godot/drivers/gles3/storage/material_storage.cpp

3644 lines
123 KiB
C++

/**************************************************************************/
/* material_storage.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifdef GLES3_ENABLED
#include "core/config/project_settings.h"
#include "config.h"
#include "material_storage.h"
#include "particles_storage.h"
#include "texture_storage.h"
#include "drivers/gles3/rasterizer_canvas_gles3.h"
#include "drivers/gles3/rasterizer_gles3.h"
using namespace GLES3;
///////////////////////////////////////////////////////////////////////////
// UBI helper functions
_FORCE_INLINE_ static void _fill_std140_variant_ubo_value(ShaderLanguage::DataType type, int p_array_size, const Variant &value, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
const PackedInt32Array &ba = value;
int s = ba.size();
const int *r = ba.ptr();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = (r[i] != 0) ? 1 : 0;
} else {
gui[j] = 0;
}
gui[j + 1] = 0; // ignored
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
bool v = value;
gui[0] = v ? 1 : 0;
}
} break;
case ShaderLanguage::TYPE_BVEC2: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
const PackedInt32Array &ba = value;
int s = ba.size();
const int *r = ba.ptr();
int count = 2 * p_array_size;
for (int i = 0, j = 0; i < count; i += 2, j += 4) {
if (i < s) {
gui[j] = r[i] ? 1 : 0;
gui[j + 1] = r[i + 1] ? 1 : 0;
} else {
gui[j] = 0;
gui[j + 1] = 0;
}
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
uint32_t v = value;
gui[0] = v & 1 ? 1 : 0;
gui[1] = v & 2 ? 1 : 0;
}
} break;
case ShaderLanguage::TYPE_BVEC3: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
const PackedInt32Array &ba = value;
int s = ba.size();
const int *r = ba.ptr();
int count = 3 * p_array_size;
for (int i = 0, j = 0; i < count; i += 3, j += 4) {
if (i < s) {
gui[j] = r[i] ? 1 : 0;
gui[j + 1] = r[i + 1] ? 1 : 0;
gui[j + 2] = r[i + 2] ? 1 : 0;
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
}
gui[j + 3] = 0; // ignored
}
} else {
uint32_t v = value;
gui[0] = (v & 1) ? 1 : 0;
gui[1] = (v & 2) ? 1 : 0;
gui[2] = (v & 4) ? 1 : 0;
}
} break;
case ShaderLanguage::TYPE_BVEC4: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
const PackedInt32Array &ba = value;
int s = ba.size();
const int *r = ba.ptr();
int count = 4 * p_array_size;
for (int i = 0; i < count; i += 4) {
if (i < s) {
gui[i] = r[i] ? 1 : 0;
gui[i + 1] = r[i + 1] ? 1 : 0;
gui[i + 2] = r[i + 2] ? 1 : 0;
gui[i + 3] = r[i + 3] ? 1 : 0;
} else {
gui[i] = 0;
gui[i + 1] = 0;
gui[i + 2] = 0;
gui[i + 3] = 0;
}
}
} else {
uint32_t v = value;
gui[0] = (v & 1) ? 1 : 0;
gui[1] = (v & 2) ? 1 : 0;
gui[2] = (v & 4) ? 1 : 0;
gui[3] = (v & 8) ? 1 : 0;
}
} break;
case ShaderLanguage::TYPE_INT: {
int32_t *gui = (int32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
const int *r = iv.ptr();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = r[i];
} else {
gui[j] = 0;
}
gui[j + 1] = 0; // ignored
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
int v = value;
gui[0] = v;
}
} break;
case ShaderLanguage::TYPE_IVEC2: {
int32_t *gui = (int32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 2 * p_array_size;
const int *r = iv.ptr();
for (int i = 0, j = 0; i < count; i += 2, j += 4) {
if (i < s) {
gui[j] = r[i];
gui[j + 1] = r[i + 1];
} else {
gui[j] = 0;
gui[j + 1] = 0;
}
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
Vector2i v = value;
gui[0] = v.x;
gui[1] = v.y;
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
int32_t *gui = (int32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 3 * p_array_size;
const int *r = iv.ptr();
for (int i = 0, j = 0; i < count; i += 3, j += 4) {
if (i < s) {
gui[j] = r[i];
gui[j + 1] = r[i + 1];
gui[j + 2] = r[i + 2];
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
}
gui[j + 3] = 0; // ignored
}
} else {
Vector3i v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
int32_t *gui = (int32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 4 * p_array_size;
const int *r = iv.ptr();
for (int i = 0; i < count; i += 4) {
if (i < s) {
gui[i] = r[i];
gui[i + 1] = r[i + 1];
gui[i + 2] = r[i + 2];
gui[i + 3] = r[i + 3];
} else {
gui[i] = 0;
gui[i + 1] = 0;
gui[i + 2] = 0;
gui[i + 3] = 0;
}
}
} else {
Vector4i v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
}
} break;
case ShaderLanguage::TYPE_UINT: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
const int *r = iv.ptr();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = r[i];
} else {
gui[j] = 0;
}
gui[j + 1] = 0; // ignored
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
int v = value;
gui[0] = v;
}
} break;
case ShaderLanguage::TYPE_UVEC2: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 2 * p_array_size;
const int *r = iv.ptr();
for (int i = 0, j = 0; i < count; i += 2, j += 4) {
if (i < s) {
gui[j] = r[i];
gui[j + 1] = r[i + 1];
} else {
gui[j] = 0;
gui[j + 1] = 0;
}
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
Vector2i v = value;
gui[0] = v.x;
gui[1] = v.y;
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 3 * p_array_size;
const int *r = iv.ptr();
for (int i = 0, j = 0; i < count; i += 3, j += 4) {
if (i < s) {
gui[j] = r[i];
gui[j + 1] = r[i + 1];
gui[j + 2] = r[i + 2];
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
}
gui[j + 3] = 0; // ignored
}
} else {
Vector3i v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
uint32_t *gui = (uint32_t *)data;
if (p_array_size > 0) {
Vector<int> iv = value;
int s = iv.size();
int count = 4 * p_array_size;
const int *r = iv.ptr();
for (int i = 0; i < count; i++) {
if (i < s) {
gui[i] = r[i];
gui[i + 1] = r[i + 1];
gui[i + 2] = r[i + 2];
gui[i + 3] = r[i + 3];
} else {
gui[i] = 0;
gui[i + 1] = 0;
gui[i + 2] = 0;
gui[i + 3] = 0;
}
}
} else {
Vector4i v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
float *gui = (float *)data;
if (p_array_size > 0) {
const PackedFloat32Array &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = a[i];
} else {
gui[j] = 0;
}
gui[j + 1] = 0; // ignored
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
float v = value;
gui[0] = v;
}
} break;
case ShaderLanguage::TYPE_VEC2: {
float *gui = (float *)data;
if (p_array_size > 0) {
const PackedVector2Array &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = a[i].x;
gui[j + 1] = a[i].y;
} else {
gui[j] = 0;
gui[j + 1] = 0;
}
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
}
} else {
Vector2 v = value;
gui[0] = v.x;
gui[1] = v.y;
}
} break;
case ShaderLanguage::TYPE_VEC3: {
float *gui = (float *)data;
if (p_array_size > 0) {
if (value.get_type() == Variant::PACKED_COLOR_ARRAY) {
const PackedColorArray &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
Color color = a[i];
gui[j] = color.r;
gui[j + 1] = color.g;
gui[j + 2] = color.b;
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
}
gui[j + 3] = 0; // ignored
}
} else {
const PackedVector3Array &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
gui[j] = a[i].x;
gui[j + 1] = a[i].y;
gui[j + 2] = a[i].z;
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
}
gui[j + 3] = 0; // ignored
}
}
} else {
if (value.get_type() == Variant::COLOR) {
Color v = value;
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
} else {
Vector3 v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
}
}
} break;
case ShaderLanguage::TYPE_VEC4: {
float *gui = (float *)data;
if (p_array_size > 0) {
if (value.get_type() == Variant::PACKED_COLOR_ARRAY) {
const PackedColorArray &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size; i++, j += 4) {
if (i < s) {
Color color = a[i];
gui[j] = color.r;
gui[j + 1] = color.g;
gui[j + 2] = color.b;
gui[j + 3] = color.a;
} else {
gui[j] = 0;
gui[j + 1] = 0;
gui[j + 2] = 0;
gui[j + 3] = 0;
}
}
} else {
const PackedFloat32Array &a = value;
int s = a.size();
int count = 4 * p_array_size;
for (int i = 0; i < count; i += 4) {
if (i + 3 < s) {
gui[i] = a[i];
gui[i + 1] = a[i + 1];
gui[i + 2] = a[i + 2];
gui[i + 3] = a[i + 3];
} else {
gui[i] = 0;
gui[i + 1] = 0;
gui[i + 2] = 0;
gui[i + 3] = 0;
}
}
}
} else {
if (value.get_type() == Variant::COLOR) {
Color v = value;
gui[0] = v.r;
gui[1] = v.g;
gui[2] = v.b;
gui[3] = v.a;
} else if (value.get_type() == Variant::RECT2) {
Rect2 v = value;
gui[0] = v.position.x;
gui[1] = v.position.y;
gui[2] = v.size.x;
gui[3] = v.size.y;
} else if (value.get_type() == Variant::QUATERNION) {
Quaternion v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
} else if (value.get_type() == Variant::VECTOR4) {
Vector4 v = value;
gui[0] = v.x;
gui[1] = v.y;
gui[2] = v.z;
gui[3] = v.w;
} else {
Plane v = value;
gui[0] = v.normal.x;
gui[1] = v.normal.y;
gui[2] = v.normal.z;
gui[3] = v.d;
}
}
} break;
case ShaderLanguage::TYPE_MAT2: {
float *gui = (float *)data;
if (p_array_size > 0) {
const PackedFloat32Array &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size * 4; i += 4, j += 8) {
if (i + 3 < s) {
gui[j] = a[i];
gui[j + 1] = a[i + 1];
gui[j + 4] = a[i + 2];
gui[j + 5] = a[i + 3];
} else {
gui[j] = 1;
gui[j + 1] = 0;
gui[j + 4] = 0;
gui[j + 5] = 1;
}
gui[j + 2] = 0; // ignored
gui[j + 3] = 0; // ignored
gui[j + 6] = 0; // ignored
gui[j + 7] = 0; // ignored
}
} else {
Transform2D v = value;
//in std140 members of mat2 are treated as vec4s
gui[0] = v.columns[0][0];
gui[1] = v.columns[0][1];
gui[2] = 0; // ignored
gui[3] = 0; // ignored
gui[4] = v.columns[1][0];
gui[5] = v.columns[1][1];
gui[6] = 0; // ignored
gui[7] = 0; // ignored
}
} break;
case ShaderLanguage::TYPE_MAT3: {
float *gui = (float *)data;
if (p_array_size > 0) {
const PackedFloat32Array &a = value;
int s = a.size();
for (int i = 0, j = 0; i < p_array_size * 9; i += 9, j += 12) {
if (i + 8 < s) {
gui[j] = a[i];
gui[j + 1] = a[i + 1];
gui[j + 2] = a[i + 2];
gui[j + 4] = a[i + 3];
gui[j + 5] = a[i + 4];
gui[j + 6] = a[i + 5];
gui[j + 8] = a[i + 6];
gui[j + 9] = a[i + 7];
gui[j + 10] = a[i + 8];
} else {
gui[j] = 1;
gui[j + 1] = 0;
gui[j + 2] = 0;
gui[j + 4] = 0;
gui[j + 5] = 1;
gui[j + 6] = 0;
gui[j + 8] = 0;
gui[j + 9] = 0;
gui[j + 10] = 1;
}
gui[j + 3] = 0; // ignored
gui[j + 7] = 0; // ignored
gui[j + 11] = 0; // ignored
}
} else {
Basis v = value;
gui[0] = v.rows[0][0];
gui[1] = v.rows[1][0];
gui[2] = v.rows[2][0];
gui[3] = 0; // ignored
gui[4] = v.rows[0][1];
gui[5] = v.rows[1][1];
gui[6] = v.rows[2][1];
gui[7] = 0; // ignored
gui[8] = v.rows[0][2];
gui[9] = v.rows[1][2];
gui[10] = v.rows[2][2];
gui[11] = 0; // ignored
}
} break;
case ShaderLanguage::TYPE_MAT4: {
float *gui = (float *)data;
if (p_array_size > 0) {
const PackedFloat32Array &a = value;
int s = a.size();
for (int i = 0; i < p_array_size * 16; i += 16) {
if (i + 15 < s) {
gui[i] = a[i];
gui[i + 1] = a[i + 1];
gui[i + 2] = a[i + 2];
gui[i + 3] = a[i + 3];
gui[i + 4] = a[i + 4];
gui[i + 5] = a[i + 5];
gui[i + 6] = a[i + 6];
gui[i + 7] = a[i + 7];
gui[i + 8] = a[i + 8];
gui[i + 9] = a[i + 9];
gui[i + 10] = a[i + 10];
gui[i + 11] = a[i + 11];
gui[i + 12] = a[i + 12];
gui[i + 13] = a[i + 13];
gui[i + 14] = a[i + 14];
gui[i + 15] = a[i + 15];
} else {
gui[i] = 1;
gui[i + 1] = 0;
gui[i + 2] = 0;
gui[i + 3] = 0;
gui[i + 4] = 0;
gui[i + 5] = 1;
gui[i + 6] = 0;
gui[i + 7] = 0;
gui[i + 8] = 0;
gui[i + 9] = 0;
gui[i + 10] = 1;
gui[i + 11] = 0;
gui[i + 12] = 0;
gui[i + 13] = 0;
gui[i + 14] = 0;
gui[i + 15] = 1;
}
}
} else if (value.get_type() == Variant::TRANSFORM3D) {
Transform3D v = value;
gui[0] = v.basis.rows[0][0];
gui[1] = v.basis.rows[1][0];
gui[2] = v.basis.rows[2][0];
gui[3] = 0;
gui[4] = v.basis.rows[0][1];
gui[5] = v.basis.rows[1][1];
gui[6] = v.basis.rows[2][1];
gui[7] = 0;
gui[8] = v.basis.rows[0][2];
gui[9] = v.basis.rows[1][2];
gui[10] = v.basis.rows[2][2];
gui[11] = 0;
