProperties *pProperties) {
struct loader_extension_list *global_ext_list = NULL;
struct loader_layer_list instance_layers;
struct loader_extension_list local_ext_list;
struct loader_icd_tramp_list icd_tramp_list;
uint32_t copy_size;
VkResult res = VK_SUCCESS;
// tls_instance = NULL;
memset(&local_ext_list, 0, sizeof(local_ext_list));
memset(&instance_layers, 0, sizeof(instance_layers));
// Get layer libraries if needed
if (pLayerName && strlen(pLayerName) != 0) {
if (vk_string_validate(MaxLoaderStringLength, pLayerName) != VK_STRING_ERROR_NONE) {
assert(VK_FALSE &&
"vkEnumerateInstanceExtensionProperties: "
"pLayerName is too long or is badly formed");
res = VK_ERROR_EXTENSION_NOT_PRESENT;
goto out;
}
loaderScanForLayers(NULL, &instance_layers);
for (uint32_t i = 0; i < instance_layers.count; i++) {
struct loader_layer_properties *props = &instance_layers.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
global_ext_list = &props->instance_extension_list;
break;
}
}
} else {
// Preload ICD libraries so subsequent calls to EnumerateInstanceExtensionProperties don't have to load them
loader_preload_icds();
// Scan/discover all ICD libraries
memset(&icd_tramp_list, 0, sizeof(icd_tramp_list));
res = loader_icd_scan(NULL, &icd_tramp_list);
// EnumerateInstanceExtensionProperties can't return anything other than OOM or VK_ERROR_LAYER_NOT_PRESENT
if ((VK_SUCCESS != res && icd_tramp_list.count > 0) || res == VK_ERROR_OUT_OF_HOST_MEMORY) {
goto out;
}
// Get extensions from all ICD's, merge so no duplicates
res = loader_get_icd_loader_instance_extensions(NULL, &icd_tramp_list, &local_ext_list);
if (VK_SUCCESS != res) {
goto out;
}
loader_scanned_icd_clear(NULL, &icd_tramp_list);
// Append enabled implicit layers.
loaderScanForImplicitLayers(NULL, &instance_layers);
for (uint32_t i = 0; i < instance_layers.count; i++) {
if (!loaderImplicitLayerIsEnabled(NULL, &instance_layers.list[i])) {
continue;
}
struct loader_extension_list *ext_list = &instance_layers.list[i].instance_extension_list;
loader_add_to_ext_list(NULL, &local_ext_list, ext_list->count, ext_list->list);
}
global_ext_list = &local_ext_list;
}
if (global_ext_list == NULL) {
res = VK_ERROR_LAYER_NOT_PRESENT;
goto out;
}
if (pProperties == NULL) {
*pPropertyCount = global_ext_list->count;
goto out;
}
copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &global_ext_list->list[i], sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
if (copy_size < global_ext_list->count) {
res = VK_INCOMPLETE;
goto out;
}
out:
loader_destroy_generic_list(NULL, (struct loader_generic_list *)&local_ext_list);
loaderDeleteLayerListAndProperties(NULL, &instance_layers);
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumerateInstanceLayerProperties(const VkEnumerateInstanceLayerPropertiesChain *chain,
uint32_t *pPropertyCount,
VkLayerProperties *pProperties) {
VkResult result = VK_SUCCESS;
struct loader_layer_list instance_layer_list;
tls_instance = NULL;
LOADER_PLATFORM_THREAD_ONCE(&once_init, loader_initialize);
uint32_t copy_size;
// Get layer libraries
memset(&instance_layer_list, 0, sizeof(instance_layer_list));
loaderScanForLayers(NULL, &instance_layer_list);
if (pProperties == NULL) {
*pPropertyCount = instance_layer_list.count;
goto out;
}
copy_size = (*pPropertyCount < instance_layer_list.count) ? *pPropertyCount : instance_layer_list.count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &instance_layer_list.list[i].info, sizeof(VkLayerProperties));
}
*pPropertyCount = copy_size;
if (copy_size < instance_layer_list.count) {
result = VK_INCOMPLETE;
goto out;
}
out:
loaderDeleteLayerListAndProperties(NULL, &instance_layer_list);
return result;
}
#if defined(_WIN32) && defined(LOADER_DYNAMIC_LIB)
BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
switch (reason) {
case DLL_PROCESS_ATTACH:
loader_initialize();
break;
case DLL_PROCESS_DETACH:
if (NULL == reserved) {
loader_release();
}
break;
default:
// Do nothing
break;
}
return TRUE;
}
#elif !defined(_WIN32)
