godot/core/object/worker_thread_pool.cpp

767 lines
25 KiB
C++

/**************************************************************************/
/* worker_thread_pool.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "worker_thread_pool.h"
#include "core/object/script_language.h"
#include "core/os/os.h"
#include "core/os/thread_safe.h"
WorkerThreadPool::Task *const WorkerThreadPool::ThreadData::YIELDING = (Task *)1;
void WorkerThreadPool::Task::free_template_userdata() {
ERR_FAIL_NULL(template_userdata);
ERR_FAIL_NULL(native_func_userdata);
BaseTemplateUserdata *btu = (BaseTemplateUserdata *)native_func_userdata;
memdelete(btu);
}
WorkerThreadPool *WorkerThreadPool::singleton = nullptr;
#ifdef THREADS_ENABLED
thread_local uintptr_t WorkerThreadPool::unlockable_mutexes[MAX_UNLOCKABLE_MUTEXES] = {};
#endif
void WorkerThreadPool::_process_task(Task *p_task) {
#ifdef THREADS_ENABLED
int pool_thread_index = thread_ids[Thread::get_caller_id()];
ThreadData &curr_thread = threads[pool_thread_index];
Task *prev_task = nullptr; // In case this is recursively called.
bool safe_for_nodes_backup = is_current_thread_safe_for_nodes();
CallQueue *call_queue_backup = MessageQueue::get_singleton() != MessageQueue::get_main_singleton() ? MessageQueue::get_singleton() : nullptr;
{
// Tasks must start with this unset. They are free to set-and-forget otherwise.
set_current_thread_safe_for_nodes(false);
// Since the WorkerThreadPool is started before the script server,
// its pre-created threads can't have ScriptServer::thread_enter() called on them early.
// Therefore, we do it late at the first opportunity, so in case the task
// about to be run uses scripting, guarantees are held.
task_mutex.lock();
if (!curr_thread.ready_for_scripting && ScriptServer::are_languages_initialized()) {
task_mutex.unlock();
ScriptServer::thread_enter();
task_mutex.lock();
curr_thread.ready_for_scripting = true;
}
p_task->pool_thread_index = pool_thread_index;
prev_task = curr_thread.current_task;
curr_thread.current_task = p_task;
if (p_task->pending_notify_yield_over) {
curr_thread.yield_is_over = true;
}
task_mutex.unlock();
}
#endif
if (p_task->group) {
// Handling a group
bool do_post = false;
while (true) {
uint32_t work_index = p_task->group->index.postincrement();
if (work_index >= p_task->group->max) {
break;
}
if (p_task->native_group_func) {
p_task->native_group_func(p_task->native_func_userdata, work_index);
} else if (p_task->template_userdata) {
p_task->template_userdata->callback_indexed(work_index);
} else {
p_task->callable.call(work_index);
}
// This is the only way to ensure posting is done when all tasks are really complete.
uint32_t completed_amount = p_task->group->completed_index.increment();
if (completed_amount == p_task->group->max) {
do_post = true;
}
}
if (do_post && p_task->template_userdata) {
memdelete(p_task->template_userdata); // This is no longer needed at this point, so get rid of it.
}
if (do_post) {
p_task->group->done_semaphore.post();
p_task->group->completed.set_to(true);
}
uint32_t max_users = p_task->group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
uint32_t finished_users = p_task->group->finished.increment();
if (finished_users == max_users) {
// Get rid of the group, because nobody else is using it.
task_mutex.lock();
group_allocator.free(p_task->group);
task_mutex.unlock();
}
// For groups, tasks get rid of themselves.
task_mutex.lock();
task_allocator.free(p_task);
} else {
if (p_task->native_func) {
p_task->native_func(p_task->native_func_userdata);
} else if (p_task->template_userdata) {
p_task->template_userdata->callback();
memdelete(p_task->template_userdata);
} else {
p_task->callable.call();
}
task_mutex.lock();
p_task->completed = true;
p_task->pool_thread_index = -1;
if (p_task->waiting_user) {
p_task->done_semaphore.post(p_task->waiting_user);
}
// Let awaiters know.
for (uint32_t i = 0; i < threads.size(); i++) {
if (threads[i].awaited_task == p_task) {
threads[i].cond_var.notify_one();
threads[i].signaled = true;
}
}
}
#ifdef THREADS_ENABLED
{
curr_thread.current_task = prev_task;
if (p_task->low_priority) {
low_priority_threads_used--;
if (_try_promote_low_priority_task()) {
if (prev_task) { // Otherwise, this thread will catch it.
