1464 lines
39 KiB
C++
1464 lines
39 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include "Recast.h"
|
|
#include "RecastAlloc.h"
|
|
#include "RecastAssert.h"
|
|
|
|
|
|
static const unsigned RC_UNSET_HEIGHT = 0xffff;
|
|
|
|
struct rcHeightPatch
|
|
{
|
|
inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {}
|
|
inline ~rcHeightPatch() { rcFree(data); }
|
|
unsigned short* data;
|
|
int xmin, ymin, width, height;
|
|
};
|
|
|
|
|
|
inline float vdot2(const float* a, const float* b)
|
|
{
|
|
return a[0]*b[0] + a[2]*b[2];
|
|
}
|
|
|
|
inline float vdistSq2(const float* p, const float* q)
|
|
{
|
|
const float dx = q[0] - p[0];
|
|
const float dy = q[2] - p[2];
|
|
return dx*dx + dy*dy;
|
|
}
|
|
|
|
inline float vdist2(const float* p, const float* q)
|
|
{
|
|
return sqrtf(vdistSq2(p,q));
|
|
}
|
|
|
|
inline float vcross2(const float* p1, const float* p2, const float* p3)
|
|
{
|
|
const float u1 = p2[0] - p1[0];
|
|
const float v1 = p2[2] - p1[2];
|
|
const float u2 = p3[0] - p1[0];
|
|
const float v2 = p3[2] - p1[2];
|
|
return u1 * v2 - v1 * u2;
|
|
}
|
|
|
|
static bool circumCircle(const float* p1, const float* p2, const float* p3,
|
|
float* c, float& r)
|
|
{
|
|
static const float EPS = 1e-6f;
|
|
// Calculate the circle relative to p1, to avoid some precision issues.
|
|
const float v1[3] = {0,0,0};
|
|
float v2[3], v3[3];
|
|
rcVsub(v2, p2,p1);
|
|
rcVsub(v3, p3,p1);
|
|
|
|
const float cp = vcross2(v1, v2, v3);
|
|
if (fabsf(cp) > EPS)
|
|
{
|
|
const float v1Sq = vdot2(v1,v1);
|
|
const float v2Sq = vdot2(v2,v2);
|
|
const float v3Sq = vdot2(v3,v3);
|
|
c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp);
|
|
c[1] = 0;
|
|
c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp);
|
|
r = vdist2(c, v1);
|
|
rcVadd(c, c, p1);
|
|
return true;
|
|
}
|
|
|
|
rcVcopy(c, p1);
|
|
r = 0;
|
|
return false;
|
|
}
|
|
|
|
static float distPtTri(const float* p, const float* a, const float* b, const float* c)
|
|
{
|
|
float v0[3], v1[3], v2[3];
|
|
rcVsub(v0, c,a);
|
|
rcVsub(v1, b,a);
|
|
rcVsub(v2, p,a);
|
|
|
|
const float dot00 = vdot2(v0, v0);
|
|
const float dot01 = vdot2(v0, v1);
|
|
const float dot02 = vdot2(v0, v2);
|
|
const float dot11 = vdot2(v1, v1);
|
|
const float dot12 = vdot2(v1, v2);
|
|
|
|
// Compute barycentric coordinates
|
|
const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
|
|
const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
|
|
float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
|
|
|
|
// If point lies inside the triangle, return interpolated y-coord.
|
|
static const float EPS = 1e-4f;
|
|
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
|
|
{
|
|
const float y = a[1] + v0[1]*u + v1[1]*v;
|
|
return fabsf(y-p[1]);
|
|
}
|
|
return FLT_MAX;
|
|
}
|
|
|
|
static float distancePtSeg(const float* pt, const float* p, const float* q)
|
|
{
|
|
float pqx = q[0] - p[0];
|
|
float pqy = q[1] - p[1];
|
|
float pqz = q[2] - p[2];
|
|
float dx = pt[0] - p[0];
|
|
float dy = pt[1] - p[1];
|
|
float dz = pt[2] - p[2];
|
|
float d = pqx*pqx + pqy*pqy + pqz*pqz;
|
|
float t = pqx*dx + pqy*dy + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = p[0] + t*pqx - pt[0];
|
|
dy = p[1] + t*pqy - pt[1];
|
|
dz = p[2] + t*pqz - pt[2];
|
|
|
|
return dx*dx + dy*dy + dz*dz;
|
|
}
|
|
|
|
static float distancePtSeg2d(const float* pt, const float* p, const float* q)
|
|
{
|
|
float pqx = q[0] - p[0];
|
|
float pqz = q[2] - p[2];
|
|
float dx = pt[0] - p[0];
|
|
float dz = pt[2] - p[2];
|
|
float d = pqx*pqx + pqz*pqz;
|
|
float t = pqx*dx + pqz*dz;
|
|
if (d > 0)
|
|
t /= d;
|
|
if (t < 0)
|
|
t = 0;
|
|
else if (t > 1)
|
|
t = 1;
|
|
|
|
dx = p[0] + t*pqx - pt[0];
|
|
dz = p[2] + t*pqz - pt[2];
|
|
|
|
return dx*dx + dz*dz;
|
|
}
|
|
|
|
static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris)
|
|
{
|
|
float dmin = FLT_MAX;
|
|
for (int i = 0; i < ntris; ++i)
|
|
{
|
|
const float* va = &verts[tris[i*4+0]*3];
|
|
const float* vb = &verts[tris[i*4+1]*3];
|
|
const float* vc = &verts[tris[i*4+2]*3];
|
|
float d = distPtTri(p, va,vb,vc);
|
|
if (d < dmin)
|
|
dmin = d;
|
|
}
|
|
if (dmin == FLT_MAX) return -1;
|
|
return dmin;
|
|
}
|
|
|
|
static float distToPoly(int nvert, const float* verts, const float* p)
|
|
{
|
|
|
|
float dmin = FLT_MAX;
|
|
int i, j, c = 0;
|
|
for (i = 0, j = nvert-1; i < nvert; j = i++)
|
|
{
|
|
const float* vi = &verts[i*3];
|
|
const float* vj = &verts[j*3];
|
|
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
|
|
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
|
|
c = !c;
|
|
dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi));
|
|
}
|
|
return c ? -dmin : dmin;
|
|
}
|
|
|
|
|
|
static unsigned short getHeight(const float fx, const float fy, const float fz,
|
|
const float /*cs*/, const float ics, const float ch,
|
|
const int radius, const rcHeightPatch& hp)
|
|
{
|
|
int ix = (int)floorf(fx*ics + 0.01f);
|
|
int iz = (int)floorf(fz*ics + 0.01f);
|
|
ix = rcClamp(ix-hp.xmin, 0, hp.width - 1);
|
|
iz = rcClamp(iz-hp.ymin, 0, hp.height - 1);
|
|
unsigned short h = hp.data[ix+iz*hp.width];
|
|
if (h == RC_UNSET_HEIGHT)
|
|
{
|
|
// Special case when data might be bad.