__attribute__((constructor)) void loader_init_library() { loader_initialize(); }
__attribute__((destructor)) void loader_free_library() { loader_release(); }
#endif
// ---- Vulkan Core 1.1 terminators
VkResult setupLoaderTermPhysDevGroups(struct loader_instance *inst) {
VkResult res = VK_SUCCESS;
struct loader_icd_term *icd_term;
uint32_t total_count = 0;
uint32_t cur_icd_group_count = 0;
VkPhysicalDeviceGroupPropertiesKHR **new_phys_dev_groups = NULL;
VkPhysicalDeviceGroupPropertiesKHR *local_phys_dev_groups = NULL;
bool *local_phys_dev_group_sorted = NULL;
PFN_vkEnumeratePhysicalDeviceGroups fpEnumeratePhysicalDeviceGroups = NULL;
struct LoaderSortedPhysicalDevice* sorted_phys_dev_array = NULL;
uint32_t sorted_count = 0;
if (0 == inst->phys_dev_count_term) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Loader failed to setup physical "
"device terminator info before calling \'EnumeratePhysicalDeviceGroups\'.");
assert(false);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
// For each ICD, query the number of physical device groups, and then get an
// internal value for those physical devices.
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
cur_icd_group_count = 0;
if (NULL == fpEnumeratePhysicalDeviceGroups) {
// Treat each ICD's GPU as it's own group if the extension isn't supported
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.",
icd_idx);
goto out;
}
} else {
// Query the actual group info
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &cur_icd_group_count, NULL);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get count.",
icd_idx);
goto out;
}
}
total_count += cur_icd_group_count;
}
// Create an array for the new physical device groups, which will be stored
// in the instance for the Terminator code.
new_phys_dev_groups = (VkPhysicalDeviceGroupProperties **)loader_instance_heap_alloc(
inst, total_count * sizeof(VkPhysicalDeviceGroupProperties *), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to allocate new physical device"
" group array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memset(new_phys_dev_groups, 0, total_count * sizeof(VkPhysicalDeviceGroupProperties *));
// Create a temporary array (on the stack) to keep track of the
// returned VkPhysicalDevice values.
local_phys_dev_groups = loader_stack_alloc(sizeof(VkPhysicalDeviceGroupProperties) * total_count);
local_phys_dev_group_sorted = loader_stack_alloc(sizeof(bool) * total_count);
if (NULL == local_phys_dev_groups || NULL == local_phys_dev_group_sorted) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to allocate local "
"physical device group array of size %d",
total_count);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
// Initialize the memory to something valid
memset(local_phys_dev_groups, 0, sizeof(VkPhysicalDeviceGroupProperties) * total_count);
memset(local_phys_dev_group_sorted, 0, sizeof(bool) * total_count);
for (uint32_t group = 0; group < total_count; group++) {
local_phys_dev_groups[group].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GROUP_PROPERTIES_KHR;
local_phys_dev_groups[group].pNext = NULL;
local_phys_dev_groups[group].subsetAllocation = false;
}
// Get the physical devices supported by platform sorting mechanism into a separate list
res = ReadSortedPhysicalDevices(inst, &sorted_phys_dev_array, &sorted_count);
if (VK_SUCCESS != res) {
goto out;
}
cur_icd_group_count = 0;
icd_term = inst->icd_terms;
for (uint32_t icd_idx = 0; NULL != icd_term; icd_term = icd_term->next, icd_idx++) {
uint32_t count_this_time = total_count - cur_icd_group_count;
// Check if this group can be sorted
#if defined(VK_USE_PLATFORM_WIN32_KHR)
bool icd_sorted = sorted_count && (icd_term->scanned_icd->EnumerateAdapterPhysicalDevices != NULL);
#else
bool icd_sorted = false;
#endif
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
if (inst->enabled_known_extensions.khr_device_group_creation) {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroupsKHR;
} else {
fpEnumeratePhysicalDeviceGroups = icd_term->dispatch.EnumeratePhysicalDeviceGroups;