gui[12] = v.origin.x;
gui[13] = v.origin.y;
gui[14] = v.origin.z;
gui[15] = 1;
} else {
Projection v = value;
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
gui[i * 4 + j] = v.columns[i][j];
}
}
}
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_value(ShaderLanguage::DataType type, const Vector<ShaderLanguage::ConstantNode::Value> &value, uint8_t *data) {
switch (type) {
case ShaderLanguage::TYPE_BOOL: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC2: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC3: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
gui[2] = value[2].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_BVEC4: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].boolean ? 1 : 0;
gui[1] = value[1].boolean ? 1 : 0;
gui[2] = value[2].boolean ? 1 : 0;
gui[3] = value[3].boolean ? 1 : 0;
} break;
case ShaderLanguage::TYPE_INT: {
int32_t *gui = (int32_t *)data;
gui[0] = value[0].sint;
} break;
case ShaderLanguage::TYPE_IVEC2: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC3: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_IVEC4: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].sint;
}
} break;
case ShaderLanguage::TYPE_UINT: {
uint32_t *gui = (uint32_t *)data;
gui[0] = value[0].uint;
} break;
case ShaderLanguage::TYPE_UVEC2: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC3: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_UVEC4: {
int32_t *gui = (int32_t *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].uint;
}
} break;
case ShaderLanguage::TYPE_FLOAT: {
float *gui = (float *)data;
gui[0] = value[0].real;
} break;
case ShaderLanguage::TYPE_VEC2: {
float *gui = (float *)data;
for (int i = 0; i < 2; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC3: {
float *gui = (float *)data;
for (int i = 0; i < 3; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_VEC4: {
float *gui = (float *)data;
for (int i = 0; i < 4; i++) {
gui[i] = value[i].real;
}
} break;
case ShaderLanguage::TYPE_MAT2: {
float *gui = (float *)data;
//in std140 members of mat2 are treated as vec4s
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = 0;
gui[3] = 0;
gui[4] = value[2].real;
gui[5] = value[3].real;
gui[6] = 0;
gui[7] = 0;
} break;
case ShaderLanguage::TYPE_MAT3: {
float *gui = (float *)data;
gui[0] = value[0].real;
gui[1] = value[1].real;
gui[2] = value[2].real;
gui[3] = 0;
gui[4] = value[3].real;
gui[5] = value[4].real;
gui[6] = value[5].real;
gui[7] = 0;
gui[8] = value[6].real;
gui[9] = value[7].real;
gui[10] = value[8].real;
gui[11] = 0;
} break;
case ShaderLanguage::TYPE_MAT4: {
float *gui = (float *)data;
for (int i = 0; i < 16; i++) {
gui[i] = value[i].real;
}
} break;
default: {
}
}
}
_FORCE_INLINE_ static void _fill_std140_ubo_empty(ShaderLanguage::DataType type, int p_array_size, uint8_t *data) {
if (p_array_size <= 0) {
p_array_size = 1;
}
switch (type) {
case ShaderLanguage::TYPE_BOOL:
case ShaderLanguage::TYPE_INT:
case ShaderLanguage::TYPE_UINT:
case ShaderLanguage::TYPE_FLOAT: {
memset(data, 0, 4 * p_array_size);
} break;
case ShaderLanguage::TYPE_BVEC2:
case ShaderLanguage::TYPE_IVEC2:
case ShaderLanguage::TYPE_UVEC2:
case ShaderLanguage::TYPE_VEC2: {
memset(data, 0, 8 * p_array_size);
} break;
case ShaderLanguage::TYPE_BVEC3:
case ShaderLanguage::TYPE_IVEC3:
case ShaderLanguage::TYPE_UVEC3:
case ShaderLanguage::TYPE_VEC3: {
memset(data, 0, 12 * p_array_size);
} break;
case ShaderLanguage::TYPE_BVEC4:
case ShaderLanguage::TYPE_IVEC4:
case ShaderLanguage::TYPE_UVEC4:
case ShaderLanguage::TYPE_VEC4: {
memset(data, 0, 16 * p_array_size);
} break;
case ShaderLanguage::TYPE_MAT2: {
memset(data, 0, 32 * p_array_size);
} break;
case ShaderLanguage::TYPE_MAT3: {
memset(data, 0, 48 * p_array_size);
} break;
case ShaderLanguage::TYPE_MAT4: {
memset(data, 0, 64 * p_array_size);
} break;
default: {
}
}
}
///////////////////////////////////////////////////////////////////////////
// ShaderData
void ShaderData::set_path_hint(const String &p_hint) {
path = p_hint;
}
void ShaderData::set_default_texture_parameter(const StringName &p_name, RID p_texture, int p_index) {
if (!p_texture.is_valid()) {
if (default_texture_params.has(p_name) && default_texture_params[p_name].has(p_index)) {
default_texture_params[p_name].erase(p_index);
if (default_texture_params[p_name].is_empty()) {
default_texture_params.erase(p_name);
}
}
} else {
if (!default_texture_params.has(p_name)) {
default_texture_params[p_name] = HashMap<int, RID>();
}
default_texture_params[p_name][p_index] = p_texture;
}
}
Variant ShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.array_size, uniform.hint);
}
return Variant();
}
void ShaderData::get_shader_uniform_list(List<PropertyInfo> *p_param_list) const {
SortArray<Pair<StringName, int>, ShaderLanguage::UniformOrderComparator> sorter;
LocalVector<Pair<StringName, int>> filtered_uniforms;
for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_LOCAL) {
continue;
}
if (E.value.texture_order >= 0) {
filtered_uniforms.push_back(Pair<StringName, int>(E.key, E.value.texture_order + 100000));
} else {
filtered_uniforms.push_back(Pair<StringName, int>(E.key, E.value.order));
}
}
int uniform_count = filtered_uniforms.size();
sorter.sort(filtered_uniforms.ptr(), uniform_count);
String last_group;
for (int i = 0; i < uniform_count; i++) {
const StringName &uniform_name = filtered_uniforms[i].first;
const ShaderLanguage::ShaderNode::Uniform &uniform = uniforms[uniform_name];
String group = uniform.group;
if (!uniform.subgroup.is_empty()) {
group += "::" + uniform.subgroup;
}
if (group != last_group) {
PropertyInfo pi;
pi.usage = PROPERTY_USAGE_GROUP;
pi.name = group;
p_param_list->push_back(pi);
last_group = group;
}
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniform);
pi.name = uniform_name;
p_param_list->push_back(pi);
}
}
void ShaderData::get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const {
for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
RendererMaterialStorage::InstanceShaderParam p;
p.info = ShaderLanguage::uniform_to_property_info(E.value);
p.info.name = E.key; //supply name
p.index = E.value.instance_index;
p.default_value = ShaderLanguage::constant_value_to_variant(E.value.default_value, E.value.type, E.value.array_size, E.value.hint);
p_param_list->push_back(p);
}
}
bool ShaderData::is_parameter_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
///////////////////////////////////////////////////////////////////////////
// MaterialData
// Look up table to translate ShaderLanguage::DataType to GL_TEXTURE_*
static const GLenum target_from_type[ShaderLanguage::TYPE_MAX] = {
GL_TEXTURE_2D, // TYPE_VOID,
GL_TEXTURE_2D, // TYPE_BOOL,
GL_TEXTURE_2D, // TYPE_BVEC2,
GL_TEXTURE_2D, // TYPE_BVEC3,
GL_TEXTURE_2D, // TYPE_BVEC4,
GL_TEXTURE_2D, // TYPE_INT,
GL_TEXTURE_2D, // TYPE_IVEC2,
GL_TEXTURE_2D, // TYPE_IVEC3,
GL_TEXTURE_2D, // TYPE_IVEC4,
GL_TEXTURE_2D, // TYPE_UINT,
GL_TEXTURE_2D, // TYPE_UVEC2,
GL_TEXTURE_2D, // TYPE_UVEC3,
GL_TEXTURE_2D, // TYPE_UVEC4,
GL_TEXTURE_2D, // TYPE_FLOAT,
GL_TEXTURE_2D, // TYPE_VEC2,
GL_TEXTURE_2D, // TYPE_VEC3,
GL_TEXTURE_2D, // TYPE_VEC4,
GL_TEXTURE_2D, // TYPE_MAT2,
GL_TEXTURE_2D, // TYPE_MAT3,
GL_TEXTURE_2D, // TYPE_MAT4,
GL_TEXTURE_2D, // TYPE_SAMPLER2D,
GL_TEXTURE_2D, // TYPE_ISAMPLER2D,
GL_TEXTURE_2D, // TYPE_USAMPLER2D,
GL_TEXTURE_2D_ARRAY, // TYPE_SAMPLER2DARRAY,
GL_TEXTURE_2D_ARRAY, // TYPE_ISAMPLER2DARRAY,
GL_TEXTURE_2D_ARRAY, // TYPE_USAMPLER2DARRAY,
GL_TEXTURE_3D, // TYPE_SAMPLER3D,
GL_TEXTURE_3D, // TYPE_ISAMPLER3D,
GL_TEXTURE_3D, // TYPE_USAMPLER3D,
GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBE,
GL_TEXTURE_CUBE_MAP, // TYPE_SAMPLERCUBEARRAY,
GL_TEXTURE_2D, // TYPE_STRUCT
};
static const RS::CanvasItemTextureRepeat repeat_from_uniform[ShaderLanguage::REPEAT_DEFAULT + 1] = {
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED, // ShaderLanguage::TextureRepeat::REPEAT_DISABLE,
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED, // ShaderLanguage::TextureRepeat::REPEAT_ENABLE,
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED, // ShaderLanguage::TextureRepeat::REPEAT_DEFAULT,
};
static const RS::CanvasItemTextureRepeat repeat_from_uniform_canvas[ShaderLanguage::REPEAT_DEFAULT + 1] = {
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED, // ShaderLanguage::TextureRepeat::REPEAT_DISABLE,
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED, // ShaderLanguage::TextureRepeat::REPEAT_ENABLE,
RS::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED, // ShaderLanguage::TextureRepeat::REPEAT_DEFAULT,
};
static const RS::CanvasItemTextureFilter filter_from_uniform[ShaderLanguage::FILTER_DEFAULT + 1] = {
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, // ShaderLanguage::TextureFilter::FILTER_NEAREST,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, // ShaderLanguage::TextureFilter::FILTER_LINEAR,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, // ShaderLanguage::TextureFilter::FILTER_NEAREST_MIPMAP,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, // ShaderLanguage::TextureFilter::FILTER_LINEAR_MIPMAP,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, // ShaderLanguage::TextureFilter::FILTER_NEAREST_MIPMAP_ANISOTROPIC,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, // ShaderLanguage::TextureFilter::FILTER_LINEAR_MIPMAP_ANISOTROPIC,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, // ShaderLanguage::TextureFilter::FILTER_DEFAULT,
};
static const RS::CanvasItemTextureFilter filter_from_uniform_canvas[ShaderLanguage::FILTER_DEFAULT + 1] = {
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, // ShaderLanguage::TextureFilter::FILTER_NEAREST,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, // ShaderLanguage::TextureFilter::FILTER_LINEAR,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, // ShaderLanguage::TextureFilter::FILTER_NEAREST_MIPMAP,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, // ShaderLanguage::TextureFilter::FILTER_LINEAR_MIPMAP,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, // ShaderLanguage::TextureFilter::FILTER_NEAREST_MIPMAP_ANISOTROPIC,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, // ShaderLanguage::TextureFilter::FILTER_LINEAR_MIPMAP_ANISOTROPIC,
RS::CanvasItemTextureFilter::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, // ShaderLanguage::TextureFilter::FILTER_DEFAULT,
};
void MaterialData::update_uniform_buffer(const HashMap<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const HashMap<StringName, Variant> &p_parameters, uint8_t *p_buffer, uint32_t p_buffer_size, bool p_use_linear_color) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
bool uses_global_buffer = false;
for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : p_uniforms) {
if (E.value.order < 0) {
continue; // texture, does not go here
}
if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue; //instance uniforms don't appear in the buffer
}
if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) {
//this is a global variable, get the index to it
GlobalShaderUniforms::Variable *gv = material_storage->global_shader_uniforms.variables.getptr(E.key);
uint32_t index = 0;
if (gv) {
index = gv->buffer_index;
} else {
WARN_PRINT("Shader uses global parameter '" + E.key + "', but it was removed at some point. Material will not display correctly.");
}
uint32_t offset = p_uniform_offsets[E.value.order];
uint32_t *intptr = (uint32_t *)&p_buffer[offset];
*intptr = index;
uses_global_buffer = true;
continue;
}
//regular uniform
uint32_t offset = p_uniform_offsets[E.value.order];
#ifdef DEBUG_ENABLED
uint32_t size = 0U;
// The following code enforces a 16-byte alignment of uniform arrays.