|
|
// Walk adjacent cells in a spiral up to 'radius', and look
|
|
// for a pixel which has a valid height.
|
|
int x = 1, z = 0, dx = 1, dz = 0;
|
|
int maxSize = radius * 2 + 1;
|
|
int maxIter = maxSize * maxSize - 1;
|
|
|
|
int nextRingIterStart = 8;
|
|
int nextRingIters = 16;
|
|
|
|
float dmin = FLT_MAX;
|
|
for (int i = 0; i < maxIter; i++)
|
|
{
|
|
const int nx = ix + x;
|
|
const int nz = iz + z;
|
|
|
|
if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height)
|
|
{
|
|
const unsigned short nh = hp.data[nx + nz*hp.width];
|
|
if (nh != RC_UNSET_HEIGHT)
|
|
{
|
|
const float d = fabsf(nh*ch - fy);
|
|
if (d < dmin)
|
|
{
|
|
h = nh;
|
|
dmin = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We are searching in a grid which looks approximately like this:
|
|
// __________
|
|
// |2 ______ 2|
|
|
// | |1 __ 1| |
|
|
// | | |__| | |
|
|
// | |______| |
|
|
// |__________|
|
|
// We want to find the best height as close to the center cell as possible. This means that
|
|
// if we find a height in one of the neighbor cells to the center, we don't want to
|
|
// expand further out than the 8 neighbors - we want to limit our search to the closest
|
|
// of these "rings", but the best height in the ring.
|
|
// For example, the center is just 1 cell. We checked that at the entrance to the function.
|
|
// The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell.
|
|
// The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which
|
|
// can be thought of as adding 2 cells around the "center" of each side when we expand the ring.
|
|
// Here we detect if we are about to enter the next ring, and if we are and we have found
|
|
// a height, we abort the search.
|
|
if (i + 1 == nextRingIterStart)
|
|
{
|
|
if (h != RC_UNSET_HEIGHT)
|
|
break;
|
|
|
|
nextRingIterStart += nextRingIters;
|
|
nextRingIters += 8;
|
|
}
|
|
|
|
if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z)))
|
|
{
|
|
int tmp = dx;
|
|
dx = -dz;
|
|
dz = tmp;
|
|
}
|
|
x += dx;
|
|
z += dz;
|
|
}
|
|
}
|
|
return h;
|
|
}
|
|
|
|
|
|
enum EdgeValues
|
|
{
|
|
EV_UNDEF = -1,
|
|
EV_HULL = -2
|
|
};
|
|
|
|
static int findEdge(const int* edges, int nedges, int s, int t)
|
|
{
|
|
for (int i = 0; i < nedges; i++)
|
|
{
|
|
const int* e = &edges[i*4];
|
|
if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s))
|
|
return i;
|
|
}
|
|
return EV_UNDEF;
|
|
}
|
|
|
|
static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r)
|
|
{
|
|
if (nedges >= maxEdges)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d).", nedges, maxEdges);
|
|
return EV_UNDEF;
|
|
}
|
|
|
|
// Add edge if not already in the triangulation.
|
|
int e = findEdge(edges, nedges, s, t);
|
|
if (e == EV_UNDEF)
|
|
{
|
|
int* edge = &edges[nedges*4];
|
|
edge[0] = s;
|
|
edge[1] = t;
|
|
edge[2] = l;
|
|
edge[3] = r;
|
|
return nedges++;
|
|
}
|
|
else
|
|
{
|
|
return EV_UNDEF;
|
|
}
|
|
}
|
|
|
|
static void updateLeftFace(int* e, int s, int t, int f)
|
|
{
|
|
if (e[0] == s && e[1] == t && e[2] == EV_UNDEF)
|
|
e[2] = f;
|
|
else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF)
|
|
e[3] = f;
|
|
}
|
|
|
|
static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d)
|
|
{
|
|
const float a1 = vcross2(a, b, d);
|
|
const float a2 = vcross2(a, b, c);
|
|
if (a1*a2 < 0.0f)
|
|
{
|
|
float a3 = vcross2(c, d, a);
|
|
float a4 = a3 + a2 - a1;
|
|
if (a3 * a4 < 0.0f)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1)
|
|
{
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
const int s0 = edges[i*4+0];
|
|
const int t0 = edges[i*4+1];
|
|
// Same or connected edges do not overlap.
|
|
if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1)
|
|
continue;
|
|
if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e)
|
|
{
|
|
static const float EPS = 1e-5f;
|
|
|
|
int* edge = &edges[e*4];
|
|
|
|
// Cache s and t.
|
|
int s,t;
|
|
if (edge[2] == EV_UNDEF)
|
|
{
|
|
s = edge[0];
|
|
t = edge[1];
|
|
}
|
|
else if (edge[3] == EV_UNDEF)
|
|
{
|
|
s = edge[1];
|
|
t = edge[0];
|
|
}
|
|
else
|
|
{
|
|
// Edge already completed.