}
if (NULL == fpEnumeratePhysicalDeviceGroups) {
VkPhysicalDevice* phys_dev_array = loader_stack_alloc(sizeof(VkPhysicalDevice) * count_this_time);
if (NULL == phys_dev_array) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to allocate local "
"physical device array of size %d",
count_this_time);
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
res = icd_term->dispatch.EnumeratePhysicalDevices(icd_term->instance, &count_this_time, phys_dev_array);
if (res != VK_SUCCESS) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDevices\' to ICD %d to get plain phys dev count.",
icd_idx);
goto out;
}
// Add each GPU as it's own group
for (uint32_t indiv_gpu = 0; indiv_gpu < count_this_time; indiv_gpu++) {
local_phys_dev_groups[indiv_gpu + cur_icd_group_count].physicalDeviceCount = 1;
local_phys_dev_groups[indiv_gpu + cur_icd_group_count].physicalDevices[0] = phys_dev_array[indiv_gpu];
local_phys_dev_group_sorted[indiv_gpu + cur_icd_group_count] = icd_sorted;
}
} else {
res = fpEnumeratePhysicalDeviceGroups(icd_term->instance, &count_this_time, &local_phys_dev_groups[cur_icd_group_count]);
for (uint32_t group = 0; group < count_this_time; ++group) {
local_phys_dev_group_sorted[group + cur_icd_group_count] = icd_sorted;
}
if (VK_SUCCESS != res) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed during dispatch call of "
"\'EnumeratePhysicalDeviceGroups\' to ICD %d to get content.",
icd_idx);
goto out;
}
}
cur_icd_group_count += count_this_time;
}
// Replace all the physical device IDs with the proper loader values
for (uint32_t group = 0; group < total_count; group++) {
for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].physicalDeviceCount; group_gpu++) {
bool found = false;
for (uint32_t term_gpu = 0; term_gpu < inst->phys_dev_count_term; term_gpu++) {
if (local_phys_dev_groups[group].physicalDevices[group_gpu] == inst->phys_devs_term[term_gpu]->phys_dev) {
local_phys_dev_groups[group].physicalDevices[group_gpu] = (VkPhysicalDevice)inst->phys_devs_term[term_gpu];
found = true;
break;
}
}
if (!found) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to find GPU %d in group %d"
" returned by \'EnumeratePhysicalDeviceGroups\' in list returned"
" by \'EnumeratePhysicalDevices\'", group_gpu, group);
res = VK_ERROR_INITIALIZATION_FAILED;
goto out;
}
}
}
uint32_t idx = 0;
#if defined(_WIN32)
// Copy over everything found through sorted enumeration
for (uint32_t i = 0; i < sorted_count; ++i) {
// Find the VkPhysicalDeviceGroupProperties object in local_phys_dev_groups
VkPhysicalDeviceGroupProperties *group_properties = NULL;
for (uint32_t group = 0; group < total_count; group++) {
if (sorted_phys_dev_array[i].device_count != local_phys_dev_groups[group].physicalDeviceCount) {
continue;
}
bool match = true;
for (uint32_t group_gpu = 0; group_gpu < local_phys_dev_groups[group].physicalDeviceCount; group_gpu++) {
if (sorted_phys_dev_array[i].physical_devices[group_gpu] != ((struct loader_physical_device_term*) local_phys_dev_groups[group].physicalDevices[group_gpu])->phys_dev) {
match = false;
break;
}
}
if (match) {
group_properties = &local_phys_dev_groups[group];
}
}
// Check if this physical device group with the same contents is already in the old buffer
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (NULL != group_properties && group_properties->physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) {
bool found_all_gpus = true;
for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) {
bool found_gpu = false;
for (uint32_t new_gpu = 0; new_gpu < group_properties->physicalDeviceCount; new_gpu++) {
if (group_properties->physicalDevices[new_gpu] == inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) {
found_gpu = true;
break;
}
}
if (!found_gpu) {
found_all_gpus = false;
break;
}
}
if (!found_all_gpus) {
continue;
}
else {
new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx];
break;
}
}
}
// If this physical device group isn't in the old buffer, create it
