godot/doc/classes/Vector2.xml
Jiří Procházka 3086084ace Small documentation improvements
(cherry picked from commit 04b49264f2)
2019-07-03 13:19:40 +02:00

299 lines
8.8 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2" category="Built-In Types" version="3.1.1">
<brief_description>
Vector used for 2D math.
</brief_description>
<description>
2-element structure that can be used to represent positions in 2d space or any other pair of numeric values.
</description>
<tutorials>
<link>https://docs.godotengine.org/en/3.1/tutorials/math/index.html</link>
</tutorials>
<methods>
<method name="Vector2">
<return type="Vector2">
</return>
<argument index="0" name="x" type="float">
</argument>
<argument index="1" name="y" type="float">
</argument>
<description>
Constructs a new Vector2 from the given x and y.
</description>
</method>
<method name="abs">
<return type="Vector2">
</return>
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="angle">
<return type="float">
</return>
<description>
Returns the vector's angle in radians with respect to the x-axis, or [code](1, 0)[/code] vector.
Equivalent to the result of atan2 when called with the vector's x and y as parameters: [code]atan2(x, y)[/code].
</description>
</method>
<method name="angle_to">
<return type="float">
</return>
<argument index="0" name="to" type="Vector2">
</argument>
<description>
Returns the angle in radians between the two vectors.
</description>
</method>
<method name="angle_to_point">
<return type="float">
</return>
<argument index="0" name="to" type="Vector2">
</argument>
<description>
Returns the angle in radians between the line connecting the two points and the x coordinate.
</description>
</method>
<method name="aspect">
<return type="float">
</return>
<description>
Returns the ratio of x to y.
</description>
</method>
<method name="bounce">
<return type="Vector2">
</return>
<argument index="0" name="n" type="Vector2">
</argument>
<description>
Returns the vector "bounced off" from a plane defined by the given normal.
</description>
</method>
<method name="ceil">
<return type="Vector2">
</return>
<description>
Returns the vector with all components rounded up.
</description>
</method>
<method name="clamped">
<return type="Vector2">
</return>
<argument index="0" name="length" type="float">
</argument>
<description>
Returns the vector with a maximum length.
</description>
</method>
<method name="cross">
<return type="float">
</return>
<argument index="0" name="with" type="Vector2">
</argument>
<description>
Returns the 2 dimensional analog of the cross product with the given vector.
</description>
</method>
<method name="cubic_interpolate">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<argument index="1" name="pre_a" type="Vector2">
</argument>
<argument index="2" name="post_b" type="Vector2">
</argument>
<argument index="3" name="t" type="float">
</argument>
<description>
Cubicly interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="direction_to">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<description>
Returns the normalized vector pointing from this vector to [code]b[/code].
</description>
</method>
<method name="distance_squared_to">
<return type="float">
</return>
<argument index="0" name="to" type="Vector2">
</argument>
<description>
Returns the squared distance to vector [code]b[/code]. Prefer this function over [method distance_to] if you need to sort vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to">
<return type="float">
</return>
<argument index="0" name="to" type="Vector2">
</argument>
<description>
Returns the distance to vector [code]b[/code].
</description>
</method>
<method name="dot">
<return type="float">
</return>
<argument index="0" name="with" type="Vector2">
</argument>
<description>
Returns the dot product with vector [code]b[/code].
</description>
</method>
<method name="floor">
<return type="Vector2">
</return>
<description>
Returns the vector with all components rounded down.
</description>
</method>
<method name="is_normalized">
<return type="bool">
</return>
<description>
Returns [code]true[/code] if the vector is normalized.
</description>
</method>
<method name="length">
<return type="float">
</return>
<description>
Returns the vector's length.
</description>
</method>
<method name="length_squared">
<return type="float">
</return>
<description>
Returns the vector's length squared. Prefer this method over [method length] if you need to sort vectors or need the squared length for some formula.
</description>
</method>
<method name="linear_interpolate">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of the linear interpolation between this vector and [code]b[/code] by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="normalized">
<return type="Vector2">
</return>
<description>
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
</description>
</method>
<method name="project">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<description>
Returns the vector projected onto the vector [code]b[/code].
</description>
</method>
<method name="reflect">
<return type="Vector2">
</return>
<argument index="0" name="n" type="Vector2">
</argument>
<description>
Returns the vector reflected from a plane defined by the given normal.
</description>
</method>
<method name="rotated">
<return type="Vector2">
</return>
<argument index="0" name="phi" type="float">
</argument>
<description>
Returns the vector rotated by [code]phi[/code] radians. See also [method @GDScript.deg2rad].
</description>
</method>
<method name="round">
<return type="Vector2">
</return>
<description>
Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="slerp">
<return type="Vector2">
</return>
<argument index="0" name="b" type="Vector2">
</argument>
<argument index="1" name="t" type="float">
</argument>
<description>
Returns the result of SLERP between this vector and [code]b[/code], by amount [code]t[/code]. [code]t[/code] is in the range of [code]0.0 - 1.0[/code], representing the amount of interpolation.
Both vectors need to be normalized.
</description>
</method>
<method name="slide">
<return type="Vector2">
</return>
<argument index="0" name="n" type="Vector2">
</argument>
<description>
Returns the component of the vector along a plane defined by the given normal.
</description>
</method>
<method name="snapped">
<return type="Vector2">
</return>
<argument index="0" name="by" type="Vector2">
</argument>
<description>
Returns the vector snapped to a grid with the given size.
</description>
</method>
<method name="tangent">
<return type="Vector2">
</return>
<description>
Returns a perpendicular vector.
</description>
</method>
</methods>
<members>
<member name="x" type="float" setter="" getter="">
The vector's x component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="float" setter="" getter="">
The vector's y component. Also accessible by using the index position [code][1][/code].
</member>
</members>
<constants>
<constant name="ZERO" value="Vector2( 0, 0 )">
Zero vector.
</constant>
<constant name="ONE" value="Vector2( 1, 1 )">
One vector.
</constant>
<constant name="INF" value="Vector2( inf, inf )">
Infinite vector.
</constant>
<constant name="LEFT" value="Vector2( -1, 0 )">
Left unit vector.
</constant>
<constant name="RIGHT" value="Vector2( 1, 0 )">
Right unit vector.
</constant>
<constant name="UP" value="Vector2( 0, -1 )">
Up unit vector.
</constant>
<constant name="DOWN" value="Vector2( 0, 1 )">
Down unit vector.
</constant>
</constants>
</class>