|
|
return;
|
|
}
|
|
|
|
// Find best point on left of edge.
|
|
int pt = npts;
|
|
float c[3] = {0,0,0};
|
|
float r = -1;
|
|
for (int u = 0; u < npts; ++u)
|
|
{
|
|
if (u == s || u == t) continue;
|
|
if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS)
|
|
{
|
|
if (r < 0)
|
|
{
|
|
// The circle is not updated yet, do it now.
|
|
pt = u;
|
|
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
|
|
continue;
|
|
}
|
|
const float d = vdist2(c, &pts[u*3]);
|
|
const float tol = 0.001f;
|
|
if (d > r*(1+tol))
|
|
{
|
|
// Outside current circumcircle, skip.
|
|
continue;
|
|
}
|
|
else if (d < r*(1-tol))
|
|
{
|
|
// Inside safe circumcircle, update circle.
|
|
pt = u;
|
|
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
|
|
}
|
|
else
|
|
{
|
|
// Inside epsilon circum circle, do extra tests to make sure the edge is valid.
|
|
// s-u and t-u cannot overlap with s-pt nor t-pt if they exists.
|
|
if (overlapEdges(pts, edges, nedges, s,u))
|
|
continue;
|
|
if (overlapEdges(pts, edges, nedges, t,u))
|
|
continue;
|
|
// Edge is valid.
|
|
pt = u;
|
|
circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add new triangle or update edge info if s-t is on hull.
|
|
if (pt < npts)
|
|
{
|
|
// Update face information of edge being completed.
|
|
updateLeftFace(&edges[e*4], s, t, nfaces);
|
|
|
|
// Add new edge or update face info of old edge.
|
|
e = findEdge(edges, nedges, pt, s);
|
|
if (e == EV_UNDEF)
|
|
addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF);
|
|
else
|
|
updateLeftFace(&edges[e*4], pt, s, nfaces);
|
|
|
|
// Add new edge or update face info of old edge.
|
|
e = findEdge(edges, nedges, t, pt);
|
|
if (e == EV_UNDEF)
|
|
addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF);
|
|
else
|
|
updateLeftFace(&edges[e*4], t, pt, nfaces);
|
|
|
|
nfaces++;
|
|
}
|
|
else
|
|
{
|
|
updateLeftFace(&edges[e*4], s, t, EV_HULL);
|
|
}
|
|
}
|
|
|
|
static void delaunayHull(rcContext* ctx, const int npts, const float* pts,
|
|
const int nhull, const int* hull,
|
|
rcIntArray& tris, rcIntArray& edges)
|
|
{
|
|
int nfaces = 0;
|
|
int nedges = 0;
|
|
const int maxEdges = npts*10;
|
|
edges.resize(maxEdges*4);
|
|
|
|
for (int i = 0, j = nhull-1; i < nhull; j=i++)
|
|
addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF);
|
|
|
|
int currentEdge = 0;
|
|
while (currentEdge < nedges)
|
|
{
|
|
if (edges[currentEdge*4+2] == EV_UNDEF)
|
|
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
|
|
if (edges[currentEdge*4+3] == EV_UNDEF)
|
|
completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge);
|
|
currentEdge++;
|
|
}
|
|
|
|
// Create tris
|
|
tris.resize(nfaces*4);
|
|
for (int i = 0; i < nfaces*4; ++i)
|
|
tris[i] = -1;
|
|
|
|
for (int i = 0; i < nedges; ++i)
|
|
{
|
|
const int* e = &edges[i*4];
|
|
if (e[3] >= 0)
|
|
{
|
|
// Left face
|
|
int* t = &tris[e[3]*4];
|
|
if (t[0] == -1)
|
|
{
|
|
t[0] = e[0];
|
|
t[1] = e[1];
|
|
}
|
|
else if (t[0] == e[1])
|
|
t[2] = e[0];
|
|
else if (t[1] == e[0])
|
|
t[2] = e[1];
|
|
}
|
|
if (e[2] >= 0)
|
|
{
|
|
// Right
|
|
int* t = &tris[e[2]*4];
|
|
if (t[0] == -1)
|
|
{
|
|
t[0] = e[1];
|
|
t[1] = e[0];
|
|
}
|
|
else if (t[0] == e[0])
|
|
t[2] = e[1];
|
|
else if (t[1] == e[1])
|
|
t[2] = e[0];
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < tris.size()/4; ++i)
|
|
{
|
|
int* t = &tris[i*4];
|
|
if (t[0] == -1 || t[1] == -1 || t[2] == -1)
|
|
{
|
|
ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d].", i, t[0],t[1],t[2]);
|
|
t[0] = tris[tris.size()-4];
|
|
t[1] = tris[tris.size()-3];
|
|
t[2] = tris[tris.size()-2];
|
|
t[3] = tris[tris.size()-1];
|
|
tris.resize(tris.size()-4);
|
|
--i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate minimum extend of the polygon.
|
|
static float polyMinExtent(const float* verts, const int nverts)
|
|
{
|
|
float minDist = FLT_MAX;
|
|
for (int i = 0; i < nverts; i++)
|
|
{
|
|
const int ni = (i+1) % nverts;
|
|
const float* p1 = &verts[i*3];
|
|
const float* p2 = &verts[ni*3];
|
|
float maxEdgeDist = 0;
|
|
for (int j = 0; j < nverts; j++)
|
|
{
|
|
if (j == i || j == ni) continue;
|
|
float d = distancePtSeg2d(&verts[j*3], p1,p2);
|
|
maxEdgeDist = rcMax(maxEdgeDist, d);
|
|
}
|
|
minDist = rcMin(minDist, maxEdgeDist);
|
|
}
|
|
return rcSqrt(minDist);
|
|
}
|
|
|
|
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
|
|
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
|
|
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
|
|
|
|
static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris)
|
|
{
|
|
int start = 0, left = 1, right = nhull-1;
|
|
|
|
// Start from an ear with shortest perimeter.