if (group_properties != NULL && NULL == new_phys_dev_groups[idx]) {
new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR*)loader_instance_heap_alloc(
inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups[idx]) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to allocate "
"physical device group Terminator object %d",
idx);
total_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(new_phys_dev_groups[idx], group_properties, sizeof(VkPhysicalDeviceGroupPropertiesKHR));
}
++idx;
}
#endif
// Copy or create everything to fill the new array of physical device groups
for (uint32_t new_idx = 0; new_idx < total_count; new_idx++) {
// Skip groups which have been included through sorting
if (local_phys_dev_group_sorted[new_idx] || local_phys_dev_groups[new_idx].physicalDeviceCount == 0) {
continue;
}
// Check if this physical device group with the same contents is already in the old buffer
for (uint32_t old_idx = 0; old_idx < inst->phys_dev_group_count_term; old_idx++) {
if (local_phys_dev_groups[new_idx].physicalDeviceCount == inst->phys_dev_groups_term[old_idx]->physicalDeviceCount) {
bool found_all_gpus = true;
for (uint32_t old_gpu = 0; old_gpu < inst->phys_dev_groups_term[old_idx]->physicalDeviceCount; old_gpu++) {
bool found_gpu = false;
for (uint32_t new_gpu = 0; new_gpu < local_phys_dev_groups[new_idx].physicalDeviceCount; new_gpu++) {
if (local_phys_dev_groups[new_idx].physicalDevices[new_gpu] == inst->phys_dev_groups_term[old_idx]->physicalDevices[old_gpu]) {
found_gpu = true;
break;
}
}
if (!found_gpu) {
found_all_gpus = false;
break;
}
}
if (!found_all_gpus) {
continue;
} else {
new_phys_dev_groups[idx] = inst->phys_dev_groups_term[old_idx];
break;
}
}
}
// If this physical device group isn't in the old buffer, create it
if (NULL == new_phys_dev_groups[idx]) {
new_phys_dev_groups[idx] = (VkPhysicalDeviceGroupPropertiesKHR *)loader_instance_heap_alloc(
inst, sizeof(VkPhysicalDeviceGroupPropertiesKHR), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == new_phys_dev_groups[idx]) {
loader_log(inst, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"setupLoaderTermPhysDevGroups: Failed to allocate "
"physical device group Terminator object %d",
idx);
total_count = idx;
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
memcpy(new_phys_dev_groups[idx], &local_phys_dev_groups[new_idx],
sizeof(VkPhysicalDeviceGroupPropertiesKHR));
}
++idx;
}
out:
if (VK_SUCCESS != res) {
if (NULL != new_phys_dev_groups) {
for (uint32_t i = 0; i < total_count; i++) {
loader_instance_heap_free(inst, new_phys_dev_groups[i]);
}
loader_instance_heap_free(inst, new_phys_dev_groups);
}
total_count = 0;
} else {
// Free everything that didn't carry over to the new array of
// physical device groups
if (NULL != inst->phys_dev_groups_term) {
for (uint32_t i = 0; i < inst->phys_dev_group_count_term; i++) {
bool found = false;
for (uint32_t j = 0; j < total_count; j++) {
if (inst->phys_dev_groups_term[i] == new_phys_dev_groups[j]) {
found = true;
break;
}
}
if (!found) {
loader_instance_heap_free(inst, inst->phys_dev_groups_term[i]);
}
}
loader_instance_heap_free(inst, inst->phys_dev_groups_term);
}
// Swap in the new physical device group list
inst->phys_dev_group_count_term = total_count;
inst->phys_dev_groups_term = new_phys_dev_groups;
}
if (sorted_phys_dev_array != NULL) {
for (uint32_t i = 0; i < sorted_count; ++i) {
if (sorted_phys_dev_array[i].device_count > 0 && sorted_phys_dev_array[i].physical_devices != NULL) {
loader_instance_heap_free(inst, sorted_phys_dev_array[i].physical_devices);
}
}
loader_instance_heap_free(inst, sorted_phys_dev_array);
}
return res;
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_EnumeratePhysicalDeviceGroups(
VkInstance instance, uint32_t *pPhysicalDeviceGroupCount,
VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties) {
struct loader_instance *inst = (struct loader_instance *)instance;
VkResult res = VK_SUCCESS;
// Always call the setup loader terminator physical device groups because they may
// have changed at any point.
