godot/core/math/math_2d.h
2016-07-28 14:58:12 +02:00

858 lines
21 KiB
C++

/*************************************************************************/
/* math_2d.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef MATH_2D_H
#define MATH_2D_H
#include "math_funcs.h"
#include "ustring.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
enum Margin {
MARGIN_LEFT,
MARGIN_TOP,
MARGIN_RIGHT,
MARGIN_BOTTOM
};
enum Orientation {
HORIZONTAL,
VERTICAL
};
enum HAlign {
HALIGN_LEFT,
HALIGN_CENTER,
HALIGN_RIGHT
};
enum VAlign {
VALIGN_TOP,
VALIGN_CENTER,
VALIGN_BOTTOM
};
struct Vector2 {
union {
float x;
float width;
};
union {
float y;
float height;
};
_FORCE_INLINE_ float& operator[](int p_idx) {
return p_idx?y:x;
}
_FORCE_INLINE_ const float& operator[](int p_idx) const {
return p_idx?y:x;
}
void normalize();
Vector2 normalized() const;
float length() const;
float length_squared() const;
float distance_to(const Vector2& p_vector2) const;
float distance_squared_to(const Vector2& p_vector2) const;
float angle_to(const Vector2& p_vector2) const;
float angle_to_point(const Vector2& p_vector2) const;
float dot(const Vector2& p_other) const;
float cross(const Vector2& p_other) const;
Vector2 cross(real_t p_other) const;
Vector2 project(const Vector2& p_vec) const;
Vector2 plane_project(real_t p_d, const Vector2& p_vec) const;
Vector2 clamped(real_t p_len) const;
_FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2& p_a, const Vector2& p_b,float p_t);
_FORCE_INLINE_ Vector2 linear_interpolate(const Vector2& p_b,float p_t) const;
Vector2 cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const;
Vector2 cubic_interpolate_soft(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const;
Vector2 slide(const Vector2& p_vec) const;
Vector2 reflect(const Vector2& p_vec) const;
Vector2 operator+(const Vector2& p_v) const;
void operator+=(const Vector2& p_v);
Vector2 operator-(const Vector2& p_v) const;
void operator-=(const Vector2& p_v);
Vector2 operator*(const Vector2 &p_v1) const;
Vector2 operator*(const float &rvalue) const;
void operator*=(const float &rvalue);
void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
Vector2 operator/(const Vector2 &p_v1) const;
Vector2 operator/(const float &rvalue) const;
void operator/=(const float &rvalue);
Vector2 operator-() const;
bool operator==(const Vector2& p_vec2) const;
bool operator!=(const Vector2& p_vec2) const;
bool operator<(const Vector2& p_vec2) const { return (x==p_vec2.x)?(y<p_vec2.y):(x<p_vec2.x); }
bool operator<=(const Vector2& p_vec2) const { return (x==p_vec2.x)?(y<=p_vec2.y):(x<=p_vec2.x); }
real_t angle() const;
void set_rotation(float p_radians) {
x=Math::sin(p_radians);
y=Math::cos(p_radians);
}
_FORCE_INLINE_ Vector2 abs() const {
return Vector2( Math::abs(x), Math::abs(y) );
}
Vector2 rotated(float p_by) const;
Vector2 tangent() const {
return Vector2(y,-x);
}
Vector2 floor() const;
Vector2 snapped(const Vector2& p_by) const;
float get_aspect() const { return width/height; }
operator String() const { return String::num(x)+", "+String::num(y); }
_FORCE_INLINE_ Vector2(float p_x,float p_y) { x=p_x; y=p_y; }
_FORCE_INLINE_ Vector2() { x=0; y=0; }
};
_FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2& p_vec) const {
return p_vec - *this * ( dot(p_vec) -p_d);
}
_FORCE_INLINE_ Vector2 operator*(float p_scalar, const Vector2& p_vec) {
return p_vec*p_scalar;
}
Vector2 Vector2::linear_interpolate(const Vector2& p_b,float p_t) const {
Vector2 res=*this;
res.x+= (p_t * (p_b.x-x));
res.y+= (p_t * (p_b.y-y));
return res;
}
Vector2 Vector2::linear_interpolate(const Vector2& p_a, const Vector2& p_b,float p_t) {