|
|
// This tends to favor well formed triangles as starting point.
|
|
float dmin = FLT_MAX;
|
|
for (int i = 0; i < nhull; i++)
|
|
{
|
|
if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges
|
|
int pi = prev(i, nhull);
|
|
int ni = next(i, nhull);
|
|
const float* pv = &verts[hull[pi]*3];
|
|
const float* cv = &verts[hull[i]*3];
|
|
const float* nv = &verts[hull[ni]*3];
|
|
const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv);
|
|
if (d < dmin)
|
|
{
|
|
start = i;
|
|
left = ni;
|
|
right = pi;
|
|
dmin = d;
|
|
}
|
|
}
|
|
|
|
// Add first triangle
|
|
tris.push(hull[start]);
|
|
tris.push(hull[left]);
|
|
tris.push(hull[right]);
|
|
tris.push(0);
|
|
|
|
// Triangulate the polygon by moving left or right,
|
|
// depending on which triangle has shorter perimeter.
|
|
// This heuristic was chose emprically, since it seems
|
|
// handle tesselated straight edges well.
|
|
while (next(left, nhull) != right)
|
|
{
|
|
// Check to see if se should advance left or right.
|
|
int nleft = next(left, nhull);
|
|
int nright = prev(right, nhull);
|
|
|
|
const float* cvleft = &verts[hull[left]*3];
|
|
const float* nvleft = &verts[hull[nleft]*3];
|
|
const float* cvright = &verts[hull[right]*3];
|
|
const float* nvright = &verts[hull[nright]*3];
|
|
const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright);
|
|
const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright);
|
|
|
|
if (dleft < dright)
|
|
{
|
|
tris.push(hull[left]);
|
|
tris.push(hull[nleft]);
|
|
tris.push(hull[right]);
|
|
tris.push(0);
|
|
left = nleft;
|
|
}
|
|
else
|
|
{
|
|
tris.push(hull[left]);
|
|
tris.push(hull[nright]);
|
|
tris.push(hull[right]);
|
|
tris.push(0);
|
|
right = nright;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline float getJitterX(const int i)
|
|
{
|
|
return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
|
|
}
|
|
|
|
inline float getJitterY(const int i)
|
|
{
|
|
return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f;
|
|
}
|
|
|
|
static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin,
|
|
const float sampleDist, const float sampleMaxError,
|
|
const int heightSearchRadius, const rcCompactHeightfield& chf,
|
|
const rcHeightPatch& hp, float* verts, int& nverts,
|
|
rcIntArray& tris, rcIntArray& edges, rcIntArray& samples)
|
|
{
|
|
static const int MAX_VERTS = 127;
|
|
static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts).
|
|
static const int MAX_VERTS_PER_EDGE = 32;
|
|
float edge[(MAX_VERTS_PER_EDGE+1)*3];
|
|
int hull[MAX_VERTS];
|
|
int nhull = 0;
|
|
|
|
nverts = nin;
|
|
|
|
for (int i = 0; i < nin; ++i)
|
|
rcVcopy(&verts[i*3], &in[i*3]);
|
|
|
|
edges.clear();
|
|
tris.clear();
|
|
|
|
const float cs = chf.cs;
|
|
const float ics = 1.0f/cs;
|
|
|
|
// Calculate minimum extents of the polygon based on input data.
|
|
float minExtent = polyMinExtent(verts, nverts);
|
|
|
|
// Tessellate outlines.
|
|
// This is done in separate pass in order to ensure
|
|
// seamless height values across the ply boundaries.
|
|
if (sampleDist > 0)
|
|
{
|
|
for (int i = 0, j = nin-1; i < nin; j=i++)
|
|
{
|
|
const float* vj = &in[j*3];
|
|
const float* vi = &in[i*3];
|
|
bool swapped = false;
|
|
// Make sure the segments are always handled in same order
|
|
// using lexological sort or else there will be seams.
|
|
if (fabsf(vj[0]-vi[0]) < 1e-6f)
|
|
{
|
|
if (vj[2] > vi[2])
|
|
{
|
|
rcSwap(vj,vi);
|
|
swapped = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (vj[0] > vi[0])
|
|
{
|
|
rcSwap(vj,vi);
|
|
swapped = true;
|
|
}
|
|
}
|
|
// Create samples along the edge.
|
|
float dx = vi[0] - vj[0];
|
|
float dy = vi[1] - vj[1];
|
|
float dz = vi[2] - vj[2];
|
|
float d = sqrtf(dx*dx + dz*dz);
|
|
int nn = 1 + (int)floorf(d/sampleDist);
|
|
if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1;
|
|
if (nverts+nn >= MAX_VERTS)
|
|
nn = MAX_VERTS-1-nverts;
|
|
|
|
for (int k = 0; k <= nn; ++k)
|
|
{
|
|
float u = (float)k/(float)nn;
|
|
float* pos = &edge[k*3];
|
|
pos[0] = vj[0] + dx*u;
|
|
pos[1] = vj[1] + dy*u;
|
|
pos[2] = vj[2] + dz*u;
|
|
pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch;
|
|
}
|
|
// Simplify samples.
|
|
int idx[MAX_VERTS_PER_EDGE] = {0,nn};
|
|
int nidx = 2;
|
|
for (int k = 0; k < nidx-1; )
|
|
{
|
|
const int a = idx[k];
|
|
const int b = idx[k+1];
|
|
const float* va = &edge[a*3];
|
|
const float* vb = &edge[b*3];
|
|
// Find maximum deviation along the segment.
|
|
float maxd = 0;
|
|
int maxi = -1;
|
|
for (int m = a+1; m < b; ++m)
|
|
{
|
|
float dev = distancePtSeg(&edge[m*3],va,vb);
|
|
if (dev > maxd)
|
|
{
|
|
maxd = dev;
|
|
maxi = m;
|
|
}
|
|
}
|
|
// If the max deviation is larger than accepted error,
|
|
// add new point, else continue to next segment.