if (E.value.array_size > 0) {
size = ShaderLanguage::get_datatype_size(E.value.type) * E.value.array_size;
int m = (16 * E.value.array_size);
if ((size % m) != 0U) {
size += m - (size % m);
}
} else {
size = ShaderLanguage::get_datatype_size(E.value.type);
}
ERR_CONTINUE(offset + size > p_buffer_size);
#endif
uint8_t *data = &p_buffer[offset];
HashMap<StringName, Variant>::ConstIterator V = p_parameters.find(E.key);
if (V) {
//user provided
_fill_std140_variant_ubo_value(E.value.type, E.value.array_size, V->value, data);
} else if (E.value.default_value.size()) {
//default value
_fill_std140_ubo_value(E.value.type, E.value.default_value, data);
//value=E.value.default_value;
} else {
//zero because it was not provided
if ((E.value.type == ShaderLanguage::TYPE_VEC3 || E.value.type == ShaderLanguage::TYPE_VEC4) && E.value.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SOURCE_COLOR) {
//colors must be set as black, with alpha as 1.0
_fill_std140_variant_ubo_value(E.value.type, E.value.array_size, Color(0, 0, 0, 1), data);
} else {
//else just zero it out
_fill_std140_ubo_empty(E.value.type, E.value.array_size, data);
}
}
}
if (uses_global_buffer != (global_buffer_E != nullptr)) {
if (uses_global_buffer) {
global_buffer_E = material_storage->global_shader_uniforms.materials_using_buffer.push_back(self);
} else {
material_storage->global_shader_uniforms.materials_using_buffer.erase(global_buffer_E);
global_buffer_E = nullptr;
}
}
}
MaterialData::~MaterialData() {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
if (global_buffer_E) {
//unregister global buffers
material_storage->global_shader_uniforms.materials_using_buffer.erase(global_buffer_E);
}
if (global_texture_E) {
//unregister global textures
for (const KeyValue<StringName, uint64_t> &E : used_global_textures) {
GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(E.key);
if (v) {
v->texture_materials.erase(self);
}
}
//unregister material from those using global textures
material_storage->global_shader_uniforms.materials_using_texture.erase(global_texture_E);
}
if (uniform_buffer) {
glDeleteBuffers(1, &uniform_buffer);
uniform_buffer = 0;
}
}
void MaterialData::update_textures(const HashMap<StringName, Variant> &p_parameters, const HashMap<StringName, HashMap<int, RID>> &p_default_textures, const Vector<ShaderCompiler::GeneratedCode::Texture> &p_texture_uniforms, RID *p_textures, bool p_use_linear_color) {
TextureStorage *texture_storage = TextureStorage::get_singleton();
MaterialStorage *material_storage = MaterialStorage::get_singleton();
#ifdef TOOLS_ENABLED
Texture *roughness_detect_texture = nullptr;
RS::TextureDetectRoughnessChannel roughness_channel = RS::TEXTURE_DETECT_ROUGHNESS_R;
Texture *normal_detect_texture = nullptr;
#endif
bool uses_global_textures = false;
global_textures_pass++;
for (int i = 0, k = 0; i < p_texture_uniforms.size(); i++) {
const StringName &uniform_name = p_texture_uniforms[i].name;
int uniform_array_size = p_texture_uniforms[i].array_size;
Vector<RID> textures;
if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE ||
p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE ||
p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) {
continue;
}
if (p_texture_uniforms[i].global) {
uses_global_textures = true;
GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(uniform_name);
if (v) {
if (v->buffer_index >= 0) {
WARN_PRINT("Shader uses global parameter texture '" + String(uniform_name) + "', but it changed type and is no longer a texture!.");
} else {
HashMap<StringName, uint64_t>::Iterator E = used_global_textures.find(uniform_name);
if (!E) {
E = used_global_textures.insert(uniform_name, global_textures_pass);
v->texture_materials.insert(self);
} else {
E->value = global_textures_pass;
}
textures.push_back(v->override.get_type() != Variant::NIL ? v->override : v->value);
}
} else {
WARN_PRINT("Shader uses global parameter texture '" + String(uniform_name) + "', but it was removed at some point. Material will not display correctly.");
}
} else {
HashMap<StringName, Variant>::ConstIterator V = p_parameters.find(uniform_name);
if (V) {
if (V->value.is_array()) {
Array array = (Array)V->value;
if (uniform_array_size > 0) {
for (int j = 0; j < array.size(); j++) {
textures.push_back(array[j]);
}
} else {
if (array.size() > 0) {
textures.push_back(array[0]);
}
}
} else {
textures.push_back(V->value);
}
}
if (uniform_array_size > 0) {
if (textures.size() < uniform_array_size) {
HashMap<StringName, HashMap<int, RID>>::ConstIterator W = p_default_textures.find(uniform_name);
for (int j = textures.size(); j < uniform_array_size; j++) {
if (W && W->value.has(j)) {
textures.push_back(W->value[j]);
} else {
textures.push_back(RID());
}
}
}
} else if (textures.is_empty()) {
HashMap<StringName, HashMap<int, RID>>::ConstIterator W = p_default_textures.find(uniform_name);
if (W && W->value.has(0)) {
textures.push_back(W->value[0]);
}
}
}
RID gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_WHITE);
if (textures.is_empty()) {
//check default usage
switch (p_texture_uniforms[i].type) {
case ShaderLanguage::TYPE_ISAMPLER2D:
case ShaderLanguage::TYPE_USAMPLER2D:
case ShaderLanguage::TYPE_SAMPLER2D: {
switch (p_texture_uniforms[i].hint) {
case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_BLACK: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_BLACK);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_TRANSPARENT: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_TRANSPARENT);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_ANISOTROPY: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_ANISO);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_NORMAL);
} break;
case ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_NORMAL);
} break;
default: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_WHITE);
} break;
}
} break;
case ShaderLanguage::TYPE_SAMPLERCUBE: {
switch (p_texture_uniforms[i].hint) {
case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_BLACK: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_CUBEMAP_BLACK);
} break;
default: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_CUBEMAP_WHITE);
} break;
}
} break;
case ShaderLanguage::TYPE_SAMPLERCUBEARRAY: {
ERR_PRINT_ONCE("Type: SamplerCubeArray not supported in OpenGL renderer, please use another type.");
} break;
case ShaderLanguage::TYPE_ISAMPLER3D:
case ShaderLanguage::TYPE_USAMPLER3D:
case ShaderLanguage::TYPE_SAMPLER3D: {
switch (p_texture_uniforms[i].hint) {
case ShaderLanguage::ShaderNode::Uniform::HINT_DEFAULT_BLACK: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_3D_BLACK);
} break;
default: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_3D_WHITE);
} break;
}
} break;
case ShaderLanguage::TYPE_ISAMPLER2DARRAY:
case ShaderLanguage::TYPE_USAMPLER2DARRAY:
case ShaderLanguage::TYPE_SAMPLER2DARRAY: {
gl_texture = texture_storage->texture_gl_get_default(DEFAULT_GL_TEXTURE_2D_ARRAY_WHITE);
} break;
default: {
}
}
#ifdef TOOLS_ENABLED
if (roughness_detect_texture && normal_detect_texture && !normal_detect_texture->path.is_empty()) {
roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel);
}
#endif
if (uniform_array_size > 0) {
for (int j = 0; j < uniform_array_size; j++) {
p_textures[k++] = gl_texture;
}
} else {
p_textures[k++] = gl_texture;
}
} else {
for (int j = 0; j < textures.size(); j++) {
Texture *tex = TextureStorage::get_singleton()->get_texture(textures[j]);
if (tex) {
gl_texture = textures[j];
#ifdef TOOLS_ENABLED
if (tex->detect_3d_callback && p_use_linear_color) {
tex->detect_3d_callback(tex->detect_3d_callback_ud);
}
if (tex->detect_normal_callback && (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL || p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL)) {
if (p_texture_uniforms[i].hint == ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_NORMAL) {
normal_detect_texture = tex;
}
tex->detect_normal_callback(tex->detect_normal_callback_ud);
}
if (tex->detect_roughness_callback && (p_texture_uniforms[i].hint >= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R || p_texture_uniforms[i].hint <= ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_GRAY)) {
//find the normal texture
roughness_detect_texture = tex;
roughness_channel = RS::TextureDetectRoughnessChannel(p_texture_uniforms[i].hint - ShaderLanguage::ShaderNode::Uniform::HINT_ROUGHNESS_R);
}
#endif
}
#ifdef TOOLS_ENABLED
if (roughness_detect_texture && normal_detect_texture && !normal_detect_texture->path.is_empty()) {
roughness_detect_texture->detect_roughness_callback(roughness_detect_texture->detect_roughness_callback_ud, normal_detect_texture->path, roughness_channel);
}
#endif
p_textures[k++] = gl_texture;
}
}
}
{
//for textures no longer used, unregister them
List<StringName> to_delete;
for (KeyValue<StringName, uint64_t> &E : used_global_textures) {
if (E.value != global_textures_pass) {
to_delete.push_back(E.key);
GlobalShaderUniforms::Variable *v = material_storage->global_shader_uniforms.variables.getptr(E.key);
if (v) {
v->texture_materials.erase(self);
}
}
}
while (to_delete.front()) {
used_global_textures.erase(to_delete.front()->get());
to_delete.pop_front();
}
//handle registering/unregistering global textures
if (uses_global_textures != (global_texture_E != nullptr)) {
if (uses_global_textures) {
global_texture_E = material_storage->global_shader_uniforms.materials_using_texture.push_back(self);
} else {
material_storage->global_shader_uniforms.materials_using_texture.erase(global_texture_E);
global_texture_E = nullptr;
}
}
}
}
void MaterialData::update_parameters_internal(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty, const HashMap<StringName, ShaderLanguage::ShaderNode::Uniform> &p_uniforms, const uint32_t *p_uniform_offsets, const Vector<ShaderCompiler::GeneratedCode::Texture> &p_texture_uniforms, const HashMap<StringName, HashMap<int, RID>> &p_default_texture_params, uint32_t p_ubo_size) {
if ((uint32_t)ubo_data.size() != p_ubo_size) {
p_uniform_dirty = true;
if (!uniform_buffer) {
glGenBuffers(1, &uniform_buffer);
}
ubo_data.resize(p_ubo_size);
if (ubo_data.size()) {
memset(ubo_data.ptrw(), 0, ubo_data.size()); //clear
}
}
//check whether buffer changed
if (p_uniform_dirty && ubo_data.size()) {
update_uniform_buffer(p_uniforms, p_uniform_offsets, p_parameters, ubo_data.ptrw(), ubo_data.size(), true);
glBindBuffer(GL_UNIFORM_BUFFER, uniform_buffer);
glBufferData(GL_UNIFORM_BUFFER, ubo_data.size(), ubo_data.ptrw(), GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
uint32_t tex_uniform_count = 0U;
for (int i = 0; i < p_texture_uniforms.size(); i++) {
tex_uniform_count += uint32_t(p_texture_uniforms[i].array_size > 0 ? p_texture_uniforms[i].array_size : 1);
}
if ((uint32_t)texture_cache.size() != tex_uniform_count || p_textures_dirty) {
texture_cache.resize(tex_uniform_count);
p_textures_dirty = true;
}
if (p_textures_dirty && tex_uniform_count) {
update_textures(p_parameters, p_default_texture_params, p_texture_uniforms, texture_cache.ptrw(), true);
}
}
///////////////////////////////////////////////////////////////////////////
// Material Storage
MaterialStorage *MaterialStorage::singleton = nullptr;
MaterialStorage *MaterialStorage::get_singleton() {
return singleton;
}
MaterialStorage::MaterialStorage() {
singleton = this;
shader_data_request_func[RS::SHADER_SPATIAL] = _create_scene_shader_func;
shader_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_shader_func;
shader_data_request_func[RS::SHADER_PARTICLES] = _create_particles_shader_func;
shader_data_request_func[RS::SHADER_SKY] = _create_sky_shader_func;
shader_data_request_func[RS::SHADER_FOG] = nullptr;
material_data_request_func[RS::SHADER_SPATIAL] = _create_scene_material_func;
material_data_request_func[RS::SHADER_CANVAS_ITEM] = _create_canvas_material_func;
material_data_request_func[RS::SHADER_PARTICLES] = _create_particles_material_func;
material_data_request_func[RS::SHADER_SKY] = _create_sky_material_func;
material_data_request_func[RS::SHADER_FOG] = nullptr;
static_assert(sizeof(GlobalShaderUniforms::Value) == 16);
global_shader_uniforms.buffer_size = MAX(4096, (int)GLOBAL_GET("rendering/limits/global_shader_variables/buffer_size"));
if (global_shader_uniforms.buffer_size > uint32_t(Config::get_singleton()->max_uniform_buffer_size)) {
