195 lines
4.5 KiB
GLSL
195 lines
4.5 KiB
GLSL
[compute]
|
|
|
|
#version 450
|
|
|
|
VERSION_DEFINES
|
|
|
|
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
|
|
|
|
#define MAX_DISTANCE 100000
|
|
|
|
#define NO_CHILDREN 0xFFFFFFFF
|
|
#define GREY_VEC vec3(0.33333,0.33333,0.33333)
|
|
|
|
struct CellChildren {
|
|
uint children[8];
|
|
};
|
|
|
|
layout(set=0,binding=1,std430) buffer CellChildrenBuffer {
|
|
CellChildren data[];
|
|
} cell_children;
|
|
|
|
|
|
struct CellData {
|
|
uint position; // xyz 10 bits
|
|
uint albedo; //rgb albedo
|
|
uint emission; //rgb normalized with e as multiplier
|
|
uint normal; //RGB normal encoded
|
|
};
|
|
|
|
layout(set=0,binding=2,std430) buffer CellDataBuffer {
|
|
CellData data[];
|
|
} cell_data;
|
|
|
|
layout (r8ui,set=0,binding=3) uniform restrict writeonly uimage3D sdf_tex;
|
|
|
|
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
|
uint offset;
|
|
uint end;
|
|
uint pad0;
|
|
uint pad1;
|
|
} params;
|
|
|
|
void main() {
|
|
|
|
vec3 pos = vec3(gl_GlobalInvocationID);
|
|
float closest_dist = 100000.0;
|
|
|
|
for(uint i=params.offset;i<params.end;i++) {
|
|
vec3 posu = vec3(uvec3(cell_data.data[i].position&0x7FF,(cell_data.data[i].position>>11)&0x3FF,cell_data.data[i].position>>21));
|
|
float dist = length(pos-posu);
|
|
if (dist < closest_dist) {
|
|
closest_dist = dist;
|
|
}
|
|
}
|
|
|
|
uint dist_8;
|
|
|
|
if (closest_dist<0.0001) { // same cell
|
|
dist_8=0; //equals to -1
|
|
} else {
|
|
dist_8 = clamp(uint(closest_dist),0,254) + 1; //conservative, 0 is 1, so <1 is considered solid
|
|
}
|
|
|
|
imageStore(sdf_tex,ivec3(gl_GlobalInvocationID),uvec4(dist_8));
|
|
//imageStore(sdf_tex,pos,uvec4(pos*2,0));
|
|
}
|
|
|
|
|
|
#if 0
|
|
layout(push_constant, binding = 0, std430) uniform Params {
|
|
|
|
ivec3 limits;
|
|
uint stack_size;
|
|
} params;
|
|
|
|
|
|
float distance_to_aabb(ivec3 pos, ivec3 aabb_pos, ivec3 aabb_size) {
|
|
|
|
vec3 delta = vec3(max(ivec3(0),max(aabb_pos - pos, pos - (aabb_pos + aabb_size - ivec3(1)))));
|
|
return length(delta);
|
|
}
|
|
|
|
void main() {
|
|
|
|
ivec3 pos = ivec3(gl_GlobalInvocationID);
|
|
|
|
uint stack[10]=uint[](0,0,0,0,0,0,0,0,0,0);
|
|
uint stack_indices[10]=uint[](0,0,0,0,0,0,0,0,0,0);
|
|
ivec3 stack_positions[10]=ivec3[](ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0),ivec3(0));
|
|
|
|
const uint cell_orders[8]=uint[](
|
|
0x11f58d1,
|
|
0xe2e70a,
|
|
0xd47463,
|
|
0xbb829c,
|
|
0x8d11f5,
|
|
0x70ae2e,
|
|
0x463d47,
|
|
0x29cbb8
|
|
);
|
|
|
|
bool cell_found = false;
|
|
bool cell_found_exact = false;
|
|
ivec3 closest_cell_pos;
|
|
float closest_distance = MAX_DISTANCE;
|
|
int stack_pos = 0;
|
|
|
|
while(true) {
|
|
|
|
uint index = stack_indices[stack_pos]>>24;
|
|
|
|
if (index == 8) {
|
|
//go up
|
|
if (stack_pos==0) {
|
|
break; //done going through octree
|
|
}
|
|
stack_pos--;
|
|
continue;
|
|
}
|
|
|
|
stack_indices[stack_pos] = (stack_indices[stack_pos]&((1<<24)-1))|((index + 1)<<24);
|
|
|
|
|
|
uint cell_index = (stack_indices[stack_pos]>>(index*3))&0x7;
|
|
uint child_cell = cell_children.data[stack[stack_pos]].children[cell_index];
|
|
|
|
if (child_cell == NO_CHILDREN) {
|
|
continue;
|
|
}
|
|
|
|
ivec3 child_cell_size = params.limits >> (stack_pos+1);
|
|
ivec3 child_cell_pos = stack_positions[stack_pos];
|
|
|
|
child_cell_pos+=mix(ivec3(0),child_cell_size,bvec3(uvec3(index&1,index&2,index&4)!=uvec3(0)));
|
|
|
|
bool is_leaf = stack_pos == (params.stack_size-2);
|
|
|
|
if (child_cell_pos==pos && is_leaf) {
|
|
//we may actually end up in the exact cell.
|
|
//if this happens, just abort
|
|
cell_found_exact=true;
|
|
break;
|
|
}
|
|
|
|
if (cell_found) {
|
|
//discard by distance
|
|
float distance = distance_to_aabb(pos,child_cell_pos,child_cell_size);
|
|
if (distance >= closest_distance) {
|
|
continue; //pointless, just test next child
|
|
} else if (is_leaf) {
|
|
//closer than what we have AND end of stack, save and continue
|
|
closest_cell_pos = child_cell_pos;
|
|
closest_distance = distance;
|
|
continue;
|
|
}
|
|
} else if (is_leaf) {
|
|
//first solid cell we find, save and continue
|
|
closest_distance = distance_to_aabb(pos,child_cell_pos,child_cell_size);
|
|
closest_cell_pos = child_cell_pos;
|
|
cell_found=true;
|
|
continue;
|
|
}
|
|
|
|
|
|
|
|
|
|
bvec3 direction = greaterThan(( pos - ( child_cell_pos + (child_cell_size >>1) ) ) , ivec3(0) );
|
|
uint cell_order = 0;
|
|
cell_order|=mix(0,1,direction.x);
|
|
cell_order|=mix(0,2,direction.y);
|
|
cell_order|=mix(0,4,direction.z);
|
|
|
|
stack[stack_pos+1]=child_cell;
|
|
stack_indices[stack_pos+1]=cell_orders[cell_order]; //start counting
|
|
stack_positions[stack_pos+1]=child_cell_pos;
|
|
stack_pos++; //go up stack
|
|
|
|
}
|
|
|
|
uint dist_8;
|
|
|
|
if (cell_found_exact) {
|
|
dist_8=0; //equals to -1
|
|
} else {
|
|
float closest_distance = length(vec3(pos-closest_cell_pos));
|
|
dist_8 = clamp(uint(closest_distance),0,254) + 1; //conservative, 0 is 1, so <1 is considered solid
|
|
}
|
|
|
|
imageStore(sdf_tex,pos,uvec4(dist_8));
|
|
|
|
}
|
|
#endif
|