|
|
if (maxi != -1 && maxd > rcSqr(sampleMaxError))
|
|
{
|
|
for (int m = nidx; m > k; --m)
|
|
idx[m] = idx[m-1];
|
|
idx[k+1] = maxi;
|
|
nidx++;
|
|
}
|
|
else
|
|
{
|
|
++k;
|
|
}
|
|
}
|
|
|
|
hull[nhull++] = j;
|
|
// Add new vertices.
|
|
if (swapped)
|
|
{
|
|
for (int k = nidx-2; k > 0; --k)
|
|
{
|
|
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
|
|
hull[nhull++] = nverts;
|
|
nverts++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int k = 1; k < nidx-1; ++k)
|
|
{
|
|
rcVcopy(&verts[nverts*3], &edge[idx[k]*3]);
|
|
hull[nhull++] = nverts;
|
|
nverts++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points.
|
|
if (minExtent < sampleDist*2)
|
|
{
|
|
triangulateHull(nverts, verts, nhull, hull, nin, tris);
|
|
return true;
|
|
}
|
|
|
|
// Tessellate the base mesh.
|
|
// We're using the triangulateHull instead of delaunayHull as it tends to
|
|
// create a bit better triangulation for long thin triangles when there
|
|
// are no internal points.
|
|
triangulateHull(nverts, verts, nhull, hull, nin, tris);
|
|
|
|
if (tris.size() == 0)
|
|
{
|
|
// Could not triangulate the poly, make sure there is some valid data there.
|
|
ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts).", nverts);
|
|
return true;
|
|
}
|
|
|
|
if (sampleDist > 0)
|
|
{
|
|
// Create sample locations in a grid.
|
|
float bmin[3], bmax[3];
|
|
rcVcopy(bmin, in);
|
|
rcVcopy(bmax, in);
|
|
for (int i = 1; i < nin; ++i)
|
|
{
|
|
rcVmin(bmin, &in[i*3]);
|
|
rcVmax(bmax, &in[i*3]);
|
|
}
|
|
int x0 = (int)floorf(bmin[0]/sampleDist);
|
|
int x1 = (int)ceilf(bmax[0]/sampleDist);
|
|
int z0 = (int)floorf(bmin[2]/sampleDist);
|
|
int z1 = (int)ceilf(bmax[2]/sampleDist);
|
|
samples.clear();
|
|
for (int z = z0; z < z1; ++z)
|
|
{
|
|
for (int x = x0; x < x1; ++x)
|
|
{
|
|
float pt[3];
|
|
pt[0] = x*sampleDist;
|
|
pt[1] = (bmax[1]+bmin[1])*0.5f;
|
|
pt[2] = z*sampleDist;
|
|
// Make sure the samples are not too close to the edges.
|
|
if (distToPoly(nin,in,pt) > -sampleDist/2) continue;
|
|
samples.push(x);
|
|
samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp));
|
|
samples.push(z);
|
|
samples.push(0); // Not added
|
|
}
|
|
}
|
|
|
|
// Add the samples starting from the one that has the most
|
|
// error. The procedure stops when all samples are added
|
|
// or when the max error is within treshold.
|
|
const int nsamples = samples.size()/4;
|
|
for (int iter = 0; iter < nsamples; ++iter)
|
|
{
|
|
if (nverts >= MAX_VERTS)
|
|
break;
|
|
|
|
// Find sample with most error.
|
|
float bestpt[3] = {0,0,0};
|
|
float bestd = 0;
|
|
int besti = -1;
|
|
for (int i = 0; i < nsamples; ++i)
|
|
{
|
|
const int* s = &samples[i*4];
|
|
if (s[3]) continue; // skip added.
|
|
float pt[3];
|
|
// The sample location is jittered to get rid of some bad triangulations
|
|
// which are cause by symmetrical data from the grid structure.
|
|
pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f;
|
|
pt[1] = s[1]*chf.ch;
|
|
pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f;
|
|
float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4);
|
|
if (d < 0) continue; // did not hit the mesh.
|
|
if (d > bestd)
|
|
{
|
|
bestd = d;
|
|
besti = i;
|
|
rcVcopy(bestpt,pt);
|
|
}
|
|
}
|
|
// If the max error is within accepted threshold, stop tesselating.
|
|
if (bestd <= sampleMaxError || besti == -1)
|
|
break;
|
|
// Mark sample as added.
|
|
samples[besti*4+3] = 1;
|
|
// Add the new sample point.
|
|
rcVcopy(&verts[nverts*3],bestpt);
|
|
nverts++;
|
|
|
|
// Create new triangulation.
|
|
// TODO: Incremental add instead of full rebuild.
|
|
edges.clear();
|
|
tris.clear();
|
|
delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges);
|
|
}
|
|
}
|
|
|
|
const int ntris = tris.size()/4;
|
|
if (ntris > MAX_TRIS)
|
|
{
|
|
tris.resize(MAX_TRIS*4);
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d.", ntris, MAX_TRIS);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf,
|
|
const unsigned short* poly, const int npoly,
|
|
const unsigned short* verts, const int bs,
|
|
rcHeightPatch& hp, rcIntArray& array)
|
|
{
|
|
// Note: Reads to the compact heightfield are offset by border size (bs)
|
|
// since border size offset is already removed from the polymesh vertices.