Vector2 res=p_a;
res.x+= (p_t * (p_b.x-p_a.x));
res.y+= (p_t * (p_b.y-p_a.y));
return res;
}
typedef Vector2 Size2;
typedef Vector2 Point2;
struct Matrix32;
struct Rect2 {
Point2 pos;
Size2 size;
const Vector2& get_pos() const { return pos; }
void set_pos(const Vector2& p_pos) { pos=p_pos; }
const Vector2& get_size() const { return size; }
void set_size(const Vector2& p_size) { size=p_size; }
float get_area() const { return size.width*size.height; }
inline bool intersects(const Rect2& p_rect) const {
if ( pos.x >= (p_rect.pos.x + p_rect.size.width) )
return false;
if ( (pos.x+size.width) <= p_rect.pos.x )
return false;
if ( pos.y >= (p_rect.pos.y + p_rect.size.height) )
return false;
if ( (pos.y+size.height) <= p_rect.pos.y )
return false;
return true;
}
inline float distance_to(const Vector2& p_point) const {
float dist = 1e20;
if (p_point.x < pos.x) {
dist=MIN(dist,pos.x-p_point.x);
}
if (p_point.y < pos.y) {
dist=MIN(dist,pos.y-p_point.y);
}
if (p_point.x >= (pos.x+size.x) ) {
dist=MIN(p_point.x-(pos.x+size.x),dist);
}
if (p_point.y >= (pos.y+size.y) ) {
dist=MIN(p_point.y-(pos.y+size.y),dist);
}
if (dist==1e20)
return 0;
else
return dist;
}
_FORCE_INLINE_ bool intersects_transformed(const Matrix32& p_xform, const Rect2& p_rect) const;
bool intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos=NULL, Point2* r_normal=NULL) const;
inline bool encloses(const Rect2& p_rect) const {
return (p_rect.pos.x>=pos.x) && (p_rect.pos.y>=pos.y) &&
((p_rect.pos.x+p_rect.size.x)<(pos.x+size.x)) &&
((p_rect.pos.y+p_rect.size.y)<(pos.y+size.y));
}
inline bool has_no_area() const {
return (size.x<=0 || size.y<=0);
}
inline Rect2 clip(const Rect2& p_rect) const { /// return a clipped rect
Rect2 new_rect=p_rect;
if (!intersects( new_rect ))
return Rect2();
new_rect.pos.x = MAX( p_rect.pos.x , pos.x );
new_rect.pos.y = MAX( p_rect.pos.y , pos.y );
Point2 p_rect_end=p_rect.pos+p_rect.size;
Point2 end=pos+size;
new_rect.size.x=MIN(p_rect_end.x,end.x) - new_rect.pos.x;
new_rect.size.y=MIN(p_rect_end.y,end.y) - new_rect.pos.y;
return new_rect;
}
inline Rect2 merge(const Rect2& p_rect) const { ///< return a merged rect
Rect2 new_rect;
new_rect.pos.x=MIN( p_rect.pos.x , pos.x );
new_rect.pos.y=MIN( p_rect.pos.y , pos.y );
new_rect.size.x = MAX( p_rect.pos.x+p_rect.size.x , pos.x+size.x );
new_rect.size.y = MAX( p_rect.pos.y+p_rect.size.y , pos.y+size.y );
new_rect.size = new_rect.size - new_rect.pos; //make relative again
return new_rect;
};
inline bool has_point(const Point2& p_point) const {
if (p_point.x < pos.x)
return false;
if (p_point.y < pos.y)
return false;
if (p_point.x >= (pos.x+size.x) )
return false;
if (p_point.y >= (pos.y+size.y) )
return false;
return true;
}
inline bool no_area() const { return (size.width<=0 || size.height<=0 ); }
bool operator==(const Rect2& p_rect) const { return pos==p_rect.pos && size==p_rect.size; }
bool operator!=(const Rect2& p_rect) const { return pos!=p_rect.pos || size!=p_rect.size; }
inline Rect2 grow(real_t p_by) const {
Rect2 g=*this;
g.pos.x-=p_by;
g.pos.y-=p_by;
g.size.width+=p_by*2;
g.size.height+=p_by*2;
return g;
}
inline Rect2 expand(const Vector2& p_vector) const {
Rect2 r = *this;
r.expand_to(p_vector);
return r;
}
inline void expand_to(const Vector2& p_vector) { //in place function for speed
Vector2 begin=pos;
Vector2 end=pos+size;
if (p_vector.x<begin.x)
begin.x=p_vector.x;
if (p_vector.y<begin.y)
begin.y=p_vector.y;
if (p_vector.x>end.x)
end.x=p_vector.x;
if (p_vector.y>end.y)
end.y=p_vector.y;
pos=begin;
size=end-begin;
}
operator String() const { return String(pos)+", "+String(size); }
Rect2() {}