_notify_threads(&curr_thread, 1, 0);
}
}
}
task_mutex.unlock();
}
set_current_thread_safe_for_nodes(safe_for_nodes_backup);
MessageQueue::set_thread_singleton_override(call_queue_backup);
#endif
}
void WorkerThreadPool::_thread_function(void *p_user) {
ThreadData *thread_data = (ThreadData *)p_user;
while (true) {
Task *task_to_process = nullptr;
{
MutexLock lock(singleton->task_mutex);
if (singleton->exit_threads) {
return;
}
thread_data->signaled = false;
if (singleton->task_queue.first()) {
task_to_process = singleton->task_queue.first()->self();
singleton->task_queue.remove(singleton->task_queue.first());
} else {
thread_data->cond_var.wait(lock);
DEV_ASSERT(singleton->exit_threads || thread_data->signaled);
}
}
if (task_to_process) {
singleton->_process_task(task_to_process);
}
}
}
void WorkerThreadPool::_post_tasks_and_unlock(Task **p_tasks, uint32_t p_count, bool p_high_priority) {
// Fall back to processing on the calling thread if there are no worker threads.
// Separated into its own variable to make it easier to extend this logic
// in custom builds.
bool process_on_calling_thread = threads.size() == 0;
if (process_on_calling_thread) {
task_mutex.unlock();
for (uint32_t i = 0; i < p_count; i++) {
_process_task(p_tasks[i]);
}
return;
}
uint32_t to_process = 0;
uint32_t to_promote = 0;
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
for (uint32_t i = 0; i < p_count; i++) {
p_tasks[i]->low_priority = !p_high_priority;
if (p_high_priority || low_priority_threads_used < max_low_priority_threads) {
task_queue.add_last(&p_tasks[i]->task_elem);
if (!p_high_priority) {
low_priority_threads_used++;
}
to_process++;
} else {
// Too many threads using low priority, must go to queue.
low_priority_task_queue.add_last(&p_tasks[i]->task_elem);
to_promote++;
}
}
_notify_threads(caller_pool_thread, to_process, to_promote);
task_mutex.unlock();
}
void WorkerThreadPool::_notify_threads(const ThreadData *p_current_thread_data, uint32_t p_process_count, uint32_t p_promote_count) {
uint32_t to_process = p_process_count;
uint32_t to_promote = p_promote_count;
// This is where which threads are awaken is decided according to the workload.
// Threads that will anyway have a chance to check the situation and process/promote tasks
// are excluded from being notified. Others will be tried anyway to try to distribute load.
// The current thread, if is a pool thread, is also excluded depending on the promoting/processing
// needs because it will anyway loop again. However, it will contribute to decreasing the count,
// which helps reducing sync traffic.
uint32_t thread_count = threads.size();
// First round:
// 1. For processing: notify threads that are not running tasks, to keep the stacks as shallow as possible.
// 2. For promoting: since it's exclusive with processing, we fin threads able to promote low-prio tasks now.
for (uint32_t i = 0;
i < thread_count && (to_process || to_promote);
i++, notify_index = (notify_index + 1) % thread_count) {
ThreadData &th = threads[notify_index];
if (th.signaled) {
continue;
}
if (th.current_task) {
// Good thread for promoting low-prio?
if (to_promote && th.awaited_task && th.current_task->low_priority) {
if (likely(&th != p_current_thread_data)) {
th.cond_var.notify_one();
}
th.signaled = true;
to_promote--;
}
} else {
if (to_process) {
if (likely(&th != p_current_thread_data)) {
th.cond_var.notify_one();
}
th.signaled = true;
to_process--;
}
}
}
// Second round:
// For processing: if the first round wasn't enough, let's try now with threads processing tasks but currently awaiting.