global_shader_uniforms.buffer_size = uint32_t(Config::get_singleton()->max_uniform_buffer_size);
WARN_PRINT("Project setting: rendering/limits/global_shader_variables/buffer_size exceeds maximum uniform buffer size of: " + itos(Config::get_singleton()->max_uniform_buffer_size));
}
global_shader_uniforms.buffer_values = memnew_arr(GlobalShaderUniforms::Value, global_shader_uniforms.buffer_size);
memset(global_shader_uniforms.buffer_values, 0, sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size);
global_shader_uniforms.buffer_usage = memnew_arr(GlobalShaderUniforms::ValueUsage, global_shader_uniforms.buffer_size);
global_shader_uniforms.buffer_dirty_regions = memnew_arr(bool, global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE);
memset(global_shader_uniforms.buffer_dirty_regions, 0, sizeof(bool) * global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE);
glGenBuffers(1, &global_shader_uniforms.buffer);
glBindBuffer(GL_UNIFORM_BUFFER, global_shader_uniforms.buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size, nullptr, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
{
// Setup CanvasItem compiler
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["VERTEX"] = "vertex";
actions.renames["LIGHT_VERTEX"] = "light_vertex";
actions.renames["SHADOW_VERTEX"] = "shadow_vertex";
actions.renames["UV"] = "uv";
actions.renames["POINT_SIZE"] = "point_size";
actions.renames["MODEL_MATRIX"] = "model_matrix";
actions.renames["CANVAS_MATRIX"] = "canvas_transform";
actions.renames["SCREEN_MATRIX"] = "screen_transform";
actions.renames["TIME"] = "time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["AT_LIGHT_PASS"] = "false";
actions.renames["INSTANCE_CUSTOM"] = "instance_custom";
actions.renames["COLOR"] = "color";
actions.renames["NORMAL"] = "normal";
actions.renames["NORMAL_MAP"] = "normal_map";
actions.renames["NORMAL_MAP_DEPTH"] = "normal_map_depth";
actions.renames["TEXTURE"] = "color_texture";
actions.renames["TEXTURE_PIXEL_SIZE"] = "color_texture_pixel_size";
actions.renames["NORMAL_TEXTURE"] = "normal_texture";
actions.renames["SPECULAR_SHININESS_TEXTURE"] = "specular_texture";
actions.renames["SPECULAR_SHININESS"] = "specular_shininess";
actions.renames["SCREEN_UV"] = "screen_uv";
actions.renames["SCREEN_PIXEL_SIZE"] = "screen_pixel_size";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["POINT_COORD"] = "gl_PointCoord";
actions.renames["INSTANCE_ID"] = "gl_InstanceIndex";
actions.renames["VERTEX_ID"] = "gl_VertexIndex";
actions.renames["LIGHT_POSITION"] = "light_position";
actions.renames["LIGHT_DIRECTION"] = "light_direction";
actions.renames["LIGHT_IS_DIRECTIONAL"] = "is_directional";
actions.renames["LIGHT_COLOR"] = "light_color";
actions.renames["LIGHT_ENERGY"] = "light_energy";
actions.renames["LIGHT"] = "light";
actions.renames["SHADOW_MODULATE"] = "shadow_modulate";
actions.renames["texture_sdf"] = "texture_sdf";
actions.renames["texture_sdf_normal"] = "texture_sdf_normal";
actions.renames["sdf_to_screen_uv"] = "sdf_to_screen_uv";
actions.renames["screen_uv_to_sdf"] = "screen_uv_to_sdf";
actions.usage_defines["COLOR"] = "#define COLOR_USED\n";
actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n";
actions.usage_defines["SCREEN_PIXEL_SIZE"] = "@SCREEN_UV";
actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions.usage_defines["NORMAL_MAP"] = "#define NORMAL_MAP_USED\n";
actions.usage_defines["LIGHT"] = "#define LIGHT_SHADER_CODE_USED\n";
actions.usage_defines["SPECULAR_SHININESS"] = "#define SPECULAR_SHININESS_USED\n";
actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.render_mode_defines["light_only"] = "#define MODE_LIGHT_ONLY\n";
actions.global_buffer_array_variable = "global_shader_uniforms";
shaders.compiler_canvas.initialize(actions);
}
{
// Setup Scene compiler
//shader compiler
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["MODEL_MATRIX"] = "model_matrix";
actions.renames["MODEL_NORMAL_MATRIX"] = "model_normal_matrix";
actions.renames["VIEW_MATRIX"] = "scene_data.view_matrix";
actions.renames["INV_VIEW_MATRIX"] = "scene_data.inv_view_matrix";
actions.renames["PROJECTION_MATRIX"] = "projection_matrix";
actions.renames["INV_PROJECTION_MATRIX"] = "inv_projection_matrix";
actions.renames["MODELVIEW_MATRIX"] = "modelview";
actions.renames["MODELVIEW_NORMAL_MATRIX"] = "modelview_normal";
actions.renames["VERTEX"] = "vertex";
actions.renames["NORMAL"] = "normal";
actions.renames["TANGENT"] = "tangent";
actions.renames["BINORMAL"] = "binormal";
actions.renames["POSITION"] = "position";
actions.renames["UV"] = "uv_interp";
actions.renames["UV2"] = "uv2_interp";
actions.renames["COLOR"] = "color_interp";
actions.renames["POINT_SIZE"] = "point_size";
actions.renames["INSTANCE_ID"] = "gl_InstanceID";
actions.renames["VERTEX_ID"] = "gl_VertexID";
actions.renames["ALPHA_SCISSOR_THRESHOLD"] = "alpha_scissor_threshold";
actions.renames["ALPHA_HASH_SCALE"] = "alpha_hash_scale";
actions.renames["ALPHA_ANTIALIASING_EDGE"] = "alpha_antialiasing_edge";
actions.renames["ALPHA_TEXTURE_COORDINATE"] = "alpha_texture_coordinate";
//builtins
actions.renames["TIME"] = "scene_data.time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["VIEWPORT_SIZE"] = "scene_data.viewport_size";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["FRONT_FACING"] = "gl_FrontFacing";
actions.renames["NORMAL_MAP"] = "normal_map";
actions.renames["NORMAL_MAP_DEPTH"] = "normal_map_depth";
actions.renames["ALBEDO"] = "albedo";
actions.renames["ALPHA"] = "alpha";
actions.renames["METALLIC"] = "metallic";
actions.renames["SPECULAR"] = "specular";
actions.renames["ROUGHNESS"] = "roughness";
actions.renames["RIM"] = "rim";
actions.renames["RIM_TINT"] = "rim_tint";
actions.renames["CLEARCOAT"] = "clearcoat";
actions.renames["CLEARCOAT_ROUGHNESS"] = "clearcoat_roughness";
actions.renames["ANISOTROPY"] = "anisotropy";
actions.renames["ANISOTROPY_FLOW"] = "anisotropy_flow";
actions.renames["SSS_STRENGTH"] = "sss_strength";
actions.renames["SSS_TRANSMITTANCE_COLOR"] = "transmittance_color";
actions.renames["SSS_TRANSMITTANCE_DEPTH"] = "transmittance_depth";
actions.renames["SSS_TRANSMITTANCE_BOOST"] = "transmittance_boost";
actions.renames["BACKLIGHT"] = "backlight";
actions.renames["AO"] = "ao";
actions.renames["AO_LIGHT_AFFECT"] = "ao_light_affect";
actions.renames["EMISSION"] = "emission";
actions.renames["POINT_COORD"] = "gl_PointCoord";
actions.renames["INSTANCE_CUSTOM"] = "instance_custom";
actions.renames["SCREEN_UV"] = "screen_uv";
actions.renames["DEPTH"] = "gl_FragDepth";
actions.renames["OUTPUT_IS_SRGB"] = "true";
actions.renames["FOG"] = "fog";
actions.renames["RADIANCE"] = "custom_radiance";
actions.renames["IRRADIANCE"] = "custom_irradiance";
actions.renames["BONE_INDICES"] = "bone_attrib";
actions.renames["BONE_WEIGHTS"] = "weight_attrib";
actions.renames["CUSTOM0"] = "custom0_attrib";
actions.renames["CUSTOM1"] = "custom1_attrib";
actions.renames["CUSTOM2"] = "custom2_attrib";
actions.renames["CUSTOM3"] = "custom3_attrib";
actions.renames["OUTPUT_IS_SRGB"] = "SHADER_IS_SRGB";
actions.renames["NODE_POSITION_WORLD"] = "model_matrix[3].xyz";
actions.renames["CAMERA_POSITION_WORLD"] = "scene_data.inv_view_matrix[3].xyz";
actions.renames["CAMERA_DIRECTION_WORLD"] = "scene_data.view_matrix[3].xyz";
actions.renames["CAMERA_VISIBLE_LAYERS"] = "scene_data.camera_visible_layers";
actions.renames["NODE_POSITION_VIEW"] = "(model_matrix * scene_data.view_matrix)[3].xyz";
actions.renames["VIEW_INDEX"] = "ViewIndex";
actions.renames["VIEW_MONO_LEFT"] = "uint(0)";
actions.renames["VIEW_RIGHT"] = "uint(1)";
actions.renames["EYE_OFFSET"] = "eye_offset";
//for light
actions.renames["VIEW"] = "view";
actions.renames["LIGHT_COLOR"] = "light_color";
actions.renames["LIGHT"] = "light";
actions.renames["ATTENUATION"] = "attenuation";
actions.renames["DIFFUSE_LIGHT"] = "diffuse_light";
actions.renames["SPECULAR_LIGHT"] = "specular_light";
actions.usage_defines["NORMAL"] = "#define NORMAL_USED\n";
actions.usage_defines["TANGENT"] = "#define TANGENT_USED\n";
actions.usage_defines["BINORMAL"] = "@TANGENT";
actions.usage_defines["RIM"] = "#define LIGHT_RIM_USED\n";
actions.usage_defines["RIM_TINT"] = "@RIM";
actions.usage_defines["CLEARCOAT"] = "#define LIGHT_CLEARCOAT_USED\n";
actions.usage_defines["CLEARCOAT_ROUGHNESS"] = "@CLEARCOAT";
actions.usage_defines["ANISOTROPY"] = "#define LIGHT_ANISOTROPY_USED\n";
actions.usage_defines["ANISOTROPY_FLOW"] = "@ANISOTROPY";
actions.usage_defines["AO"] = "#define AO_USED\n";
actions.usage_defines["AO_LIGHT_AFFECT"] = "#define AO_USED\n";
actions.usage_defines["UV"] = "#define UV_USED\n";
actions.usage_defines["UV2"] = "#define UV2_USED\n";
actions.usage_defines["BONE_INDICES"] = "#define BONES_USED\n";
actions.usage_defines["BONE_WEIGHTS"] = "#define WEIGHTS_USED\n";
actions.usage_defines["CUSTOM0"] = "#define CUSTOM0_USED\n";
actions.usage_defines["CUSTOM1"] = "#define CUSTOM1_USED\n";
actions.usage_defines["CUSTOM2"] = "#define CUSTOM2_USED\n";
actions.usage_defines["CUSTOM3"] = "#define CUSTOM3_USED\n";
actions.usage_defines["NORMAL_MAP"] = "#define NORMAL_MAP_USED\n";
actions.usage_defines["NORMAL_MAP_DEPTH"] = "@NORMAL_MAP";
actions.usage_defines["COLOR"] = "#define COLOR_USED\n";
actions.usage_defines["INSTANCE_CUSTOM"] = "#define ENABLE_INSTANCE_CUSTOM\n";
actions.usage_defines["POSITION"] = "#define OVERRIDE_POSITION\n";
actions.usage_defines["ALPHA_SCISSOR_THRESHOLD"] = "#define ALPHA_SCISSOR_USED\n";
actions.usage_defines["ALPHA_HASH_SCALE"] = "#define ALPHA_HASH_USED\n";
actions.usage_defines["ALPHA_ANTIALIASING_EDGE"] = "#define ALPHA_ANTIALIASING_EDGE_USED\n";
actions.usage_defines["ALPHA_TEXTURE_COORDINATE"] = "@ALPHA_ANTIALIASING_EDGE";
actions.usage_defines["SSS_STRENGTH"] = "#define ENABLE_SSS\n";
actions.usage_defines["SSS_TRANSMITTANCE_DEPTH"] = "#define ENABLE_TRANSMITTANCE\n";
actions.usage_defines["BACKLIGHT"] = "#define LIGHT_BACKLIGHT_USED\n";
actions.usage_defines["SCREEN_UV"] = "#define SCREEN_UV_USED\n";
actions.usage_defines["DIFFUSE_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n";
actions.usage_defines["SPECULAR_LIGHT"] = "#define USE_LIGHT_SHADER_CODE\n";
actions.usage_defines["FOG"] = "#define CUSTOM_FOG_USED\n";
actions.usage_defines["RADIANCE"] = "#define CUSTOM_RADIANCE_USED\n";
actions.usage_defines["IRRADIANCE"] = "#define CUSTOM_IRRADIANCE_USED\n";
actions.render_mode_defines["skip_vertex_transform"] = "#define SKIP_TRANSFORM_USED\n";
actions.render_mode_defines["world_vertex_coords"] = "#define VERTEX_WORLD_COORDS_USED\n";
actions.render_mode_defines["ensure_correct_normals"] = "#define ENSURE_CORRECT_NORMALS\n";
actions.render_mode_defines["cull_front"] = "#define DO_SIDE_CHECK\n";
actions.render_mode_defines["cull_disabled"] = "#define DO_SIDE_CHECK\n";
actions.render_mode_defines["particle_trails"] = "#define USE_PARTICLE_TRAILS\n";
actions.render_mode_defines["depth_draw_opaque"] = "#define USE_OPAQUE_PREPASS\n";
bool force_lambert = GLOBAL_GET("rendering/shading/overrides/force_lambert_over_burley");
if (!force_lambert) {
actions.render_mode_defines["diffuse_burley"] = "#define DIFFUSE_BURLEY\n";
}
actions.render_mode_defines["diffuse_lambert_wrap"] = "#define DIFFUSE_LAMBERT_WRAP\n";
actions.render_mode_defines["diffuse_toon"] = "#define DIFFUSE_TOON\n";
actions.render_mode_defines["sss_mode_skin"] = "#define SSS_MODE_SKIN\n";
actions.render_mode_defines["specular_schlick_ggx"] = "#define SPECULAR_SCHLICK_GGX\n";
actions.render_mode_defines["specular_toon"] = "#define SPECULAR_TOON\n";
actions.render_mode_defines["specular_disabled"] = "#define SPECULAR_DISABLED\n";
actions.render_mode_defines["shadows_disabled"] = "#define SHADOWS_DISABLED\n";
actions.render_mode_defines["ambient_light_disabled"] = "#define AMBIENT_LIGHT_DISABLED\n";
actions.render_mode_defines["shadow_to_opacity"] = "#define USE_SHADOW_TO_OPACITY\n";
actions.render_mode_defines["unshaded"] = "#define MODE_UNSHADED\n";
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.check_multiview_samplers = RasterizerGLES3::get_singleton()->is_xr_enabled();
actions.global_buffer_array_variable = "global_shader_uniforms";
shaders.compiler_scene.initialize(actions);
}
{
// Setup Particles compiler
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "out_color";
actions.renames["VELOCITY"] = "out_velocity_flags.xyz";
//actions.renames["MASS"] = "mass"; ?