res = setupLoaderTermPhysDevGroups(inst);
if (VK_SUCCESS != res) {
goto out;
}
uint32_t copy_count = inst->phys_dev_group_count_term;
if (NULL != pPhysicalDeviceGroupProperties) {
if (copy_count > *pPhysicalDeviceGroupCount) {
copy_count = *pPhysicalDeviceGroupCount;
res = VK_INCOMPLETE;
}
for (uint32_t i = 0; i < copy_count; i++) {
memcpy(&pPhysicalDeviceGroupProperties[i], inst->phys_dev_groups_term[i],
sizeof(VkPhysicalDeviceGroupPropertiesKHR));
}
}
*pPhysicalDeviceGroupCount = copy_count;
out:
return res;
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2 *pFeatures) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceFeatures2 fpGetPhysicalDeviceFeatures2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceFeatures2 = icd_term->dispatch.GetPhysicalDeviceFeatures2KHR;
} else {
fpGetPhysicalDeviceFeatures2 = icd_term->dispatch.GetPhysicalDeviceFeatures2;
}
if (fpGetPhysicalDeviceFeatures2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceFeatures2(phys_dev_term->phys_dev, pFeatures);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceFeatures2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceFeatures",
icd_term->scanned_icd->lib_name);
// Write to the VkPhysicalDeviceFeatures2 struct
icd_term->dispatch.GetPhysicalDeviceFeatures(phys_dev_term->phys_dev, &pFeatures->features);
const VkBaseInStructure *pNext = pFeatures->pNext;
while (pNext != NULL) {
switch (pNext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES: {
// Skip the check if VK_KHR_multiview is enabled because it's a device extension
// Write to the VkPhysicalDeviceMultiviewFeaturesKHR struct
VkPhysicalDeviceMultiviewFeaturesKHR *multiview_features = (VkPhysicalDeviceMultiviewFeaturesKHR *)pNext;
multiview_features->multiview = VK_FALSE;
multiview_features->multiviewGeometryShader = VK_FALSE;
multiview_features->multiviewTessellationShader = VK_FALSE;
pNext = multiview_features->pNext;
break;
}
default: {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceFeatures2: Emulation found unrecognized structure type in pFeatures->pNext - "
"this struct will be ignored");
pNext = pNext->pNext;
break;
}
}
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2 *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceProperties2 fpGetPhysicalDeviceProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceProperties2 = icd_term->dispatch.GetPhysicalDeviceProperties2KHR;
} else {
fpGetPhysicalDeviceProperties2 = icd_term->dispatch.GetPhysicalDeviceProperties2;
}
if (fpGetPhysicalDeviceProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceProperties2(phys_dev_term->phys_dev, pProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceProperties",
icd_term->scanned_icd->lib_name);
// Write to the VkPhysicalDeviceProperties2 struct
icd_term->dispatch.GetPhysicalDeviceProperties(phys_dev_term->phys_dev, &pProperties->properties);
const VkBaseInStructure *pNext = pProperties->pNext;
while (pNext != NULL) {
switch (pNext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES: {
VkPhysicalDeviceIDPropertiesKHR *id_properties = (VkPhysicalDeviceIDPropertiesKHR *)pNext;
// Verify that "VK_KHR_external_memory_capabilities" is enabled
if (icd_term->this_instance->enabled_known_extensions.khr_external_memory_capabilities) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceProperties2: Emulation cannot generate unique IDs for struct "
"VkPhysicalDeviceIDProperties - setting IDs to zero instead");
// Write to the VkPhysicalDeviceIDPropertiesKHR struct
memset(id_properties->deviceUUID, 0, VK_UUID_SIZE);
memset(id_properties->driverUUID, 0, VK_UUID_SIZE);
id_properties->deviceLUIDValid = VK_FALSE;
}
pNext = id_properties->pNext;
break;
}
default: {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceProperties2KHR: Emulation found unrecognized structure type in "
"pProperties->pNext - this struct will be ignored");
pNext = pNext->pNext;
break;
}
}
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceFormatProperties2(VkPhysicalDevice physicalDevice, VkFormat format,
VkFormatProperties2 *pFormatProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceFormatProperties2 fpGetPhysicalDeviceFormatProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceFormatProperties2KHR;
} else {
fpGetPhysicalDeviceFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceFormatProperties2;
}
if (fpGetPhysicalDeviceFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceFormatProperties2(phys_dev_term->phys_dev, format, pFormatProperties);