for (uint32_t i = 0;
i < thread_count && to_process;
i++, notify_index = (notify_index + 1) % thread_count) {
ThreadData &th = threads[notify_index];
if (th.signaled) {
continue;
}
if (th.awaited_task) {
if (likely(&th != p_current_thread_data)) {
th.cond_var.notify_one();
}
th.signaled = true;
to_process--;
}
}
}
bool WorkerThreadPool::_try_promote_low_priority_task() {
if (low_priority_task_queue.first()) {
Task *low_prio_task = low_priority_task_queue.first()->self();
low_priority_task_queue.remove(low_priority_task_queue.first());
task_queue.add_last(&low_prio_task->task_elem);
low_priority_threads_used++;
return true;
} else {
return false;
}
}
WorkerThreadPool::TaskID WorkerThreadPool::add_native_task(void (*p_func)(void *), void *p_userdata, bool p_high_priority, const String &p_description) {
return _add_task(Callable(), p_func, p_userdata, nullptr, p_high_priority, p_description);
}
WorkerThreadPool::TaskID WorkerThreadPool::_add_task(const Callable &p_callable, void (*p_func)(void *), void *p_userdata, BaseTemplateUserdata *p_template_userdata, bool p_high_priority, const String &p_description) {
task_mutex.lock();
// Get a free task
Task *task = task_allocator.alloc();
TaskID id = last_task++;
task->self = id;
task->callable = p_callable;
task->native_func = p_func;
task->native_func_userdata = p_userdata;
task->description = p_description;
task->template_userdata = p_template_userdata;
tasks.insert(id, task);
_post_tasks_and_unlock(&task, 1, p_high_priority);
return id;
}
WorkerThreadPool::TaskID WorkerThreadPool::add_task(const Callable &p_action, bool p_high_priority, const String &p_description) {
return _add_task(p_action, nullptr, nullptr, nullptr, p_high_priority, p_description);
}
bool WorkerThreadPool::is_task_completed(TaskID p_task_id) const {
task_mutex.lock();
const Task *const *taskp = tasks.getptr(p_task_id);
if (!taskp) {
task_mutex.unlock();
ERR_FAIL_V_MSG(false, "Invalid Task ID"); // Invalid task
}
bool completed = (*taskp)->completed;
task_mutex.unlock();
return completed;
}
Error WorkerThreadPool::wait_for_task_completion(TaskID p_task_id) {
task_mutex.lock();
Task **taskp = tasks.getptr(p_task_id);
if (!taskp) {
task_mutex.unlock();
ERR_FAIL_V_MSG(ERR_INVALID_PARAMETER, "Invalid Task ID"); // Invalid task
}
Task *task = *taskp;
if (task->completed) {
if (task->waiting_pool == 0 && task->waiting_user == 0) {
tasks.erase(p_task_id);
task_allocator.free(task);
}
task_mutex.unlock();
return OK;
}
ThreadData *caller_pool_thread = thread_ids.has(Thread::get_caller_id()) ? &threads[thread_ids[Thread::get_caller_id()]] : nullptr;
if (caller_pool_thread && p_task_id <= caller_pool_thread->current_task->self) {
// Deadlock prevention:
// When a pool thread wants to wait for an older task, the following situations can happen:
// 1. Awaited task is deep in the stack of the awaiter.
// 2. A group of awaiter threads end up depending on some tasks buried in the stack
// of their worker threads in such a way that progress can't be made.
// Both would entail a deadlock. Some may be handled here in the WorkerThreadPool
// with some extra logic and bookkeeping. However, there would still be unavoidable
// cases of deadlock because of the way waiting threads process outstanding tasks.