Rect2( float p_x, float p_y, float p_width, float p_height) { pos=Point2(p_x,p_y); size=Size2( p_width, p_height ); }
Rect2( const Point2& p_pos, const Size2& p_size ) { pos=p_pos; size=p_size; }
};
/* INTEGER STUFF */
struct Point2i {
union {
int x;
int width;
};
union {
int y;
int height;
};
_FORCE_INLINE_ int& operator[](int p_idx) {
return p_idx?y:x;
}
_FORCE_INLINE_ const int& operator[](int p_idx) const {
return p_idx?y:x;
}
Point2i operator+(const Point2i& p_v) const;
void operator+=(const Point2i& p_v);
Point2i operator-(const Point2i& p_v) const;
void operator-=(const Point2i& p_v);
Point2i operator*(const Point2i &p_v1) const;
Point2i operator*(const int &rvalue) const;
void operator*=(const int &rvalue);
Point2i operator/(const Point2i &p_v1) const;
Point2i operator/(const int &rvalue) const;
void operator/=(const int &rvalue);
Point2i operator-() const;
bool operator<(const Point2i& p_vec2) const { return (x==p_vec2.x)?(y<p_vec2.y):(x<p_vec2.x); }
bool operator>(const Point2i& p_vec2) const { return (x==p_vec2.x)?(y>p_vec2.y):(x>p_vec2.x); }
bool operator==(const Point2i& p_vec2) const;
bool operator!=(const Point2i& p_vec2) const;
float get_aspect() const { return width/(float)height; }
operator String() const { return String::num(x)+", "+String::num(y); }
operator Vector2() const { return Vector2(x,y); }
inline Point2i(const Vector2& p_vec2) { x=(int)p_vec2.x; y=(int)p_vec2.y; }
inline Point2i(int p_x,int p_y) { x=p_x; y=p_y; }
inline Point2i() { x=0; y=0; }
};
typedef Point2i Size2i;
struct Rect2i {
Point2i pos;
Size2i size;
const Point2i& get_pos() const { return pos; }
void set_pos(const Point2i& p_pos) { pos=p_pos; }
const Point2i& get_size() const { return size; }
void set_size(const Point2i& p_size) { size=p_size; }
int get_area() const { return size.width*size.height; }
inline bool intersects(const Rect2i& p_rect) const {
if ( pos.x > (p_rect.pos.x + p_rect.size.width) )
return false;
if ( (pos.x+size.width) < p_rect.pos.x )
return false;
if ( pos.y > (p_rect.pos.y + p_rect.size.height) )
return false;
if ( (pos.y+size.height) < p_rect.pos.y )
return false;
return true;
}
inline bool encloses(const Rect2i& p_rect) const {
return (p_rect.pos.x>=pos.x) && (p_rect.pos.y>=pos.y) &&
((p_rect.pos.x+p_rect.size.x)<(pos.x+size.x)) &&
((p_rect.pos.y+p_rect.size.y)<(pos.y+size.y));
}
inline bool has_no_area() const {
return (size.x<=0 || size.y<=0);
}
inline Rect2i clip(const Rect2i& p_rect) const { /// return a clipped rect
Rect2i new_rect=p_rect;
if (!intersects( new_rect ))
return Rect2i();
new_rect.pos.x = MAX( p_rect.pos.x , pos.x );
new_rect.pos.y = MAX( p_rect.pos.y , pos.y );
Point2 p_rect_end=p_rect.pos+p_rect.size;
Point2 end=pos+size;
new_rect.size.x=(int)(MIN(p_rect_end.x,end.x) - new_rect.pos.x);
new_rect.size.y=(int)(MIN(p_rect_end.y,end.y) - new_rect.pos.y);
return new_rect;
}
inline Rect2i merge(const Rect2i& p_rect) const { ///< return a merged rect
Rect2i new_rect;
new_rect.pos.x=MIN( p_rect.pos.x , pos.x );
new_rect.pos.y=MIN( p_rect.pos.y , pos.y );
new_rect.size.x = MAX( p_rect.pos.x+p_rect.size.x , pos.x+size.x );
new_rect.size.y = MAX( p_rect.pos.y+p_rect.size.y , pos.y+size.y );
new_rect.size = new_rect.size - new_rect.pos; //make relative again
return new_rect;
};
bool has_point(const Point2& p_point) const {
if (p_point.x < pos.x)
return false;
if (p_point.y < pos.y)
return false;
if (p_point.x >= (pos.x+size.x) )
return false;
if (p_point.y >= (pos.y+size.y) )
return false;
return true;
}
bool no_area() { return (size.width<=0 || size.height<=0 ); }
bool operator==(const Rect2i& p_rect) const { return pos==p_rect.pos && size==p_rect.size; }