actions.renames["ACTIVE"] = "particle_active";
actions.renames["RESTART"] = "restart";
actions.renames["CUSTOM"] = "out_custom";
for (int i = 0; i < PARTICLES_MAX_USERDATAS; i++) {
String udname = "USERDATA" + itos(i + 1);
actions.renames[udname] = "out_userdata" + itos(i + 1);
actions.usage_defines[udname] = "#define USERDATA" + itos(i + 1) + "_USED\n";
}
actions.renames["TRANSFORM"] = "xform";
actions.renames["TIME"] = "time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["LIFETIME"] = "lifetime";
actions.renames["DELTA"] = "local_delta";
actions.renames["NUMBER"] = "particle_number";
actions.renames["INDEX"] = "index";
//actions.renames["GRAVITY"] = "current_gravity";
actions.renames["EMISSION_TRANSFORM"] = "emission_transform";
actions.renames["RANDOM_SEED"] = "random_seed";
actions.renames["FLAG_EMIT_POSITION"] = "EMISSION_FLAG_HAS_POSITION";
actions.renames["FLAG_EMIT_ROT_SCALE"] = "EMISSION_FLAG_HAS_ROTATION_SCALE";
actions.renames["FLAG_EMIT_VELOCITY"] = "EMISSION_FLAG_HAS_VELOCITY";
actions.renames["FLAG_EMIT_COLOR"] = "EMISSION_FLAG_HAS_COLOR";
actions.renames["FLAG_EMIT_CUSTOM"] = "EMISSION_FLAG_HAS_CUSTOM";
actions.renames["RESTART_POSITION"] = "restart_position";
actions.renames["RESTART_ROT_SCALE"] = "restart_rotation_scale";
actions.renames["RESTART_VELOCITY"] = "restart_velocity";
actions.renames["RESTART_COLOR"] = "restart_color";
actions.renames["RESTART_CUSTOM"] = "restart_custom";
actions.renames["emit_subparticle"] = "emit_subparticle";
actions.renames["COLLIDED"] = "collided";
actions.renames["COLLISION_NORMAL"] = "collision_normal";
actions.renames["COLLISION_DEPTH"] = "collision_depth";
actions.renames["ATTRACTOR_FORCE"] = "attractor_force";
actions.render_mode_defines["disable_force"] = "#define DISABLE_FORCE\n";
actions.render_mode_defines["disable_velocity"] = "#define DISABLE_VELOCITY\n";
actions.render_mode_defines["keep_data"] = "#define ENABLE_KEEP_DATA\n";
actions.render_mode_defines["collision_use_scale"] = "#define USE_COLLISION_SCALE\n";
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.global_buffer_array_variable = "global_shader_uniforms";
shaders.compiler_particles.initialize(actions);
}
{
// Setup Sky compiler
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["COLOR"] = "color";
actions.renames["ALPHA"] = "alpha";
actions.renames["EYEDIR"] = "cube_normal";
actions.renames["POSITION"] = "position";
actions.renames["SKY_COORDS"] = "panorama_coords";
actions.renames["SCREEN_UV"] = "uv";
actions.renames["TIME"] = "time";
actions.renames["FRAGCOORD"] = "gl_FragCoord";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["HALF_RES_COLOR"] = "half_res_color";
actions.renames["QUARTER_RES_COLOR"] = "quarter_res_color";
actions.renames["RADIANCE"] = "radiance";
actions.renames["FOG"] = "custom_fog";
actions.renames["LIGHT0_ENABLED"] = "directional_lights.data[0].enabled";
actions.renames["LIGHT0_DIRECTION"] = "directional_lights.data[0].direction_energy.xyz";
actions.renames["LIGHT0_ENERGY"] = "directional_lights.data[0].direction_energy.w";
actions.renames["LIGHT0_COLOR"] = "directional_lights.data[0].color_size.xyz";
actions.renames["LIGHT0_SIZE"] = "directional_lights.data[0].color_size.w";
actions.renames["LIGHT1_ENABLED"] = "directional_lights.data[1].enabled";
actions.renames["LIGHT1_DIRECTION"] = "directional_lights.data[1].direction_energy.xyz";
actions.renames["LIGHT1_ENERGY"] = "directional_lights.data[1].direction_energy.w";
actions.renames["LIGHT1_COLOR"] = "directional_lights.data[1].color_size.xyz";
actions.renames["LIGHT1_SIZE"] = "directional_lights.data[1].color_size.w";
actions.renames["LIGHT2_ENABLED"] = "directional_lights.data[2].enabled";
actions.renames["LIGHT2_DIRECTION"] = "directional_lights.data[2].direction_energy.xyz";
actions.renames["LIGHT2_ENERGY"] = "directional_lights.data[2].direction_energy.w";
actions.renames["LIGHT2_COLOR"] = "directional_lights.data[2].color_size.xyz";
actions.renames["LIGHT2_SIZE"] = "directional_lights.data[2].color_size.w";
actions.renames["LIGHT3_ENABLED"] = "directional_lights.data[3].enabled";
actions.renames["LIGHT3_DIRECTION"] = "directional_lights.data[3].direction_energy.xyz";
actions.renames["LIGHT3_ENERGY"] = "directional_lights.data[3].direction_energy.w";
actions.renames["LIGHT3_COLOR"] = "directional_lights.data[3].color_size.xyz";
actions.renames["LIGHT3_SIZE"] = "directional_lights.data[3].color_size.w";
actions.renames["AT_CUBEMAP_PASS"] = "AT_CUBEMAP_PASS";
actions.renames["AT_HALF_RES_PASS"] = "AT_HALF_RES_PASS";
actions.renames["AT_QUARTER_RES_PASS"] = "AT_QUARTER_RES_PASS";
actions.usage_defines["HALF_RES_COLOR"] = "\n#define USES_HALF_RES_COLOR\n";
actions.usage_defines["QUARTER_RES_COLOR"] = "\n#define USES_QUARTER_RES_COLOR\n";
actions.render_mode_defines["disable_fog"] = "#define DISABLE_FOG\n";
actions.render_mode_defines["use_debanding"] = "#define USE_DEBANDING\n";
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_ENABLE;
actions.global_buffer_array_variable = "global_shader_uniforms";
shaders.compiler_sky.initialize(actions);
}
}
MaterialStorage::~MaterialStorage() {
//shaders.copy.version_free(shaders.copy_version);
memdelete_arr(global_shader_uniforms.buffer_values);
memdelete_arr(global_shader_uniforms.buffer_usage);
memdelete_arr(global_shader_uniforms.buffer_dirty_regions);
glDeleteBuffers(1, &global_shader_uniforms.buffer);
singleton = nullptr;
}
/* GLOBAL SHADER UNIFORM API */
int32_t MaterialStorage::_global_shader_uniform_allocate(uint32_t p_elements) {
int32_t idx = 0;
while (idx + p_elements <= global_shader_uniforms.buffer_size) {
if (global_shader_uniforms.buffer_usage[idx].elements == 0) {
bool valid = true;
for (uint32_t i = 1; i < p_elements; i++) {
if (global_shader_uniforms.buffer_usage[idx + i].elements > 0) {
valid = false;
idx += i + global_shader_uniforms.buffer_usage[idx + i].elements;
break;
}
}
if (!valid) {
continue; //if not valid, idx is in new position
}
return idx;
} else {
idx += global_shader_uniforms.buffer_usage[idx].elements;
}
}
return -1;
}
void MaterialStorage::_global_shader_uniform_store_in_buffer(int32_t p_index, RS::GlobalShaderParameterType p_type, const Variant &p_value) {
switch (p_type) {
case RS::GLOBAL_VAR_TYPE_BOOL: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
bool b = p_value;
bv.x = b ? 1.0 : 0.0;
bv.y = 0.0;
bv.z = 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC2: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC3: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = (bvec & 4) ? 1.0 : 0.0;
bv.w = 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_BVEC4: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
uint32_t bvec = p_value;
bv.x = (bvec & 1) ? 1.0 : 0.0;
bv.y = (bvec & 2) ? 1.0 : 0.0;
bv.z = (bvec & 4) ? 1.0 : 0.0;
bv.w = (bvec & 8) ? 1.0 : 0.0;
} break;
case RS::GLOBAL_VAR_TYPE_INT: {
GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index];
int32_t v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC2: {
GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index];
Vector2i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC3: {
GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index];
Vector3i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_IVEC4: {
GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index];
Vector<int32_t> v = p_value;
bv.x = v.size() >= 1 ? v[0] : 0;
bv.y = v.size() >= 2 ? v[1] : 0;
bv.z = v.size() >= 3 ? v[2] : 0;
bv.w = v.size() >= 4 ? v[3] : 0;
} break;
case RS::GLOBAL_VAR_TYPE_RECT2I: {
GlobalShaderUniforms::ValueInt &bv = *(GlobalShaderUniforms::ValueInt *)&global_shader_uniforms.buffer_values[p_index];
Rect2i v = p_value;
bv.x = v.position.x;
bv.y = v.position.y;
bv.z = v.size.x;
bv.w = v.size.y;
} break;
case RS::GLOBAL_VAR_TYPE_UINT: {
GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index];
uint32_t v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC2: {
GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index];
Vector2i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC3: {
GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index];
Vector3i v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_UVEC4: {
GlobalShaderUniforms::ValueUInt &bv = *(GlobalShaderUniforms::ValueUInt *)&global_shader_uniforms.buffer_values[p_index];
Vector<int32_t> v = p_value;
bv.x = v.size() >= 1 ? v[0] : 0;
bv.y = v.size() >= 2 ? v[1] : 0;
bv.z = v.size() >= 3 ? v[2] : 0;
bv.w = v.size() >= 4 ? v[3] : 0;
} break;
case RS::GLOBAL_VAR_TYPE_FLOAT: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
float v = p_value;
bv.x = v;
bv.y = 0;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC2: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
Vector2 v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = 0;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC3: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
Vector3 v = p_value;
bv.x = v.x;
bv.y = v.y;
bv.z = v.z;
bv.w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_VEC4: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
Plane v = p_value;
bv.x = v.normal.x;
bv.y = v.normal.y;
bv.z = v.normal.z;
bv.w = v.d;
} break;
case RS::GLOBAL_VAR_TYPE_COLOR: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
Color v = p_value;
bv.x = v.r;
bv.y = v.g;
bv.z = v.b;
bv.w = v.a;
GlobalShaderUniforms::Value &bv_linear = global_shader_uniforms.buffer_values[p_index + 1];
//v = v.srgb_to_linear();
bv_linear.x = v.r;
bv_linear.y = v.g;
bv_linear.z = v.b;
bv_linear.w = v.a;
} break;
case RS::GLOBAL_VAR_TYPE_RECT2: {
GlobalShaderUniforms::Value &bv = global_shader_uniforms.buffer_values[p_index];
Rect2 v = p_value;
bv.x = v.position.x;
bv.y = v.position.y;
bv.z = v.size.x;
bv.w = v.size.y;
} break;
case RS::GLOBAL_VAR_TYPE_MAT2: {
GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index];
Vector<float> m2 = p_value;
if (m2.size() < 4) {
m2.resize(4);
}
bv[0].x = m2[0];
bv[0].y = m2[1];
bv[0].z = 0;
bv[0].w = 0;
bv[1].x = m2[2];
bv[1].y = m2[3];
bv[1].z = 0;
bv[1].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_MAT3: {
GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index];
Basis v = p_value;
bv[0].x = v.rows[0][0];
bv[0].y = v.rows[1][0];
bv[0].z = v.rows[2][0];
bv[0].w = 0;
bv[1].x = v.rows[0][1];
bv[1].y = v.rows[1][1];
bv[1].z = v.rows[2][1];
bv[1].w = 0;
bv[2].x = v.rows[0][2];
bv[2].y = v.rows[1][2];
bv[2].z = v.rows[2][2];
bv[2].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_MAT4: {
GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index];
Vector<float> m2 = p_value;
if (m2.size() < 16) {
m2.resize(16);
}
bv[0].x = m2[0];
bv[0].y = m2[1];
bv[0].z = m2[2];
bv[0].w = m2[3];
bv[1].x = m2[4];
bv[1].y = m2[5];
bv[1].z = m2[6];
bv[1].w = m2[7];
bv[2].x = m2[8];
bv[2].y = m2[9];
bv[2].z = m2[10];
bv[2].w = m2[11];
bv[3].x = m2[12];
bv[3].y = m2[13];
bv[3].z = m2[14];
bv[3].w = m2[15];
} break;
case RS::GLOBAL_VAR_TYPE_TRANSFORM_2D: {
GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index];
Transform2D v = p_value;
bv[0].x = v.columns[0][0];
bv[0].y = v.columns[0][1];
bv[0].z = 0;
bv[0].w = 0;
bv[1].x = v.columns[1][0];
bv[1].y = v.columns[1][1];
bv[1].z = 0;
bv[1].w = 0;
bv[2].x = v.columns[2][0];
bv[2].y = v.columns[2][1];
bv[2].z = 1;
bv[2].w = 0;
} break;
case RS::GLOBAL_VAR_TYPE_TRANSFORM: {
GlobalShaderUniforms::Value *bv = &global_shader_uniforms.buffer_values[p_index];
Transform3D v = p_value;
bv[0].x = v.basis.rows[0][0];
bv[0].y = v.basis.rows[1][0];
bv[0].z = v.basis.rows[2][0];
bv[0].w = 0;
bv[1].x = v.basis.rows[0][1];
bv[1].y = v.basis.rows[1][1];
bv[1].z = v.basis.rows[2][1];
bv[1].w = 0;
bv[2].x = v.basis.rows[0][2];
bv[2].y = v.basis.rows[1][2];
bv[2].z = v.basis.rows[2][2];
bv[2].w = 0;
bv[3].x = v.origin.x;
bv[3].y = v.origin.y;
bv[3].z = v.origin.z;
bv[3].w = 1;
} break;
default: {
ERR_FAIL();
}
}
}
void MaterialStorage::_global_shader_uniform_mark_buffer_dirty(int32_t p_index, int32_t p_elements) {
int32_t prev_chunk = -1;
for (int32_t i = 0; i < p_elements; i++) {
int32_t chunk = (p_index + i) / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE;
if (chunk != prev_chunk) {
if (!global_shader_uniforms.buffer_dirty_regions[chunk]) {
global_shader_uniforms.buffer_dirty_regions[chunk] = true;
global_shader_uniforms.buffer_dirty_region_count++;