// Taking into account there's no feasible solution for every possible case
// with the current design, we just simply reject attempts to await on older tasks,
// with a specific error code that signals the situation so the caller can handle it.
task_mutex.unlock();
return ERR_BUSY;
}
if (caller_pool_thread) {
task->waiting_pool++;
} else {
task->waiting_user++;
}
task_mutex.unlock();
if (caller_pool_thread) {
_wait_collaboratively(caller_pool_thread, task);
task->waiting_pool--;
if (task->waiting_pool == 0 && task->waiting_user == 0) {
tasks.erase(p_task_id);
task_allocator.free(task);
}
} else {
task->done_semaphore.wait();
task_mutex.lock();
task->waiting_user--;
if (task->waiting_pool == 0 && task->waiting_user == 0) {
tasks.erase(p_task_id);
task_allocator.free(task);
}
task_mutex.unlock();
}
return OK;
}
void WorkerThreadPool::_lock_unlockable_mutexes() {
#ifdef THREADS_ENABLED
for (uint32_t i = 0; i < MAX_UNLOCKABLE_MUTEXES; i++) {
if (unlockable_mutexes[i]) {
if ((((uintptr_t)unlockable_mutexes[i]) & 1) == 0) {
((Mutex *)unlockable_mutexes[i])->lock();
} else {
((BinaryMutex *)unlockable_mutexes[i])->lock();
}
}
}
#endif
}
void WorkerThreadPool::_unlock_unlockable_mutexes() {
#ifdef THREADS_ENABLED
for (uint32_t i = 0; i < MAX_UNLOCKABLE_MUTEXES; i++) {
if (unlockable_mutexes[i]) {
if ((((uintptr_t)unlockable_mutexes[i]) & 1) == 0) {
((Mutex *)unlockable_mutexes[i])->unlock();
} else {
((BinaryMutex *)unlockable_mutexes[i])->unlock();
}
}
}
#endif
}
void WorkerThreadPool::_wait_collaboratively(ThreadData *p_caller_pool_thread, Task *p_task) {
// Keep processing tasks until the condition to stop waiting is met.
#define IS_WAIT_OVER (unlikely(p_task == ThreadData::YIELDING) ? p_caller_pool_thread->yield_is_over : p_task->completed)
while (true) {
Task *task_to_process = nullptr;
bool relock_unlockables = false;
{
MutexLock lock(task_mutex);
bool was_signaled = p_caller_pool_thread->signaled;
p_caller_pool_thread->signaled = false;
if (IS_WAIT_OVER) {
p_caller_pool_thread->yield_is_over = false;
if (!exit_threads && was_signaled) {
// This thread was awaken for some additional reason, but it's about to exit.
// Let's find out what may be pending and forward the requests.
uint32_t to_process = task_queue.first() ? 1 : 0;
uint32_t to_promote = p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first() ? 1 : 0;
if (to_process || to_promote) {
// This thread must be left alone since it won't loop again.
p_caller_pool_thread->signaled = true;
_notify_threads(p_caller_pool_thread, to_process, to_promote);
}
}
break;
}
if (!exit_threads) {
if (p_caller_pool_thread->current_task->low_priority && low_priority_task_queue.first()) {
if (_try_promote_low_priority_task()) {
_notify_threads(p_caller_pool_thread, 1, 0);
}
}
if (singleton->task_queue.first()) {
task_to_process = task_queue.first()->self();
task_queue.remove(task_queue.first());
}
if (!task_to_process) {
p_caller_pool_thread->awaited_task = p_task;
_unlock_unlockable_mutexes();
relock_unlockables = true;
p_caller_pool_thread->cond_var.wait(lock);
DEV_ASSERT(exit_threads || p_caller_pool_thread->signaled || IS_WAIT_OVER);
p_caller_pool_thread->awaited_task = nullptr;
}
}
}
if (relock_unlockables) {
_lock_unlockable_mutexes();
}
if (task_to_process) {
_process_task(task_to_process);
}
}
}
void WorkerThreadPool::yield() {
int th_index = get_thread_index();
ERR_FAIL_COND_MSG(th_index == -1, "This function can only be called from a worker thread.");
_wait_collaboratively(&threads[th_index], ThreadData::YIELDING);
}
void WorkerThreadPool::notify_yield_over(TaskID p_task_id) {
task_mutex.lock();
Task **taskp = tasks.getptr(p_task_id);
if (!taskp) {
task_mutex.unlock();
ERR_FAIL_MSG("Invalid Task ID.");
}
Task *task = *taskp;
if (task->pool_thread_index == -1) { // Completed or not started yet.
if (!task->completed) {
// This avoids a race condition where a task is created and yield-over called before it's processed.