|
|
|
|
static const int offset[9*2] =
|
|
{
|
|
0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0,
|
|
};
|
|
|
|
// Find cell closest to a poly vertex
|
|
int startCellX = 0, startCellY = 0, startSpanIndex = -1;
|
|
int dmin = RC_UNSET_HEIGHT;
|
|
for (int j = 0; j < npoly && dmin > 0; ++j)
|
|
{
|
|
for (int k = 0; k < 9 && dmin > 0; ++k)
|
|
{
|
|
const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0];
|
|
const int ay = (int)verts[poly[j]*3+1];
|
|
const int az = (int)verts[poly[j]*3+2] + offset[k*2+1];
|
|
if (ax < hp.xmin || ax >= hp.xmin+hp.width ||
|
|
az < hp.ymin || az >= hp.ymin+hp.height)
|
|
continue;
|
|
|
|
const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width];
|
|
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i)
|
|
{
|
|
const rcCompactSpan& s = chf.spans[i];
|
|
int d = rcAbs(ay - (int)s.y);
|
|
if (d < dmin)
|
|
{
|
|
startCellX = ax;
|
|
startCellY = az;
|
|
startSpanIndex = i;
|
|
dmin = d;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
rcAssert(startSpanIndex != -1);
|
|
// Find center of the polygon
|
|
int pcx = 0, pcy = 0;
|
|
for (int j = 0; j < npoly; ++j)
|
|
{
|
|
pcx += (int)verts[poly[j]*3+0];
|
|
pcy += (int)verts[poly[j]*3+2];
|
|
}
|
|
pcx /= npoly;
|
|
pcy /= npoly;
|
|
|
|
// Use seeds array as a stack for DFS
|
|
array.clear();
|
|
array.push(startCellX);
|
|
array.push(startCellY);
|
|
array.push(startSpanIndex);
|
|
|
|
int dirs[] = { 0, 1, 2, 3 };
|
|
memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height);
|
|
// DFS to move to the center. Note that we need a DFS here and can not just move
|
|
// directly towards the center without recording intermediate nodes, even though the polygons
|
|
// are convex. In very rare we can get stuck due to contour simplification if we do not
|
|
// record nodes.
|
|
int cx = -1, cy = -1, ci = -1;
|
|
while (true)
|
|
{
|
|
if (array.size() < 3)
|
|
{
|
|
ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center");
|
|
break;
|
|
}
|
|
|
|
ci = array.pop();
|
|
cy = array.pop();
|
|
cx = array.pop();
|
|
|
|
if (cx == pcx && cy == pcy)
|
|
break;
|
|
|
|
// If we are already at the correct X-position, prefer direction
|
|
// directly towards the center in the Y-axis; otherwise prefer
|
|
// direction in the X-axis
|
|
int directDir;
|
|
if (cx == pcx)
|
|
directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1);
|
|
else
|
|
directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0);
|
|
|
|
// Push the direct dir last so we start with this on next iteration
|
|
rcSwap(dirs[directDir], dirs[3]);
|
|
|
|
const rcCompactSpan& cs = chf.spans[ci];
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
int dir = dirs[i];
|
|
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED)
|
|
continue;
|
|
|
|
int newX = cx + rcGetDirOffsetX(dir);
|
|
int newY = cy + rcGetDirOffsetY(dir);
|
|
|
|
int hpx = newX - hp.xmin;
|
|
int hpy = newY - hp.ymin;
|
|
if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height)
|
|
continue;
|
|
|
|
if (hp.data[hpx+hpy*hp.width] != 0)
|
|
continue;
|
|
|
|
hp.data[hpx+hpy*hp.width] = 1;
|
|
array.push(newX);
|
|
array.push(newY);
|
|
array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir));
|
|
}
|
|
|
|
rcSwap(dirs[directDir], dirs[3]);
|
|
}
|
|
|
|
array.clear();
|
|
// getHeightData seeds are given in coordinates with borders
|
|
array.push(cx+bs);
|
|
array.push(cy+bs);
|
|
array.push(ci);
|
|
|
|
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
|
|
const rcCompactSpan& cs = chf.spans[ci];
|
|
hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y;
|
|
}
|
|
|
|
|
|
static void push3(rcIntArray& queue, int v1, int v2, int v3)
|
|
{
|
|
queue.resize(queue.size() + 3);
|
|
queue[queue.size() - 3] = v1;
|
|
queue[queue.size() - 2] = v2;
|
|
queue[queue.size() - 1] = v3;
|
|
}
|
|
|
|
static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf,
|
|
const unsigned short* poly, const int npoly,
|
|
const unsigned short* verts, const int bs,
|
|
rcHeightPatch& hp, rcIntArray& queue,
|
|
int region)
|
|
{
|
|
// Note: Reads to the compact heightfield are offset by border size (bs)
|
|
// since border size offset is already removed from the polymesh vertices.
|
|
|
|
queue.clear();
|
|
// Set all heights to RC_UNSET_HEIGHT.
|
|
memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height);
|
|
|
|
bool empty = true;
|
|
|
|
// We cannot sample from this poly if it was created from polys
|
|
// of different regions. If it was then it could potentially be overlapping
|
|
// with polys of that region and the heights sampled here could be wrong.
|
|
if (region != RC_MULTIPLE_REGS)
|
|
{
|
|
// Copy the height from the same region, and mark region borders
|
|
// as seed points to fill the rest.
|
|
for (int hy = 0; hy < hp.height; hy++)
|
|
{
|
|
int y = hp.ymin + hy + bs;
|
|
for (int hx = 0; hx < hp.width; hx++)
|
|
{
|
|
int x = hp.xmin + hx + bs;
|
|
const rcCompactCell& c = chf.cells[x + y*chf.width];
|
|
for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i)
|
|
{
|
|
const rcCompactSpan& s = chf.spans[i];
|
|
if (s.reg == region)
|
|
{
|
|
// Store height
|
|
hp.data[hx + hy*hp.width] = s.y;
|
|
empty = false;
|
|
|
|
// If any of the neighbours is not in same region,
|
|
// add the current location as flood fill start
|
|
bool border = false;
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
|
{
|
|
const int ax = x + rcGetDirOffsetX(dir);
|
|
const int ay = y + rcGetDirOffsetY(dir);
|
|
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir);
|
|
const rcCompactSpan& as = chf.spans[ai];
|
|
if (as.reg != region)
|
|
{
|
|
border = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (border)
|
|
push3(queue, x, y, i);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if the polygon does not contain any points from the current region (rare, but happens)
|
|
// or if it could potentially be overlapping polygons of the same region,
|
|
// then use the center as the seed point.