}
}
prev_chunk = chunk;
}
}
void MaterialStorage::global_shader_parameter_add(const StringName &p_name, RS::GlobalShaderParameterType p_type, const Variant &p_value) {
ERR_FAIL_COND(global_shader_uniforms.variables.has(p_name));
GlobalShaderUniforms::Variable gv;
gv.type = p_type;
gv.value = p_value;
gv.buffer_index = -1;
if (p_type >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) {
//is texture
global_shader_uniforms.must_update_texture_materials = true; //normally there are none
} else {
gv.buffer_elements = 1;
if (p_type == RS::GLOBAL_VAR_TYPE_COLOR || p_type == RS::GLOBAL_VAR_TYPE_MAT2) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 2;
}
if (p_type == RS::GLOBAL_VAR_TYPE_MAT3 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM_2D) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 3;
}
if (p_type == RS::GLOBAL_VAR_TYPE_MAT4 || p_type == RS::GLOBAL_VAR_TYPE_TRANSFORM) {
//color needs to elements to store srgb and linear
gv.buffer_elements = 4;
}
//is vector, allocate in buffer and update index
gv.buffer_index = _global_shader_uniform_allocate(gv.buffer_elements);
ERR_FAIL_COND_MSG(gv.buffer_index < 0, vformat("Failed allocating global variable '%s' out of buffer memory. Consider increasing it in the Project Settings.", String(p_name)));
global_shader_uniforms.buffer_usage[gv.buffer_index].elements = gv.buffer_elements;
_global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value);
_global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
global_shader_uniforms.must_update_buffer_materials = true; //normally there are none
}
global_shader_uniforms.variables[p_name] = gv;
}
void MaterialStorage::global_shader_parameter_remove(const StringName &p_name) {
if (!global_shader_uniforms.variables.has(p_name)) {
return;
}
GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name];
if (gv.buffer_index >= 0) {
global_shader_uniforms.buffer_usage[gv.buffer_index].elements = 0;
global_shader_uniforms.must_update_buffer_materials = true;
} else {
global_shader_uniforms.must_update_texture_materials = true;
}
global_shader_uniforms.variables.erase(p_name);
}
Vector<StringName> MaterialStorage::global_shader_parameter_get_list() const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(Vector<StringName>(), "This function should never be used outside the editor, it can severely damage performance.");
}
Vector<StringName> names;
for (const KeyValue<StringName, GlobalShaderUniforms::Variable> &E : global_shader_uniforms.variables) {
names.push_back(E.key);
}
names.sort_custom<StringName::AlphCompare>();
return names;
}
void MaterialStorage::global_shader_parameter_set(const StringName &p_name, const Variant &p_value) {
ERR_FAIL_COND(!global_shader_uniforms.variables.has(p_name));
GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name];
gv.value = p_value;
if (gv.override.get_type() == Variant::NIL) {
if (gv.buffer_index >= 0) {
//buffer
_global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value);
_global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
} else {
//texture
MaterialStorage *material_storage = MaterialStorage::get_singleton();
for (const RID &E : gv.texture_materials) {
Material *material = material_storage->get_material(E);
ERR_CONTINUE(!material);
material_storage->_material_queue_update(material, false, true);
}
}
}
}
void MaterialStorage::global_shader_parameter_set_override(const StringName &p_name, const Variant &p_value) {
if (!global_shader_uniforms.variables.has(p_name)) {
return; //variable may not exist
}
ERR_FAIL_COND(p_value.get_type() == Variant::OBJECT);
GlobalShaderUniforms::Variable &gv = global_shader_uniforms.variables[p_name];
gv.override = p_value;
if (gv.buffer_index >= 0) {
//buffer
if (gv.override.get_type() == Variant::NIL) {
_global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.value);
} else {
_global_shader_uniform_store_in_buffer(gv.buffer_index, gv.type, gv.override);
}
_global_shader_uniform_mark_buffer_dirty(gv.buffer_index, gv.buffer_elements);
} else {
//texture
MaterialStorage *material_storage = MaterialStorage::get_singleton();
for (const RID &E : gv.texture_materials) {
Material *material = material_storage->get_material(E);
ERR_CONTINUE(!material);
material_storage->_material_queue_update(material, false, true);
}
}
}
Variant MaterialStorage::global_shader_parameter_get(const StringName &p_name) const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(Variant(), "This function should never be used outside the editor, it can severely damage performance.");
}
if (!global_shader_uniforms.variables.has(p_name)) {
return Variant();
}
return global_shader_uniforms.variables[p_name].value;
}
RS::GlobalShaderParameterType MaterialStorage::global_shader_parameter_get_type_internal(const StringName &p_name) const {
if (!global_shader_uniforms.variables.has(p_name)) {
return RS::GLOBAL_VAR_TYPE_MAX;
}
return global_shader_uniforms.variables[p_name].type;
}
RS::GlobalShaderParameterType MaterialStorage::global_shader_parameter_get_type(const StringName &p_name) const {
if (!Engine::get_singleton()->is_editor_hint()) {
ERR_FAIL_V_MSG(RS::GLOBAL_VAR_TYPE_MAX, "This function should never be used outside the editor, it can severely damage performance.");
}
return global_shader_parameter_get_type_internal(p_name);
}
void MaterialStorage::global_shader_parameters_load_settings(bool p_load_textures) {
List<PropertyInfo> settings;
ProjectSettings::get_singleton()->get_property_list(&settings);
for (const PropertyInfo &E : settings) {
if (E.name.begins_with("shader_globals/")) {
StringName name = E.name.get_slice("/", 1);
Dictionary d = GLOBAL_GET(E.name);
ERR_CONTINUE(!d.has("type"));
ERR_CONTINUE(!d.has("value"));
String type = d["type"];
static const char *global_var_type_names[RS::GLOBAL_VAR_TYPE_MAX] = {
"bool",
"bvec2",
"bvec3",
"bvec4",
"int",
"ivec2",
"ivec3",
"ivec4",
"rect2i",
"uint",
"uvec2",
"uvec3",
"uvec4",
"float",
"vec2",
"vec3",
"vec4",
"color",
"rect2",
"mat2",
"mat3",
"mat4",
"transform_2d",
"transform",
"sampler2D",
"sampler2DArray",
"sampler3D",
"samplerCube",
};
RS::GlobalShaderParameterType gvtype = RS::GLOBAL_VAR_TYPE_MAX;
for (int i = 0; i < RS::GLOBAL_VAR_TYPE_MAX; i++) {
if (global_var_type_names[i] == type) {
gvtype = RS::GlobalShaderParameterType(i);
break;
}
}
ERR_CONTINUE(gvtype == RS::GLOBAL_VAR_TYPE_MAX); //type invalid
Variant value = d["value"];
if (gvtype >= RS::GLOBAL_VAR_TYPE_SAMPLER2D) {
//textire
if (!p_load_textures) {
value = RID();
continue;
}
String path = value;
Ref<Resource> resource = ResourceLoader::load(path);
ERR_CONTINUE(resource.is_null());
value = resource;
}
if (global_shader_uniforms.variables.has(name)) {
//has it, update it
global_shader_parameter_set(name, value);
} else {
global_shader_parameter_add(name, gvtype, value);
}
}
}
}
void MaterialStorage::global_shader_parameters_clear() {
global_shader_uniforms.variables.clear();
}
GLuint MaterialStorage::global_shader_parameters_get_uniform_buffer() const {
return global_shader_uniforms.buffer;
}
int32_t MaterialStorage::global_shader_parameters_instance_allocate(RID p_instance) {
ERR_FAIL_COND_V(global_shader_uniforms.instance_buffer_pos.has(p_instance), -1);
int32_t pos = _global_shader_uniform_allocate(ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES);
global_shader_uniforms.instance_buffer_pos[p_instance] = pos; //save anyway
ERR_FAIL_COND_V_MSG(pos < 0, -1, "Too many instances using shader instance variables. Increase buffer size in Project Settings.");
global_shader_uniforms.buffer_usage[pos].elements = ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES;
return pos;
}
void MaterialStorage::global_shader_parameters_instance_free(RID p_instance) {
ERR_FAIL_COND(!global_shader_uniforms.instance_buffer_pos.has(p_instance));
int32_t pos = global_shader_uniforms.instance_buffer_pos[p_instance];
if (pos >= 0) {
global_shader_uniforms.buffer_usage[pos].elements = 0;
}
global_shader_uniforms.instance_buffer_pos.erase(p_instance);
}
void MaterialStorage::global_shader_parameters_instance_update(RID p_instance, int p_index, const Variant &p_value, int p_flags_count) {
if (!global_shader_uniforms.instance_buffer_pos.has(p_instance)) {
return; //just not allocated, ignore
}
int32_t pos = global_shader_uniforms.instance_buffer_pos[p_instance];
if (pos < 0) {
return; //again, not allocated, ignore
}
ERR_FAIL_INDEX(p_index, ShaderLanguage::MAX_INSTANCE_UNIFORM_INDICES);
Variant::Type value_type = p_value.get_type();
ERR_FAIL_COND_MSG(p_value.get_type() > Variant::COLOR, "Unsupported variant type for instance parameter: " + Variant::get_type_name(value_type)); //anything greater not supported
ShaderLanguage::DataType datatype_from_value[Variant::COLOR + 1] = {
ShaderLanguage::TYPE_MAX, //nil
ShaderLanguage::TYPE_BOOL, //bool
ShaderLanguage::TYPE_INT, //int
ShaderLanguage::TYPE_FLOAT, //float
ShaderLanguage::TYPE_MAX, //string
ShaderLanguage::TYPE_VEC2, //vec2
ShaderLanguage::TYPE_IVEC2, //vec2i
ShaderLanguage::TYPE_VEC4, //rect2
ShaderLanguage::TYPE_IVEC4, //rect2i
ShaderLanguage::TYPE_VEC3, // vec3
ShaderLanguage::TYPE_IVEC3, //vec3i
ShaderLanguage::TYPE_MAX, //xform2d not supported here
ShaderLanguage::TYPE_VEC4, //vec4
ShaderLanguage::TYPE_IVEC4, //vec4i
ShaderLanguage::TYPE_VEC4, //plane
ShaderLanguage::TYPE_VEC4, //quat
ShaderLanguage::TYPE_MAX, //aabb not supported here
ShaderLanguage::TYPE_MAX, //basis not supported here
ShaderLanguage::TYPE_MAX, //xform not supported here
ShaderLanguage::TYPE_MAX, //projection not supported here
ShaderLanguage::TYPE_VEC4 //color
};
ShaderLanguage::DataType datatype = ShaderLanguage::TYPE_MAX;
if (value_type == Variant::INT && p_flags_count > 0) {
switch (p_flags_count) {
case 1:
datatype = ShaderLanguage::TYPE_BVEC2;
break;
case 2:
datatype = ShaderLanguage::TYPE_BVEC3;
break;
case 3:
datatype = ShaderLanguage::TYPE_BVEC4;
break;
}
} else {
datatype = datatype_from_value[value_type];
}
ERR_FAIL_COND_MSG(datatype == ShaderLanguage::TYPE_MAX, "Unsupported variant type for instance parameter: " + Variant::get_type_name(value_type)); //anything greater not supported
pos += p_index;
_fill_std140_variant_ubo_value(datatype, 0, p_value, (uint8_t *)&global_shader_uniforms.buffer_values[pos]);
_global_shader_uniform_mark_buffer_dirty(pos, 1);
}
void MaterialStorage::_update_global_shader_uniforms() {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
if (global_shader_uniforms.buffer_dirty_region_count > 0) {
uint32_t total_regions = global_shader_uniforms.buffer_size / GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE;
if (total_regions / global_shader_uniforms.buffer_dirty_region_count <= 4) {
// 25% of regions dirty, just update all buffer
glBindBuffer(GL_UNIFORM_BUFFER, global_shader_uniforms.buffer);
glBufferData(GL_UNIFORM_BUFFER, sizeof(GlobalShaderUniforms::Value) * global_shader_uniforms.buffer_size, global_shader_uniforms.buffer_values, GL_DYNAMIC_DRAW);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
memset(global_shader_uniforms.buffer_dirty_regions, 0, sizeof(bool) * total_regions);
} else {
uint32_t region_byte_size = sizeof(GlobalShaderUniforms::Value) * GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE;
glBindBuffer(GL_UNIFORM_BUFFER, global_shader_uniforms.buffer);
for (uint32_t i = 0; i < total_regions; i++) {
if (global_shader_uniforms.buffer_dirty_regions[i]) {
glBufferSubData(GL_UNIFORM_BUFFER, i * region_byte_size, region_byte_size, &global_shader_uniforms.buffer_values[i * GlobalShaderUniforms::BUFFER_DIRTY_REGION_SIZE]);
global_shader_uniforms.buffer_dirty_regions[i] = false;
}
}
glBindBuffer(GL_UNIFORM_BUFFER, 0);
}
global_shader_uniforms.buffer_dirty_region_count = 0;
}
if (global_shader_uniforms.must_update_buffer_materials) {
// only happens in the case of a buffer variable added or removed,
// so not often.
for (const RID &E : global_shader_uniforms.materials_using_buffer) {
Material *material = material_storage->get_material(E);
ERR_CONTINUE(!material); //wtf
material_storage->_material_queue_update(material, true, false);
}
global_shader_uniforms.must_update_buffer_materials = false;
}
if (global_shader_uniforms.must_update_texture_materials) {
// only happens in the case of a buffer variable added or removed,
// so not often.