} else {
// Emulate the call
loader_log(
icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceFormatProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceFormatProperties",
icd_term->scanned_icd->lib_name);
// Write to the VkFormatProperties2 struct
icd_term->dispatch.GetPhysicalDeviceFormatProperties(phys_dev_term->phys_dev, format, &pFormatProperties->formatProperties);
if (pFormatProperties->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceFormatProperties2: Emulation found unrecognized structure type in "
"pFormatProperties->pNext - this struct will be ignored");
}
}
}
VKAPI_ATTR VkResult VKAPI_CALL terminator_GetPhysicalDeviceImageFormatProperties2(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceImageFormatInfo2KHR *pImageFormatInfo,
VkImageFormatProperties2KHR *pImageFormatProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceImageFormatProperties2 fpGetPhysicalDeviceImageFormatProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceImageFormatProperties2KHR;
} else {
fpGetPhysicalDeviceImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceImageFormatProperties2;
}
if (fpGetPhysicalDeviceImageFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
return fpGetPhysicalDeviceImageFormatProperties2(phys_dev_term->phys_dev, pImageFormatInfo, pImageFormatProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceImageFormatProperties2: Emulating call in ICD \"%s\" using "
"vkGetPhysicalDeviceImageFormatProperties",
icd_term->scanned_icd->lib_name);
// If there is more info in either pNext, then this is unsupported
if (pImageFormatInfo->pNext != NULL || pImageFormatProperties->pNext != NULL) {
return VK_ERROR_FORMAT_NOT_SUPPORTED;
}
// Write to the VkImageFormatProperties2KHR struct
return icd_term->dispatch.GetPhysicalDeviceImageFormatProperties(
phys_dev_term->phys_dev, pImageFormatInfo->format, pImageFormatInfo->type, pImageFormatInfo->tiling,
pImageFormatInfo->usage, pImageFormatInfo->flags, &pImageFormatProperties->imageFormatProperties);
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceQueueFamilyProperties2(
VkPhysicalDevice physicalDevice, uint32_t *pQueueFamilyPropertyCount, VkQueueFamilyProperties2KHR *pQueueFamilyProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceQueueFamilyProperties2 fpGetPhysicalDeviceQueueFamilyProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceQueueFamilyProperties2 = icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties2KHR;
} else {
fpGetPhysicalDeviceQueueFamilyProperties2 = icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties2;
}
if (fpGetPhysicalDeviceQueueFamilyProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceQueueFamilyProperties2(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, pQueueFamilyProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceQueueFamilyProperties2: Emulating call in ICD \"%s\" using "
"vkGetPhysicalDeviceQueueFamilyProperties",
icd_term->scanned_icd->lib_name);
if (pQueueFamilyProperties == NULL || *pQueueFamilyPropertyCount == 0) {
// Write to pQueueFamilyPropertyCount
icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount, NULL);
} else {
// Allocate a temporary array for the output of the old function
VkQueueFamilyProperties *properties = loader_stack_alloc(*pQueueFamilyPropertyCount * sizeof(VkQueueFamilyProperties));
if (properties == NULL) {
*pQueueFamilyPropertyCount = 0;
loader_log(
icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkGetPhysicalDeviceQueueFamilyProperties2: Out of memory - Failed to allocate array for loader emulation.");
return;
}
icd_term->dispatch.GetPhysicalDeviceQueueFamilyProperties(phys_dev_term->phys_dev, pQueueFamilyPropertyCount,
properties);
for (uint32_t i = 0; i < *pQueueFamilyPropertyCount; ++i) {
// Write to the VkQueueFamilyProperties2KHR struct
memcpy(&pQueueFamilyProperties[i].queueFamilyProperties, &properties[i], sizeof(VkQueueFamilyProperties));
if (pQueueFamilyProperties[i].pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceQueueFamilyProperties2: Emulation found unrecognized structure type in "
"pQueueFamilyProperties[%d].pNext - this struct will be ignored",
i);
}
}
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceMemoryProperties2(
VkPhysicalDevice physicalDevice, VkPhysicalDeviceMemoryProperties2 *pMemoryProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceMemoryProperties2 fpGetPhysicalDeviceMemoryProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceMemoryProperties2 = icd_term->dispatch.GetPhysicalDeviceMemoryProperties2KHR;