task->pending_notify_yield_over = true;
}
task_mutex.unlock();
return;
}
ThreadData &td = threads[task->pool_thread_index];
td.yield_is_over = true;
td.signaled = true;
td.cond_var.notify_one();
task_mutex.unlock();
}
WorkerThreadPool::GroupID WorkerThreadPool::_add_group_task(const Callable &p_callable, void (*p_func)(void *, uint32_t), void *p_userdata, BaseTemplateUserdata *p_template_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
ERR_FAIL_COND_V(p_elements < 0, INVALID_TASK_ID);
if (p_tasks < 0) {
p_tasks = MAX(1u, threads.size());
}
task_mutex.lock();
Group *group = group_allocator.alloc();
GroupID id = last_task++;
group->max = p_elements;
group->self = id;
Task **tasks_posted = nullptr;
if (p_elements == 0) {
// Should really not call it with zero Elements, but at least it should work.
group->completed.set_to(true);
group->done_semaphore.post();
group->tasks_used = 0;
p_tasks = 0;
if (p_template_userdata) {
memdelete(p_template_userdata);
}
} else {
group->tasks_used = p_tasks;
tasks_posted = (Task **)alloca(sizeof(Task *) * p_tasks);
for (int i = 0; i < p_tasks; i++) {
Task *task = task_allocator.alloc();
task->native_group_func = p_func;
task->native_func_userdata = p_userdata;
task->description = p_description;
task->group = group;
task->callable = p_callable;
task->template_userdata = p_template_userdata;
tasks_posted[i] = task;
// No task ID is used.
}
}
groups[id] = group;
_post_tasks_and_unlock(tasks_posted, p_tasks, p_high_priority);
return id;
}
WorkerThreadPool::GroupID WorkerThreadPool::add_native_group_task(void (*p_func)(void *, uint32_t), void *p_userdata, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
return _add_group_task(Callable(), p_func, p_userdata, nullptr, p_elements, p_tasks, p_high_priority, p_description);
}
WorkerThreadPool::GroupID WorkerThreadPool::add_group_task(const Callable &p_action, int p_elements, int p_tasks, bool p_high_priority, const String &p_description) {
return _add_group_task(p_action, nullptr, nullptr, nullptr, p_elements, p_tasks, p_high_priority, p_description);
}
uint32_t WorkerThreadPool::get_group_processed_element_count(GroupID p_group) const {
task_mutex.lock();
const Group *const *groupp = groups.getptr(p_group);
if (!groupp) {
task_mutex.unlock();
ERR_FAIL_V_MSG(0, "Invalid Group ID");
}
uint32_t elements = (*groupp)->completed_index.get();
task_mutex.unlock();
return elements;
}
bool WorkerThreadPool::is_group_task_completed(GroupID p_group) const {
task_mutex.lock();
const Group *const *groupp = groups.getptr(p_group);
if (!groupp) {
task_mutex.unlock();
ERR_FAIL_V_MSG(false, "Invalid Group ID");
}
bool completed = (*groupp)->completed.is_set();
task_mutex.unlock();
return completed;
}
void WorkerThreadPool::wait_for_group_task_completion(GroupID p_group) {
#ifdef THREADS_ENABLED
task_mutex.lock();
Group **groupp = groups.getptr(p_group);
task_mutex.unlock();
if (!groupp) {
ERR_FAIL_MSG("Invalid Group ID.");
}
{
Group *group = *groupp;
_unlock_unlockable_mutexes();
group->done_semaphore.wait();
_lock_unlockable_mutexes();
uint32_t max_users = group->tasks_used + 1; // Add 1 because the thread waiting for it is also user. Read before to avoid another thread freeing task after increment.
uint32_t finished_users = group->finished.increment(); // fetch happens before inc, so increment later.
if (finished_users == max_users) {
// All tasks using this group are gone (finished before the group), so clear the group too.
task_mutex.lock();
group_allocator.free(group);
task_mutex.unlock();
}
}
task_mutex.lock(); // This mutex is needed when Physics 2D and/or 3D is selected to run on a separate thread.