for (const RID &E : global_shader_uniforms.materials_using_texture) {
Material *material = material_storage->get_material(E);
ERR_CONTINUE(!material); //wtf
material_storage->_material_queue_update(material, false, true);
}
global_shader_uniforms.must_update_texture_materials = false;
}
}
/* SHADER API */
RID MaterialStorage::shader_allocate() {
return shader_owner.allocate_rid();
}
void MaterialStorage::shader_initialize(RID p_rid) {
Shader shader;
shader.data = nullptr;
shader.mode = RS::SHADER_MAX;
shader_owner.initialize_rid(p_rid, shader);
}
void MaterialStorage::shader_free(RID p_rid) {
GLES3::Shader *shader = shader_owner.get_or_null(p_rid);
ERR_FAIL_COND(!shader);
//make material unreference this
while (shader->owners.size()) {
material_set_shader((*shader->owners.begin())->self, RID());
}
//clear data if exists
if (shader->data) {
memdelete(shader->data);
}
shader_owner.free(p_rid);
}
void MaterialStorage::shader_set_code(RID p_shader, const String &p_code) {
GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->code = p_code;
String mode_string = ShaderLanguage::get_shader_type(p_code);
RS::ShaderMode new_mode;
if (mode_string == "canvas_item") {
new_mode = RS::SHADER_CANVAS_ITEM;
} else if (mode_string == "particles") {
new_mode = RS::SHADER_PARTICLES;
} else if (mode_string == "spatial") {
new_mode = RS::SHADER_SPATIAL;
} else if (mode_string == "sky") {
new_mode = RS::SHADER_SKY;
//} else if (mode_string == "fog") {
// new_mode = RS::SHADER_FOG;
} else {
new_mode = RS::SHADER_MAX;
ERR_PRINT("shader type " + mode_string + " not supported in OpenGL renderer");
}
if (new_mode != shader->mode) {
if (shader->data) {
memdelete(shader->data);
shader->data = nullptr;
}
for (Material *E : shader->owners) {
Material *material = E;
material->shader_mode = new_mode;
if (material->data) {
memdelete(material->data);
material->data = nullptr;
}
}
shader->mode = new_mode;
if (new_mode < RS::SHADER_MAX && shader_data_request_func[new_mode]) {
shader->data = shader_data_request_func[new_mode]();
} else {
shader->mode = RS::SHADER_MAX; //invalid
}
for (Material *E : shader->owners) {
Material *material = E;
if (shader->data) {
material->data = material_data_request_func[new_mode](shader->data);
material->data->self = material->self;
material->data->set_next_pass(material->next_pass);
material->data->set_render_priority(material->priority);
}
material->shader_mode = new_mode;
}
if (shader->data) {
for (const KeyValue<StringName, HashMap<int, RID>> &E : shader->default_texture_parameter) {
for (const KeyValue<int, RID> &E2 : E.value) {
shader->data->set_default_texture_parameter(E.key, E2.value, E2.key);
}
}
}
}
if (shader->data) {
shader->data->set_code(p_code);
}
for (Material *E : shader->owners) {
Material *material = E;
material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
_material_queue_update(material, true, true);
}
}
void MaterialStorage::shader_set_path_hint(RID p_shader, const String &p_path) {
GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
shader->path_hint = p_path;
if (shader->data) {
shader->data->set_path_hint(p_path);
}
}
String MaterialStorage::shader_get_code(RID p_shader) const {
const GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, String());
return shader->code;
}
void MaterialStorage::get_shader_parameter_list(RID p_shader, List<PropertyInfo> *p_param_list) const {
GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
if (shader->data) {
return shader->data->get_shader_uniform_list(p_param_list);
}
}
void MaterialStorage::shader_set_default_texture_parameter(RID p_shader, const StringName &p_name, RID p_texture, int p_index) {
GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND(!shader);
if (p_texture.is_valid() && TextureStorage::get_singleton()->owns_texture(p_texture)) {
if (!shader->default_texture_parameter.has(p_name)) {
shader->default_texture_parameter[p_name] = HashMap<int, RID>();
}
shader->default_texture_parameter[p_name][p_index] = p_texture;
} else {
if (shader->default_texture_parameter.has(p_name) && shader->default_texture_parameter[p_name].has(p_index)) {
shader->default_texture_parameter[p_name].erase(p_index);
if (shader->default_texture_parameter[p_name].is_empty()) {
shader->default_texture_parameter.erase(p_name);
}
}
}
if (shader->data) {
shader->data->set_default_texture_parameter(p_name, p_texture, p_index);
}
for (Material *E : shader->owners) {
Material *material = E;
_material_queue_update(material, false, true);
}
}
RID MaterialStorage::shader_get_default_texture_parameter(RID p_shader, const StringName &p_name, int p_index) const {
const GLES3::Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, RID());
if (shader->default_texture_parameter.has(p_name) && shader->default_texture_parameter[p_name].has(p_index)) {
return shader->default_texture_parameter[p_name][p_index];
}
return RID();
}
Variant MaterialStorage::shader_get_parameter_default(RID p_shader, const StringName &p_param) const {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, Variant());
if (shader->data) {
return shader->data->get_default_parameter(p_param);
}
return Variant();
}
RS::ShaderNativeSourceCode MaterialStorage::shader_get_native_source_code(RID p_shader) const {
Shader *shader = shader_owner.get_or_null(p_shader);
ERR_FAIL_COND_V(!shader, RS::ShaderNativeSourceCode());
if (shader->data) {
return shader->data->get_native_source_code();
}
return RS::ShaderNativeSourceCode();
}
/* MATERIAL API */
void MaterialStorage::_material_queue_update(GLES3::Material *material, bool p_uniform, bool p_texture) {
material->uniform_dirty = material->uniform_dirty || p_uniform;
material->texture_dirty = material->texture_dirty || p_texture;
if (material->update_element.in_list()) {
return;
}
material_update_list.add(&material->update_element);
}
void MaterialStorage::_update_queued_materials() {
while (material_update_list.first()) {
Material *material = material_update_list.first()->self();
if (material->data) {
material->data->update_parameters(material->params, material->uniform_dirty, material->texture_dirty);
}
material->texture_dirty = false;
material->uniform_dirty = false;
material_update_list.remove(&material->update_element);
}
}
RID MaterialStorage::material_allocate() {
return material_owner.allocate_rid();
}
void MaterialStorage::material_initialize(RID p_rid) {
material_owner.initialize_rid(p_rid);
Material *material = material_owner.get_or_null(p_rid);
material->self = p_rid;
}
void MaterialStorage::material_free(RID p_rid) {
Material *material = material_owner.get_or_null(p_rid);
ERR_FAIL_COND(!material);
// Need to clear texture arrays to prevent spin locking of their RID's.
// This happens when the app is being closed.
for (KeyValue<StringName, Variant> &E : material->params) {
if (E.value.get_type() == Variant::ARRAY) {
Array(E.value).clear();
}
}
material_set_shader(p_rid, RID()); //clean up shader
material->dependency.deleted_notify(p_rid);
material_owner.free(p_rid);
}
void MaterialStorage::material_set_shader(RID p_material, RID p_shader) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
if (material->data) {
memdelete(material->data);
material->data = nullptr;
}
if (material->shader) {
material->shader->owners.erase(material);
material->shader = nullptr;
material->shader_mode = RS::SHADER_MAX;
}
if (p_shader.is_null()) {
material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
material->shader_id = 0;
return;
}
Shader *shader = get_shader(p_shader);
ERR_FAIL_COND(!shader);
material->shader = shader;
material->shader_mode = shader->mode;
material->shader_id = p_shader.get_local_index();
shader->owners.insert(material);
if (shader->mode == RS::SHADER_MAX) {
return;
}
ERR_FAIL_COND(shader->data == nullptr);
material->data = material_data_request_func[shader->mode](shader->data);
material->data->self = p_material;
material->data->set_next_pass(material->next_pass);
material->data->set_render_priority(material->priority);
//updating happens later
material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
_material_queue_update(material, true, true);
}
void MaterialStorage::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
if (p_value.get_type() == Variant::NIL) {
material->params.erase(p_param);
} else {
ERR_FAIL_COND(p_value.get_type() == Variant::OBJECT); //object not allowed
material->params[p_param] = p_value;
}
if (material->shader && material->shader->data) { //shader is valid
bool is_texture = material->shader->data->is_parameter_texture(p_param);
_material_queue_update(material, !is_texture, is_texture);
} else {
_material_queue_update(material, true, true);
}
}
Variant MaterialStorage::material_get_param(RID p_material, const StringName &p_param) const {
const GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, Variant());
if (material->params.has(p_param)) {
return material->params[p_param];
} else {
return Variant();
}
}
void MaterialStorage::material_set_next_pass(RID p_material, RID p_next_material) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
if (material->next_pass == p_next_material) {
return;
}
material->next_pass = p_next_material;
if (material->data) {
material->data->set_next_pass(p_next_material);
}
material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
}
void MaterialStorage::material_set_render_priority(RID p_material, int priority) {
ERR_FAIL_COND(priority < RS::MATERIAL_RENDER_PRIORITY_MIN);
ERR_FAIL_COND(priority > RS::MATERIAL_RENDER_PRIORITY_MAX);
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
material->priority = priority;
if (material->data) {
material->data->set_render_priority(priority);
}
material->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
}
bool MaterialStorage::material_is_animated(RID p_material) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, false);
if (material->shader && material->shader->data) {
if (material->shader->data->is_animated()) {
return true;
} else if (material->next_pass.is_valid()) {
return material_is_animated(material->next_pass);
}
}
return false; //by default nothing is animated
}
bool MaterialStorage::material_casts_shadows(RID p_material) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND_V(!material, true);
if (material->shader && material->shader->data) {
if (material->shader->data->casts_shadows()) {
return true;
} else if (material->next_pass.is_valid()) {
return material_casts_shadows(material->next_pass);
}
}
return true; //by default everything casts shadows
}
void MaterialStorage::material_get_instance_shader_parameters(RID p_material, List<InstanceShaderParam> *r_parameters) {
GLES3::Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
if (material->shader && material->shader->data) {
material->shader->data->get_instance_param_list(r_parameters);
if (material->next_pass.is_valid()) {
material_get_instance_shader_parameters(material->next_pass, r_parameters);
}
}
}
void MaterialStorage::material_update_dependency(RID p_material, DependencyTracker *p_instance) {
Material *material = material_owner.get_or_null(p_material);
ERR_FAIL_COND(!material);
p_instance->update_dependency(&material->dependency);
if (material->next_pass.is_valid()) {
material_update_dependency(material->next_pass, p_instance);
}
}
/* Canvas Shader Data */
void CanvasShaderData::set_code(const String &p_code) {
// compile the shader
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
uses_screen_texture = false;
uses_screen_texture_mipmaps = false;
uses_sdf = false;
uses_time = false;
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
int blend_modei = BLEND_MODE_MIX;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX;
actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT;
actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT;
actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_modei, BLEND_MODE_ADD);
actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MIX);
actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_modei, BLEND_MODE_SUB);
actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MUL);
actions.render_mode_values["blend_premul_alpha"] = Pair<int *, int>(&blend_modei, BLEND_MODE_PMALPHA);
actions.render_mode_values["blend_disabled"] = Pair<int *, int>(&blend_modei, BLEND_MODE_DISABLED);
actions.usage_flag_pointers["texture_sdf"] = &uses_sdf;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.uniforms = &uniforms;
Error err = MaterialStorage::get_singleton()->shaders.compiler_canvas.compile(RS::SHADER_CANVAS_ITEM, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
if (version.is_null()) {
version = MaterialStorage::get_singleton()->shaders.canvas_shader.version_create();
}
blend_mode = BlendMode(blend_modei);
uses_screen_texture_mipmaps = gen_code.uses_screen_texture_mipmaps;
uses_screen_texture = gen_code.uses_screen_texture;
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
HashMap<String, String>::Iterator el = gen_code.code.begin();
while (el) {
print_line("\n**code " + el->key + ":\n" + el->value);
++el;
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
#endif
Vector<StringName> texture_uniform_names;
for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
}
MaterialStorage::get_singleton()->shaders.canvas_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.canvas_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
valid = true;
}
bool CanvasShaderData::is_animated() const {
return false;
}
bool CanvasShaderData::casts_shadows() const {
return false;
}
RS::ShaderNativeSourceCode CanvasShaderData::get_native_source_code() const {
return MaterialStorage::get_singleton()->shaders.canvas_shader.version_get_native_source_code(version);
}
CanvasShaderData::CanvasShaderData() {
valid = false;
uses_screen_texture = false;
uses_sdf = false;
}
CanvasShaderData::~CanvasShaderData() {
if (version.is_valid()) {
MaterialStorage::get_singleton()->shaders.canvas_shader.version_free(version);
}
}
GLES3::ShaderData *GLES3::_create_canvas_shader_func() {
CanvasShaderData *shader_data = memnew(CanvasShaderData);
return shader_data;
}
void CanvasMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
void CanvasMaterialData::bind_uniforms() {
// Bind Material Uniforms
glBindBufferBase(GL_UNIFORM_BUFFER, RasterizerCanvasGLES3::MATERIAL_UNIFORM_LOCATION, uniform_buffer);
RID *textures = texture_cache.ptrw();
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
glActiveTexture(GL_TEXTURE1 + ti); // Start at GL_TEXTURE1 because texture slot 0 is used by the base texture
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
if (texture->render_target) {
texture->render_target->used_in_frame = true;
}
texture->gl_set_filter(filter_from_uniform_canvas[int(texture_uniforms[ti].filter)]);
texture->gl_set_repeat(repeat_from_uniform_canvas[int(texture_uniforms[ti].repeat)]);
}
}
CanvasMaterialData::~CanvasMaterialData() {
}
GLES3::MaterialData *GLES3::_create_canvas_material_func(ShaderData *p_shader) {
CanvasMaterialData *material_data = memnew(CanvasMaterialData);
material_data->shader_data = static_cast<CanvasShaderData *>(p_shader);
//update will happen later anyway so do nothing.
return material_data;
}
////////////////////////////////////////////////////////////////////////////////
// SKY SHADER
void SkyShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["sky"] = ShaderCompiler::STAGE_FRAGMENT;
uses_time = false;
uses_half_res = false;
uses_quarter_res = false;
uses_position = false;
uses_light = false;
actions.render_mode_flags["use_half_res_pass"] = &uses_half_res;
actions.render_mode_flags["use_quarter_res_pass"] = &uses_quarter_res;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.usage_flag_pointers["POSITION"] = &uses_position;
actions.usage_flag_pointers["LIGHT0_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT0_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT1_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT2_SIZE"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_ENABLED"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_ENERGY"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_DIRECTION"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_COLOR"] = &uses_light;
actions.usage_flag_pointers["LIGHT3_SIZE"] = &uses_light;
actions.uniforms = &uniforms;
Error err = MaterialStorage::get_singleton()->shaders.compiler_sky.compile(RS::SHADER_SKY, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
if (version.is_null()) {
version = MaterialStorage::get_singleton()->shaders.sky_shader.version_create();
}
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
HashMap<String, String>::Iterator el = gen_code.code.begin();
while (el) {
print_line("\n**code " + el->key + ":\n" + el->value);
++el;
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
#endif
Vector<StringName> texture_uniform_names;
for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
}
MaterialStorage::get_singleton()->shaders.sky_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.sky_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
valid = true;
}
bool SkyShaderData::is_animated() const {
return false;
}
bool SkyShaderData::casts_shadows() const {
return false;
}
RS::ShaderNativeSourceCode SkyShaderData::get_native_source_code() const {
return MaterialStorage::get_singleton()->shaders.sky_shader.version_get_native_source_code(version);
}
SkyShaderData::SkyShaderData() {
valid = false;
}
SkyShaderData::~SkyShaderData() {
if (version.is_valid()) {
MaterialStorage::get_singleton()->shaders.sky_shader.version_free(version);
}
}
GLES3::ShaderData *GLES3::_create_sky_shader_func() {
SkyShaderData *shader_data = memnew(SkyShaderData);
return shader_data;
}
////////////////////////////////////////////////////////////////////////////////
// Sky material
void SkyMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
uniform_set_updated = true;
update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
SkyMaterialData::~SkyMaterialData() {
}
GLES3::MaterialData *GLES3::_create_sky_material_func(ShaderData *p_shader) {
SkyMaterialData *material_data = memnew(SkyMaterialData);
material_data->shader_data = static_cast<SkyShaderData *>(p_shader);
//update will happen later anyway so do nothing.