} else {
fpGetPhysicalDeviceMemoryProperties2 = icd_term->dispatch.GetPhysicalDeviceMemoryProperties2;
}
if (fpGetPhysicalDeviceMemoryProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceMemoryProperties2(phys_dev_term->phys_dev, pMemoryProperties);
} else {
// Emulate the call
loader_log(
icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceMemoryProperties2: Emulating call in ICD \"%s\" using vkGetPhysicalDeviceMemoryProperties",
icd_term->scanned_icd->lib_name);
// Write to the VkPhysicalDeviceMemoryProperties2 struct
icd_term->dispatch.GetPhysicalDeviceMemoryProperties(phys_dev_term->phys_dev, &pMemoryProperties->memoryProperties);
if (pMemoryProperties->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceMemoryProperties2: Emulation found unrecognized structure type in "
"pMemoryProperties->pNext - this struct will be ignored");
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceSparseImageFormatProperties2(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSparseImageFormatInfo2KHR *pFormatInfo, uint32_t *pPropertyCount,
VkSparseImageFormatProperties2KHR *pProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceSparseImageFormatProperties2 fpGetPhysicalDeviceSparseImageFormatProperties2 = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_get_physical_device_properties2) {
fpGetPhysicalDeviceSparseImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties2KHR;
} else {
fpGetPhysicalDeviceSparseImageFormatProperties2 = icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties2;
}
if (fpGetPhysicalDeviceSparseImageFormatProperties2 != NULL || !inst->enabled_known_extensions.khr_get_physical_device_properties2) {
// Pass the call to the driver
fpGetPhysicalDeviceSparseImageFormatProperties2(phys_dev_term->phys_dev, pFormatInfo, pPropertyCount, pProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceSparseImageFormatProperties2: Emulating call in ICD \"%s\" using "
"vkGetPhysicalDeviceSparseImageFormatProperties",
icd_term->scanned_icd->lib_name);
if (pFormatInfo->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceSparseImageFormatProperties2: Emulation found unrecognized structure type in "
"pFormatInfo->pNext - this struct will be ignored");
}
if (pProperties == NULL || *pPropertyCount == 0) {
// Write to pPropertyCount
icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties(
phys_dev_term->phys_dev, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples, pFormatInfo->usage,
pFormatInfo->tiling, pPropertyCount, NULL);
} else {
// Allocate a temporary array for the output of the old function
VkSparseImageFormatProperties *properties =
loader_stack_alloc(*pPropertyCount * sizeof(VkSparseImageMemoryRequirements));
if (properties == NULL) {
*pPropertyCount = 0;
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_ERROR_BIT_EXT, 0,
"vkGetPhysicalDeviceSparseImageFormatProperties2: Out of memory - Failed to allocate array for "
"loader emulation.");
return;
}
icd_term->dispatch.GetPhysicalDeviceSparseImageFormatProperties(
phys_dev_term->phys_dev, pFormatInfo->format, pFormatInfo->type, pFormatInfo->samples, pFormatInfo->usage,
pFormatInfo->tiling, pPropertyCount, properties);
for (uint32_t i = 0; i < *pPropertyCount; ++i) {
// Write to the VkSparseImageFormatProperties2KHR struct
memcpy(&pProperties[i].properties, &properties[i], sizeof(VkSparseImageFormatProperties));
if (pProperties[i].pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceSparseImageFormatProperties2: Emulation found unrecognized structure type in "
"pProperties[%d].pNext - this struct will be ignored",
i);
}
}
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalBufferProperties(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalBufferInfo *pExternalBufferInfo,
VkExternalBufferProperties *pExternalBufferProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceExternalBufferProperties fpGetPhysicalDeviceExternalBufferProperties = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_external_memory_capabilities) {
fpGetPhysicalDeviceExternalBufferProperties = icd_term->dispatch.GetPhysicalDeviceExternalBufferPropertiesKHR;
} else {
fpGetPhysicalDeviceExternalBufferProperties = icd_term->dispatch.GetPhysicalDeviceExternalBufferProperties;
}
if (fpGetPhysicalDeviceExternalBufferProperties || !inst->enabled_known_extensions.khr_external_memory_capabilities) {
// Pass the call to the driver