groups.erase(p_group);
task_mutex.unlock();
#endif
}
int WorkerThreadPool::get_thread_index() {
Thread::ID tid = Thread::get_caller_id();
return singleton->thread_ids.has(tid) ? singleton->thread_ids[tid] : -1;
}
#ifdef THREADS_ENABLED
uint32_t WorkerThreadPool::thread_enter_unlock_allowance_zone(Mutex *p_mutex) {
return _thread_enter_unlock_allowance_zone(p_mutex, false);
}
uint32_t WorkerThreadPool::thread_enter_unlock_allowance_zone(BinaryMutex *p_mutex) {
return _thread_enter_unlock_allowance_zone(p_mutex, true);
}
uint32_t WorkerThreadPool::_thread_enter_unlock_allowance_zone(void *p_mutex, bool p_is_binary) {
for (uint32_t i = 0; i < MAX_UNLOCKABLE_MUTEXES; i++) {
if (unlikely(unlockable_mutexes[i] == (uintptr_t)p_mutex)) {
// Already registered in the current thread.
return UINT32_MAX;
}
if (!unlockable_mutexes[i]) {
unlockable_mutexes[i] = (uintptr_t)p_mutex;
if (p_is_binary) {
unlockable_mutexes[i] |= 1;
}
return i;
}
}
ERR_FAIL_V_MSG(UINT32_MAX, "No more unlockable mutex slots available. Engine bug.");
}
void WorkerThreadPool::thread_exit_unlock_allowance_zone(uint32_t p_zone_id) {
if (p_zone_id == UINT32_MAX) {
return;
}
DEV_ASSERT(unlockable_mutexes[p_zone_id]);
unlockable_mutexes[p_zone_id] = 0;
}
#endif
void WorkerThreadPool::init(int p_thread_count, float p_low_priority_task_ratio) {
ERR_FAIL_COND(threads.size() > 0);
if (p_thread_count < 0) {
p_thread_count = OS::get_singleton()->get_default_thread_pool_size();
}
max_low_priority_threads = CLAMP(p_thread_count * p_low_priority_task_ratio, 1, p_thread_count - 1);
threads.resize(p_thread_count);
for (uint32_t i = 0; i < threads.size(); i++) {
threads[i].index = i;
threads[i].thread.start(&WorkerThreadPool::_thread_function, &threads[i]);
thread_ids.insert(threads[i].thread.get_id(), i);
}
}
void WorkerThreadPool::finish() {
if (threads.size() == 0) {
return;
}
{
MutexLock lock(task_mutex);
SelfList<Task> *E = low_priority_task_queue.first();
while (E) {
print_error("Task waiting was never re-claimed: " + E->self()->description);
E = E->next();
}
}
{
MutexLock lock(task_mutex);
exit_threads = true;
}
for (ThreadData &data : threads) {
data.cond_var.notify_one();
}
for (ThreadData &data : threads) {
data.thread.wait_to_finish();
}
{
MutexLock lock(task_mutex);
for (KeyValue<TaskID, Task *> &E : tasks) {
task_allocator.free(E.value);
}
}
threads.clear();
}
void WorkerThreadPool::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_task", "action", "high_priority", "description"), &WorkerThreadPool::add_task, DEFVAL(false), DEFVAL(String()));
ClassDB::bind_method(D_METHOD("is_task_completed", "task_id"), &WorkerThreadPool::is_task_completed);
ClassDB::bind_method(D_METHOD("wait_for_task_completion", "task_id"), &WorkerThreadPool::wait_for_task_completion);
ClassDB::bind_method(D_METHOD("add_group_task", "action", "elements", "tasks_needed", "high_priority", "description"), &WorkerThreadPool::add_group_task, DEFVAL(-1), DEFVAL(false), DEFVAL(String()));
ClassDB::bind_method(D_METHOD("is_group_task_completed", "group_id"), &WorkerThreadPool::is_group_task_completed);
ClassDB::bind_method(D_METHOD("get_group_processed_element_count", "group_id"), &WorkerThreadPool::get_group_processed_element_count);
ClassDB::bind_method(D_METHOD("wait_for_group_task_completion", "group_id"), &WorkerThreadPool::wait_for_group_task_completion);
}
WorkerThreadPool::WorkerThreadPool() {
singleton = this;
}
WorkerThreadPool::~WorkerThreadPool() {
finish();
}