return material_data;
}
void SkyMaterialData::bind_uniforms() {
// Bind Material Uniforms
glBindBufferBase(GL_UNIFORM_BUFFER, SKY_MATERIAL_UNIFORM_LOCATION, uniform_buffer);
RID *textures = texture_cache.ptrw();
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
glActiveTexture(GL_TEXTURE0 + ti);
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
if (texture->render_target) {
texture->render_target->used_in_frame = true;
}
texture->gl_set_filter(filter_from_uniform[int(texture_uniforms[ti].filter)]);
texture->gl_set_repeat(repeat_from_uniform[int(texture_uniforms[ti].repeat)]);
}
}
////////////////////////////////////////////////////////////////////////////////
// Scene SHADER
void SceneShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
int blend_modei = BLEND_MODE_MIX;
int depth_testi = DEPTH_TEST_ENABLED;
int alpha_antialiasing_modei = ALPHA_ANTIALIASING_OFF;
int cull_modei = CULL_BACK;
int depth_drawi = DEPTH_DRAW_OPAQUE;
uses_point_size = false;
uses_alpha = false;
uses_alpha_clip = false;
uses_blend_alpha = false;
uses_depth_prepass_alpha = false;
uses_discard = false;
uses_roughness = false;
uses_normal = false;
wireframe = false;
unshaded = false;
uses_vertex = false;
uses_position = false;
uses_sss = false;
uses_transmittance = false;
uses_screen_texture = false;
uses_depth_texture = false;
uses_normal_texture = false;
uses_time = false;
writes_modelview_or_projection = false;
uses_world_coordinates = false;
uses_particle_trails = false;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["vertex"] = ShaderCompiler::STAGE_VERTEX;
actions.entry_point_stages["fragment"] = ShaderCompiler::STAGE_FRAGMENT;
actions.entry_point_stages["light"] = ShaderCompiler::STAGE_FRAGMENT;
actions.render_mode_values["blend_add"] = Pair<int *, int>(&blend_modei, BLEND_MODE_ADD);
actions.render_mode_values["blend_mix"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MIX);
actions.render_mode_values["blend_sub"] = Pair<int *, int>(&blend_modei, BLEND_MODE_SUB);
actions.render_mode_values["blend_mul"] = Pair<int *, int>(&blend_modei, BLEND_MODE_MUL);
actions.render_mode_values["alpha_to_coverage"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE);
actions.render_mode_values["alpha_to_coverage_and_one"] = Pair<int *, int>(&alpha_antialiasing_modei, ALPHA_ANTIALIASING_ALPHA_TO_COVERAGE_AND_TO_ONE);
actions.render_mode_values["depth_draw_never"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_DISABLED);
actions.render_mode_values["depth_draw_opaque"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_OPAQUE);
actions.render_mode_values["depth_draw_always"] = Pair<int *, int>(&depth_drawi, DEPTH_DRAW_ALWAYS);
actions.render_mode_values["depth_test_disabled"] = Pair<int *, int>(&depth_testi, DEPTH_TEST_DISABLED);
actions.render_mode_values["cull_disabled"] = Pair<int *, int>(&cull_modei, CULL_DISABLED);
actions.render_mode_values["cull_front"] = Pair<int *, int>(&cull_modei, CULL_FRONT);
actions.render_mode_values["cull_back"] = Pair<int *, int>(&cull_modei, CULL_BACK);
actions.render_mode_flags["unshaded"] = &unshaded;
actions.render_mode_flags["wireframe"] = &wireframe;
actions.render_mode_flags["particle_trails"] = &uses_particle_trails;
actions.usage_flag_pointers["ALPHA"] = &uses_alpha;
actions.usage_flag_pointers["ALPHA_SCISSOR_THRESHOLD"] = &uses_alpha_clip;
// Use alpha clip pipeline for alpha hash/dither.
// This prevents sorting issues inherent to alpha blending and allows such materials to cast shadows.
actions.usage_flag_pointers["ALPHA_HASH_SCALE"] = &uses_alpha_clip;
actions.render_mode_flags["depth_prepass_alpha"] = &uses_depth_prepass_alpha;
actions.usage_flag_pointers["SSS_STRENGTH"] = &uses_sss;
actions.usage_flag_pointers["SSS_TRANSMITTANCE_DEPTH"] = &uses_transmittance;
actions.usage_flag_pointers["DISCARD"] = &uses_discard;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.usage_flag_pointers["ROUGHNESS"] = &uses_roughness;
actions.usage_flag_pointers["NORMAL"] = &uses_normal;
actions.usage_flag_pointers["NORMAL_MAP"] = &uses_normal;
actions.usage_flag_pointers["POINT_SIZE"] = &uses_point_size;
actions.usage_flag_pointers["POINT_COORD"] = &uses_point_size;
actions.write_flag_pointers["MODELVIEW_MATRIX"] = &writes_modelview_or_projection;
actions.write_flag_pointers["PROJECTION_MATRIX"] = &writes_modelview_or_projection;
actions.write_flag_pointers["VERTEX"] = &uses_vertex;
actions.write_flag_pointers["POSITION"] = &uses_position;
actions.usage_flag_pointers["TANGENT"] = &uses_tangent;
actions.usage_flag_pointers["BINORMAL"] = &uses_tangent;
actions.usage_flag_pointers["COLOR"] = &uses_color;
actions.usage_flag_pointers["UV"] = &uses_uv;
actions.usage_flag_pointers["UV2"] = &uses_uv2;
actions.usage_flag_pointers["CUSTOM0"] = &uses_custom0;
actions.usage_flag_pointers["CUSTOM1"] = &uses_custom1;
actions.usage_flag_pointers["CUSTOM2"] = &uses_custom2;
actions.usage_flag_pointers["CUSTOM3"] = &uses_custom3;
actions.usage_flag_pointers["BONE_INDICES"] = &uses_bones;
actions.usage_flag_pointers["BONE_WEIGHTS"] = &uses_weights;
actions.uniforms = &uniforms;
Error err = MaterialStorage::get_singleton()->shaders.compiler_scene.compile(RS::SHADER_SPATIAL, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
if (version.is_null()) {
version = MaterialStorage::get_singleton()->shaders.scene_shader.version_create();
}
depth_draw = DepthDraw(depth_drawi);
depth_test = DepthTest(depth_testi);
cull_mode = Cull(cull_modei);
blend_mode = BlendMode(blend_modei);
alpha_antialiasing_mode = AlphaAntiAliasing(alpha_antialiasing_modei);
vertex_input_mask = uint32_t(uses_normal);
vertex_input_mask |= uses_tangent << 1;
vertex_input_mask |= uses_color << 2;
vertex_input_mask |= uses_uv << 3;
vertex_input_mask |= uses_uv2 << 4;
vertex_input_mask |= uses_custom0 << 5;
vertex_input_mask |= uses_custom1 << 6;
vertex_input_mask |= uses_custom2 << 7;
vertex_input_mask |= uses_custom3 << 8;
vertex_input_mask |= uses_bones << 9;
vertex_input_mask |= uses_weights << 10;
uses_screen_texture_mipmaps = gen_code.uses_screen_texture_mipmaps;
uses_screen_texture = gen_code.uses_screen_texture;
uses_depth_texture = gen_code.uses_depth_texture;
uses_normal_texture = gen_code.uses_normal_roughness_texture;
uses_vertex_time = gen_code.uses_vertex_time;
uses_fragment_time = gen_code.uses_fragment_time;
#ifdef DEBUG_ENABLED
if (uses_particle_trails) {
WARN_PRINT_ONCE_ED("Particle trails are only available when using the Forward+ or Mobile rendering backends.");
}
if (uses_sss) {
WARN_PRINT_ONCE_ED("Sub-surface scattering is only available when using the Forward+ rendering backend.");
}
if (uses_transmittance) {
WARN_PRINT_ONCE_ED("Transmittance is only available when using the Forward+ rendering backend.");
}
if (uses_screen_texture) {
WARN_PRINT_ONCE_ED("Reading from the screen texture is not supported when using the GL Compatibility backend yet. Support will be added in a future release.");
}
if (uses_depth_texture) {
WARN_PRINT_ONCE_ED("Reading from the depth texture is not supported when using the GL Compatibility backend yet. Support will be added in a future release.");
}
if (uses_normal_texture) {
WARN_PRINT_ONCE_ED("Reading from the normal-roughness texture is only available when using the Forward+ or Mobile rendering backends.");
}
#endif
#if 0
print_line("**compiling shader:");
print_line("**defines:\n");
for (int i = 0; i < gen_code.defines.size(); i++) {
print_line(gen_code.defines[i]);
}
HashMap<String, String>::Iterator el = gen_code.code.begin();
while (el) {
print_line("\n**code " + el->key + ":\n" + el->value);
++el;
}
print_line("\n**uniforms:\n" + gen_code.uniforms);
print_line("\n**vertex_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX]);
print_line("\n**fragment_globals:\n" + gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT]);
#endif
Vector<StringName> texture_uniform_names;
for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
}
MaterialStorage::get_singleton()->shaders.scene_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.scene_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
// if any form of Alpha Antialiasing is enabled, set the blend mode to alpha to coverage
if (alpha_antialiasing_mode != ALPHA_ANTIALIASING_OFF) {
blend_mode = BLEND_MODE_ALPHA_TO_COVERAGE;
}
valid = true;
}
bool SceneShaderData::is_animated() const {
return (uses_fragment_time && uses_discard) || (uses_vertex_time && uses_vertex);
}
bool SceneShaderData::casts_shadows() const {
bool has_read_screen_alpha = uses_screen_texture || uses_depth_texture || uses_normal_texture;
bool has_base_alpha = (uses_alpha && !uses_alpha_clip) || has_read_screen_alpha;
bool has_alpha = has_base_alpha || uses_blend_alpha;
return !has_alpha || (uses_depth_prepass_alpha && !(depth_draw == DEPTH_DRAW_DISABLED || depth_test == DEPTH_TEST_DISABLED));
}
RS::ShaderNativeSourceCode SceneShaderData::get_native_source_code() const {
return MaterialStorage::get_singleton()->shaders.scene_shader.version_get_native_source_code(version);
}
SceneShaderData::SceneShaderData() {
valid = false;
uses_screen_texture = false;
}
SceneShaderData::~SceneShaderData() {
if (version.is_valid()) {
MaterialStorage::get_singleton()->shaders.scene_shader.version_free(version);
}
}
GLES3::ShaderData *GLES3::_create_scene_shader_func() {
SceneShaderData *shader_data = memnew(SceneShaderData);
return shader_data;
}
void SceneMaterialData::set_render_priority(int p_priority) {
priority = p_priority - RS::MATERIAL_RENDER_PRIORITY_MIN; //8 bits
}
void SceneMaterialData::set_next_pass(RID p_pass) {
next_pass = p_pass;
}
void SceneMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
SceneMaterialData::~SceneMaterialData() {
}
GLES3::MaterialData *GLES3::_create_scene_material_func(ShaderData *p_shader) {
SceneMaterialData *material_data = memnew(SceneMaterialData);
material_data->shader_data = static_cast<SceneShaderData *>(p_shader);
//update will happen later anyway so do nothing.
return material_data;
}
void SceneMaterialData::bind_uniforms() {
// Bind Material Uniforms
glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_MATERIAL_UNIFORM_LOCATION, uniform_buffer);
RID *textures = texture_cache.ptrw();
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
glActiveTexture(GL_TEXTURE0 + ti);
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
if (texture->render_target) {
texture->render_target->used_in_frame = true;
}
texture->gl_set_filter(filter_from_uniform[int(texture_uniforms[ti].filter)]);
texture->gl_set_repeat(repeat_from_uniform[int(texture_uniforms[ti].repeat)]);
}
}
/* Particles SHADER */
void ParticlesShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
uses_collision = false;
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["start"] = ShaderCompiler::STAGE_VERTEX;
actions.entry_point_stages["process"] = ShaderCompiler::STAGE_VERTEX;
actions.usage_flag_pointers["COLLIDED"] = &uses_collision;
userdata_count = 0;
for (uint32_t i = 0; i < PARTICLES_MAX_USERDATAS; i++) {
userdatas_used[i] = false;
actions.usage_flag_pointers["USERDATA" + itos(i + 1)] = &userdatas_used[i];
}
actions.uniforms = &uniforms;
Error err = MaterialStorage::get_singleton()->shaders.compiler_particles.compile(RS::SHADER_PARTICLES, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Shader compilation failed.");
if (version.is_null()) {
version = MaterialStorage::get_singleton()->shaders.particles_process_shader.version_create();
}
for (uint32_t i = 0; i < PARTICLES_MAX_USERDATAS; i++) {
if (userdatas_used[i]) {
userdata_count++;
}
}
Vector<StringName> texture_uniform_names;
for (int i = 0; i < gen_code.texture_uniforms.size(); i++) {
texture_uniform_names.push_back(gen_code.texture_uniforms[i].name);
}
MaterialStorage::get_singleton()->shaders.particles_process_shader.version_set_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_VERTEX], gen_code.stage_globals[ShaderCompiler::STAGE_FRAGMENT], gen_code.defines, texture_uniform_names);
ERR_FAIL_COND(!MaterialStorage::get_singleton()->shaders.particles_process_shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
valid = true;
}
bool ParticlesShaderData::is_animated() const {
return false;
}
bool ParticlesShaderData::casts_shadows() const {
return false;
}
RS::ShaderNativeSourceCode ParticlesShaderData::get_native_source_code() const {
return MaterialStorage::get_singleton()->shaders.particles_process_shader.version_get_native_source_code(version);
}
ParticlesShaderData::~ParticlesShaderData() {
if (version.is_valid()) {
MaterialStorage::get_singleton()->shaders.particles_process_shader.version_free(version);
}
}
GLES3::ShaderData *GLES3::_create_particles_shader_func() {
ParticlesShaderData *shader_data = memnew(ParticlesShaderData);
return shader_data;
}
void ParticleProcessMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
update_parameters_internal(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size);
}
ParticleProcessMaterialData::~ParticleProcessMaterialData() {
}
GLES3::MaterialData *GLES3::_create_particles_material_func(ShaderData *p_shader) {
ParticleProcessMaterialData *material_data = memnew(ParticleProcessMaterialData);
material_data->shader_data = static_cast<ParticlesShaderData *>(p_shader);
//update will happen later anyway so do nothing.
return material_data;
}
void ParticleProcessMaterialData::bind_uniforms() {
// Bind Material Uniforms
glBindBufferBase(GL_UNIFORM_BUFFER, GLES3::PARTICLES_MATERIAL_UNIFORM_LOCATION, uniform_buffer);
RID *textures = texture_cache.ptrw();
ShaderCompiler::GeneratedCode::Texture *texture_uniforms = shader_data->texture_uniforms.ptrw();
for (int ti = 0; ti < texture_cache.size(); ti++) {
Texture *texture = TextureStorage::get_singleton()->get_texture(textures[ti]);
glActiveTexture(GL_TEXTURE1 + ti); // Start at GL_TEXTURE1 because texture slot 0 is reserved for the heightmap texture.
glBindTexture(target_from_type[texture_uniforms[ti].type], texture->tex_id);
if (texture->render_target) {
texture->render_target->used_in_frame = true;
}
texture->gl_set_filter(filter_from_uniform[int(texture_uniforms[ti].filter)]);
texture->gl_set_repeat(repeat_from_uniform[int(texture_uniforms[ti].repeat)]);
}
}
#endif // !GLES3_ENABLED