|
|
if (empty)
|
|
seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue);
|
|
|
|
static const int RETRACT_SIZE = 256;
|
|
int head = 0;
|
|
|
|
// We assume the seed is centered in the polygon, so a BFS to collect
|
|
// height data will ensure we do not move onto overlapping polygons and
|
|
// sample wrong heights.
|
|
while (head*3 < queue.size())
|
|
{
|
|
int cx = queue[head*3+0];
|
|
int cy = queue[head*3+1];
|
|
int ci = queue[head*3+2];
|
|
head++;
|
|
if (head >= RETRACT_SIZE)
|
|
{
|
|
head = 0;
|
|
if (queue.size() > RETRACT_SIZE*3)
|
|
memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3));
|
|
queue.resize(queue.size()-RETRACT_SIZE*3);
|
|
}
|
|
|
|
const rcCompactSpan& cs = chf.spans[ci];
|
|
for (int dir = 0; dir < 4; ++dir)
|
|
{
|
|
if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue;
|
|
|
|
const int ax = cx + rcGetDirOffsetX(dir);
|
|
const int ay = cy + rcGetDirOffsetY(dir);
|
|
const int hx = ax - hp.xmin - bs;
|
|
const int hy = ay - hp.ymin - bs;
|
|
|
|
if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height)
|
|
continue;
|
|
|
|
if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT)
|
|
continue;
|
|
|
|
const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir);
|
|
const rcCompactSpan& as = chf.spans[ai];
|
|
|
|
hp.data[hx + hy*hp.width] = as.y;
|
|
|
|
push3(queue, ax, ay, ai);
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned char getEdgeFlags(const float* va, const float* vb,
|
|
const float* vpoly, const int npoly)
|
|
{
|
|
// The flag returned by this function matches dtDetailTriEdgeFlags in Detour.
|
|
// Figure out if edge (va,vb) is part of the polygon boundary.
|
|
static const float thrSqr = rcSqr(0.001f);
|
|
for (int i = 0, j = npoly-1; i < npoly; j=i++)
|
|
{
|
|
if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr &&
|
|
distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned char getTriFlags(const float* va, const float* vb, const float* vc,
|
|
const float* vpoly, const int npoly)
|
|
{
|
|
unsigned char flags = 0;
|
|
flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0;
|
|
flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2;
|
|
flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4;
|
|
return flags;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// See the #rcConfig documentation for more information on the configuration parameters.
|
|
///
|
|
/// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig
|
|
bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf,
|
|
const float sampleDist, const float sampleMaxError,
|
|
rcPolyMeshDetail& dmesh)
|
|
{
|
|
rcAssert(ctx);
|
|
|
|
rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL);
|
|
|
|
if (mesh.nverts == 0 || mesh.npolys == 0)
|
|
return true;
|
|
|
|
const int nvp = mesh.nvp;
|
|
const float cs = mesh.cs;
|
|
const float ch = mesh.ch;
|
|
const float* orig = mesh.bmin;
|
|
const int borderSize = mesh.borderSize;
|
|
const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError));
|
|
|
|
rcIntArray edges(64);
|
|
rcIntArray tris(512);
|
|
rcIntArray arr(512);
|
|
rcIntArray samples(512);
|
|
float verts[256*3];
|
|
rcHeightPatch hp;
|
|
int nPolyVerts = 0;
|
|
int maxhw = 0, maxhh = 0;
|
|
|
|
rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP));
|
|
if (!bounds)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d).", mesh.npolys*4);
|
|
return false;
|
|
}
|
|
rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP));
|
|
if (!poly)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d).", nvp*3);
|
|
return false;
|
|
}
|
|
|
|
// Find max size for a polygon area.
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
const unsigned short* p = &mesh.polys[i*nvp*2];
|
|
int& xmin = bounds[i*4+0];
|
|
int& xmax = bounds[i*4+1];
|
|
int& ymin = bounds[i*4+2];
|
|
int& ymax = bounds[i*4+3];
|
|
xmin = chf.width;
|
|
xmax = 0;
|
|
ymin = chf.height;
|
|
ymax = 0;
|
|
for (int j = 0; j < nvp; ++j)
|
|
{
|
|
if(p[j] == RC_MESH_NULL_IDX) break;
|
|
const unsigned short* v = &mesh.verts[p[j]*3];
|
|
xmin = rcMin(xmin, (int)v[0]);
|
|
xmax = rcMax(xmax, (int)v[0]);
|
|
ymin = rcMin(ymin, (int)v[2]);
|
|
ymax = rcMax(ymax, (int)v[2]);
|
|
nPolyVerts++;
|
|
}
|
|
xmin = rcMax(0,xmin-1);
|
|
xmax = rcMin(chf.width,xmax+1);
|
|
ymin = rcMax(0,ymin-1);
|
|
ymax = rcMin(chf.height,ymax+1);
|
|
if (xmin >= xmax || ymin >= ymax) continue;
|
|
maxhw = rcMax(maxhw, xmax-xmin);
|
|
maxhh = rcMax(maxhh, ymax-ymin);
|
|
}
|
|
|
|
hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP);
|
|
if (!hp.data)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d).", maxhw*maxhh);
|
|
return false;
|
|
}
|
|
|
|
dmesh.nmeshes = mesh.npolys;
|
|
dmesh.nverts = 0;
|
|
dmesh.ntris = 0;
|
|
dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM);
|
|
if (!dmesh.meshes)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d).", dmesh.nmeshes*4);
|
|
return false;
|
|
}
|
|
|
|
int vcap = nPolyVerts+nPolyVerts/2;
|
|
int tcap = vcap*2;
|
|
|
|
dmesh.nverts = 0;
|
|
dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
|
|
if (!dmesh.verts)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", vcap*3);
|
|
return false;
|
|
}
|
|
dmesh.ntris = 0;
|
|
dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
|
|
if (!dmesh.tris)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", tcap*4);
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < mesh.npolys; ++i)
|
|
{
|
|
const unsigned short* p = &mesh.polys[i*nvp*2];
|
|
|
|
// Store polygon vertices for processing.