bool operator!=(const Rect2i& p_rect) const { return pos!=p_rect.pos || size!=p_rect.size; }
Rect2i grow(int p_by) const {
Rect2i g=*this;
g.pos.x-=p_by;
g.pos.y-=p_by;
g.size.width+=p_by*2;
g.size.height+=p_by*2;
return g;
}
inline void expand_to(const Point2i& p_vector) {
Point2i begin=pos;
Point2i end=pos+size;
if (p_vector.x<begin.x)
begin.x=p_vector.x;
if (p_vector.y<begin.y)
begin.y=p_vector.y;
if (p_vector.x>end.x)
end.x=p_vector.x;
if (p_vector.y>end.y)
end.y=p_vector.y;
pos=begin;
size=end-begin;
}
operator String() const { return String(pos)+", "+String(size); }
operator Rect2() const { return Rect2(pos,size); }
Rect2i(const Rect2& p_r2) { pos=p_r2.pos; size=p_r2.size; }
Rect2i() {}
Rect2i( int p_x, int p_y, int p_width, int p_height) { pos=Point2(p_x,p_y); size=Size2( p_width, p_height ); }
Rect2i( const Point2& p_pos, const Size2& p_size ) { pos=p_pos; size=p_size; }
};
struct Matrix32 {
Vector2 elements[3];
_FORCE_INLINE_ float tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; }
_FORCE_INLINE_ float tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; }
const Vector2& operator[](int p_idx) const { return elements[p_idx]; }
Vector2& operator[](int p_idx) { return elements[p_idx]; }
_FORCE_INLINE_ Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; }
_FORCE_INLINE_ void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; }
void invert();
Matrix32 inverse() const;
void affine_invert();
Matrix32 affine_inverse() const;
void set_rotation(real_t p_phi);
real_t get_rotation() const;
_FORCE_INLINE_ void set_rotation_and_scale(real_t p_phi,const Size2& p_scale);
void rotate(real_t p_phi);
void scale(const Vector2& p_scale);
void scale_basis(const Vector2& p_scale);
void translate( real_t p_tx, real_t p_ty);
void translate( const Vector2& p_translation );
float basis_determinant() const;
Vector2 get_scale() const;
_FORCE_INLINE_ const Vector2& get_origin() const { return elements[2]; }
_FORCE_INLINE_ void set_origin(const Vector2& p_origin) { elements[2]=p_origin; }
Matrix32 scaled(const Vector2& p_scale) const;
Matrix32 basis_scaled(const Vector2& p_scale) const;
Matrix32 translated(const Vector2& p_offset) const;
Matrix32 rotated(float p_phi) const;
Matrix32 untranslated() const;
void orthonormalize();
Matrix32 orthonormalized() const;
bool operator==(const Matrix32& p_transform) const;
bool operator!=(const Matrix32& p_transform) const;
void operator*=(const Matrix32& p_transform);
Matrix32 operator*(const Matrix32& p_transform) const;
Matrix32 interpolate_with(const Matrix32& p_transform, float p_c) const;
_FORCE_INLINE_ Vector2 basis_xform(const Vector2& p_vec) const;
_FORCE_INLINE_ Vector2 basis_xform_inv(const Vector2& p_vec) const;
_FORCE_INLINE_ Vector2 xform(const Vector2& p_vec) const;
_FORCE_INLINE_ Vector2 xform_inv(const Vector2& p_vec) const;
_FORCE_INLINE_ Rect2 xform(const Rect2& p_vec) const;
_FORCE_INLINE_ Rect2 xform_inv(const Rect2& p_vec) const;
operator String() const;
Matrix32(real_t p_rot, const Vector2& p_pos);
Matrix32() { elements[0][0]=1.0; elements[1][1]=1.0; }
};
bool Rect2::intersects_transformed(const Matrix32& p_xform, const Rect2& p_rect) const {
//SAT intersection between local and transformed rect2
Vector2 xf_points[4]={
p_xform.xform(p_rect.pos),
p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y)),
p_xform.xform(Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y)),
p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y)),
};
real_t low_limit;
//base rect2 first (faster)
if (xf_points[0].y>pos.y)
goto next1;
if (xf_points[1].y>pos.y)
goto next1;
if (xf_points[2].y>pos.y)
goto next1;