fpGetPhysicalDeviceExternalBufferProperties(phys_dev_term->phys_dev, pExternalBufferInfo, pExternalBufferProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalBufferProperties: Emulating call in ICD \"%s\"", icd_term->scanned_icd->lib_name);
if (pExternalBufferInfo->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalBufferProperties: Emulation found unrecognized structure type in "
"pExternalBufferInfo->pNext - this struct will be ignored");
}
// Fill in everything being unsupported
memset(&pExternalBufferProperties->externalMemoryProperties, 0, sizeof(VkExternalMemoryPropertiesKHR));
if (pExternalBufferProperties->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalBufferProperties: Emulation found unrecognized structure type in "
"pExternalBufferProperties->pNext - this struct will be ignored");
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalSemaphoreProperties(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
VkExternalSemaphoreProperties *pExternalSemaphoreProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceExternalSemaphoreProperties fpGetPhysicalDeviceExternalSemaphoreProperties = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_external_semaphore_capabilities) {
fpGetPhysicalDeviceExternalSemaphoreProperties = icd_term->dispatch.GetPhysicalDeviceExternalSemaphorePropertiesKHR;
} else {
fpGetPhysicalDeviceExternalSemaphoreProperties = icd_term->dispatch.GetPhysicalDeviceExternalSemaphoreProperties;
}
if (fpGetPhysicalDeviceExternalSemaphoreProperties != NULL || !inst->enabled_known_extensions.khr_external_semaphore_capabilities) {
// Pass the call to the driver
fpGetPhysicalDeviceExternalSemaphoreProperties(phys_dev_term->phys_dev, pExternalSemaphoreInfo, pExternalSemaphoreProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalSemaphoreProperties: Emulating call in ICD \"%s\"",
icd_term->scanned_icd->lib_name);
if (pExternalSemaphoreInfo->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalSemaphoreProperties: Emulation found unrecognized structure type in "
"pExternalSemaphoreInfo->pNext - this struct will be ignored");
}
// Fill in everything being unsupported
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
if (pExternalSemaphoreProperties->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalSemaphoreProperties: Emulation found unrecognized structure type in "
"pExternalSemaphoreProperties->pNext - this struct will be ignored");
}
}
}
VKAPI_ATTR void VKAPI_CALL terminator_GetPhysicalDeviceExternalFenceProperties(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
VkExternalFenceProperties *pExternalFenceProperties) {
struct loader_physical_device_term *phys_dev_term = (struct loader_physical_device_term *)physicalDevice;
struct loader_icd_term *icd_term = phys_dev_term->this_icd_term;
const struct loader_instance *inst = icd_term->this_instance;
// Get the function pointer to use to call into the ICD. This could be the core or KHR version
PFN_vkGetPhysicalDeviceExternalFenceProperties fpGetPhysicalDeviceExternalFenceProperties = NULL;
if (inst != NULL && inst->enabled_known_extensions.khr_external_fence_capabilities) {
fpGetPhysicalDeviceExternalFenceProperties = icd_term->dispatch.GetPhysicalDeviceExternalFencePropertiesKHR;
} else {
fpGetPhysicalDeviceExternalFenceProperties = icd_term->dispatch.GetPhysicalDeviceExternalFenceProperties;
}
if (fpGetPhysicalDeviceExternalFenceProperties != NULL || !inst->enabled_known_extensions.khr_external_fence_capabilities) {
// Pass the call to the driver
fpGetPhysicalDeviceExternalFenceProperties(phys_dev_term->phys_dev, pExternalFenceInfo, pExternalFenceProperties);
} else {
// Emulate the call
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalFenceProperties: Emulating call in ICD \"%s\"", icd_term->scanned_icd->lib_name);
if (pExternalFenceInfo->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalFenceProperties: Emulation found unrecognized structure type in "
"pExternalFenceInfo->pNext - this struct will be ignored");
}
// Fill in everything being unsupported
pExternalFenceProperties->exportFromImportedHandleTypes = 0;
pExternalFenceProperties->compatibleHandleTypes = 0;
pExternalFenceProperties->externalFenceFeatures = 0;
if (pExternalFenceProperties->pNext != NULL) {
loader_log(icd_term->this_instance, VK_DEBUG_REPORT_WARNING_BIT_EXT, 0,
"vkGetPhysicalDeviceExternalFenceProperties: Emulation found unrecognized structure type in "
"pExternalFenceProperties->pNext - this struct will be ignored");
}
}
}