|
|
int npoly = 0;
|
|
for (int j = 0; j < nvp; ++j)
|
|
{
|
|
if(p[j] == RC_MESH_NULL_IDX) break;
|
|
const unsigned short* v = &mesh.verts[p[j]*3];
|
|
poly[j*3+0] = v[0]*cs;
|
|
poly[j*3+1] = v[1]*ch;
|
|
poly[j*3+2] = v[2]*cs;
|
|
npoly++;
|
|
}
|
|
|
|
// Get the height data from the area of the polygon.
|
|
hp.xmin = bounds[i*4+0];
|
|
hp.ymin = bounds[i*4+2];
|
|
hp.width = bounds[i*4+1]-bounds[i*4+0];
|
|
hp.height = bounds[i*4+3]-bounds[i*4+2];
|
|
getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]);
|
|
|
|
// Build detail mesh.
|
|
int nverts = 0;
|
|
if (!buildPolyDetail(ctx, poly, npoly,
|
|
sampleDist, sampleMaxError,
|
|
heightSearchRadius, chf, hp,
|
|
verts, nverts, tris,
|
|
edges, samples))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// Move detail verts to world space.
|
|
for (int j = 0; j < nverts; ++j)
|
|
{
|
|
verts[j*3+0] += orig[0];
|
|
verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary?
|
|
verts[j*3+2] += orig[2];
|
|
}
|
|
// Offset poly too, will be used to flag checking.
|
|
for (int j = 0; j < npoly; ++j)
|
|
{
|
|
poly[j*3+0] += orig[0];
|
|
poly[j*3+1] += orig[1];
|
|
poly[j*3+2] += orig[2];
|
|
}
|
|
|
|
// Store detail submesh.
|
|
const int ntris = tris.size()/4;
|
|
|
|
dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts;
|
|
dmesh.meshes[i*4+1] = (unsigned int)nverts;
|
|
dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris;
|
|
dmesh.meshes[i*4+3] = (unsigned int)ntris;
|
|
|
|
// Store vertices, allocate more memory if necessary.
|
|
if (dmesh.nverts+nverts > vcap)
|
|
{
|
|
while (dmesh.nverts+nverts > vcap)
|
|
vcap += 256;
|
|
|
|
float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM);
|
|
if (!newv)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d).", vcap*3);
|
|
return false;
|
|
}
|
|
if (dmesh.nverts)
|
|
memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts);
|
|
rcFree(dmesh.verts);
|
|
dmesh.verts = newv;
|
|
}
|
|
for (int j = 0; j < nverts; ++j)
|
|
{
|
|
dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0];
|
|
dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1];
|
|
dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2];
|
|
dmesh.nverts++;
|
|
}
|
|
|
|
// Store triangles, allocate more memory if necessary.
|
|
if (dmesh.ntris+ntris > tcap)
|
|
{
|
|
while (dmesh.ntris+ntris > tcap)
|
|
tcap += 256;
|
|
unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM);
|
|
if (!newt)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d).", tcap*4);
|
|
return false;
|
|
}
|
|
if (dmesh.ntris)
|
|
memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris);
|
|
rcFree(dmesh.tris);
|
|
dmesh.tris = newt;
|
|
}
|
|
for (int j = 0; j < ntris; ++j)
|
|
{
|
|
const int* t = &tris[j*4];
|
|
dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0];
|
|
dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1];
|
|
dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2];
|
|
dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly);
|
|
dmesh.ntris++;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// @see rcAllocPolyMeshDetail, rcPolyMeshDetail
|
|
bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh)
|
|
{
|
|
rcAssert(ctx);
|
|
|
|
rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL);
|
|
|
|
int maxVerts = 0;
|
|
int maxTris = 0;
|
|
int maxMeshes = 0;
|
|
|
|
for (int i = 0; i < nmeshes; ++i)
|
|
{
|
|
if (!meshes[i]) continue;
|
|
maxVerts += meshes[i]->nverts;
|
|
maxTris += meshes[i]->ntris;
|
|
maxMeshes += meshes[i]->nmeshes;
|
|
}
|
|
|
|
mesh.nmeshes = 0;
|
|
mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM);
|
|
if (!mesh.meshes)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d).", maxMeshes*4);
|
|
return false;
|
|
}
|
|
|
|
mesh.ntris = 0;
|
|
mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM);
|
|
if (!mesh.tris)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d).", maxTris*4);
|
|
return false;
|
|
}
|
|
|
|
mesh.nverts = 0;
|
|
mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM);
|
|
if (!mesh.verts)
|
|
{
|
|
ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d).", maxVerts*3);
|
|
return false;
|
|
}
|
|
|
|
// Merge datas.
|
|
for (int i = 0; i < nmeshes; ++i)
|
|
{
|
|
rcPolyMeshDetail* dm = meshes[i];
|
|
if (!dm) continue;
|
|
for (int j = 0; j < dm->nmeshes; ++j)
|
|
{
|
|
unsigned int* dst = &mesh.meshes[mesh.nmeshes*4];
|
|
unsigned int* src = &dm->meshes[j*4];
|
|
dst[0] = (unsigned int)mesh.nverts+src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = (unsigned int)mesh.ntris+src[2];
|
|
dst[3] = src[3];
|
|
mesh.nmeshes++;
|
|
}
|
|
|
|
for (int k = 0; k < dm->nverts; ++k)
|
|
{
|
|
rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]);
|
|
mesh.nverts++;
|
|
}
|
|
for (int k = 0; k < dm->ntris; ++k)
|
|
{
|
|
mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0];
|
|
mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1];
|
|
mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2];
|
|
mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3];
|
|
mesh.ntris++;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|