if (xf_points[3].y>pos.y)
goto next1;
return false;
next1:
low_limit=pos.y+size.y;
if (xf_points[0].y<low_limit)
goto next2;
if (xf_points[1].y<low_limit)
goto next2;
if (xf_points[2].y<low_limit)
goto next2;
if (xf_points[3].y<low_limit)
goto next2;
return false;
next2:
if (xf_points[0].x>pos.x)
goto next3;
if (xf_points[1].x>pos.x)
goto next3;
if (xf_points[2].x>pos.x)
goto next3;
if (xf_points[3].x>pos.x)
goto next3;
return false;
next3:
low_limit=pos.x+size.x;
if (xf_points[0].x<low_limit)
goto next4;
if (xf_points[1].x<low_limit)
goto next4;
if (xf_points[2].x<low_limit)
goto next4;
if (xf_points[3].x<low_limit)
goto next4;
return false;
next4:
Vector2 xf_points2[4]={
pos,
Vector2(pos.x+size.x,pos.y),
Vector2(pos.x,pos.y+size.y),
Vector2(pos.x+size.x,pos.y+size.y),
};
real_t maxa=p_xform.elements[0].dot(xf_points2[0]);
real_t mina=maxa;
real_t dp = p_xform.elements[0].dot(xf_points2[1]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[0].dot(xf_points2[2]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[0].dot(xf_points2[3]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
real_t maxb=p_xform.elements[0].dot(xf_points[0]);
real_t minb=maxb;
dp = p_xform.elements[0].dot(xf_points[1]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[0].dot(xf_points[2]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[0].dot(xf_points[3]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
if ( mina > maxb )
return false;
if ( minb > maxa )
return false;
maxa=p_xform.elements[1].dot(xf_points2[0]);
mina=maxa;
dp = p_xform.elements[1].dot(xf_points2[1]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[1].dot(xf_points2[2]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
dp = p_xform.elements[1].dot(xf_points2[3]);
maxa=MAX(dp,maxa);
mina=MIN(dp,mina);
maxb=p_xform.elements[1].dot(xf_points[0]);
minb=maxb;
dp = p_xform.elements[1].dot(xf_points[1]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[1].dot(xf_points[2]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
dp = p_xform.elements[1].dot(xf_points[3]);
maxb=MAX(dp,maxb);
minb=MIN(dp,minb);
if ( mina > maxb )
return false;
if ( minb > maxa )
return false;
return true;
}
Vector2 Matrix32::basis_xform(const Vector2& v) const {
return Vector2(
tdotx(v),
tdoty(v)
);
}
Vector2 Matrix32::basis_xform_inv(const Vector2& v) const{
return Vector2(
elements[0].dot(v),
elements[1].dot(v)
);
}
Vector2 Matrix32::xform(const Vector2& v) const {
return Vector2(
tdotx(v),
tdoty(v)
) + elements[2];
}
Vector2 Matrix32::xform_inv(const Vector2& p_vec) const {
Vector2 v = p_vec - elements[2];
return Vector2(
elements[0].dot(v),
elements[1].dot(v)
);
}
Rect2 Matrix32::xform(const Rect2& p_rect) const {
Vector2 x=elements[0]*p_rect.size.x;
Vector2 y=elements[1]*p_rect.size.y;
Vector2 pos = xform( p_rect.pos );
Rect2 new_rect;
new_rect.pos=pos;
new_rect.expand_to( pos+x );
new_rect.expand_to( pos+y );
new_rect.expand_to( pos+x+y );
return new_rect;
}
void Matrix32::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) {
elements[0][0]=Math::cos(p_rot)*p_scale.x;
elements[1][1]=Math::cos(p_rot)*p_scale.y;
elements[0][1]=-Math::sin(p_rot)*p_scale.x;
elements[1][0]=Math::sin(p_rot)*p_scale.y;
}
Rect2 Matrix32::xform_inv(const Rect2& p_rect) const {
Vector2 ends[4]={
xform_inv( p_rect.pos ),
xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ),
xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ),
xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) )
};
Rect2 new_rect;
new_rect.pos=ends[0];
new_rect.expand_to(ends[1]);
new_rect.expand_to(ends[2]);
new_rect.expand_to(ends[3]);
return new_rect;
}
#endif