godot/servers/physics/collision_solver_sat.cpp
Ferenc Arn eae94ba1c8 Use real_t as floating point type in physics code.
This is a continuation of an on-going work for 64-bit floating point builds, started in PR #7528. Covers physics, physics/joints and physics_2d code.

Also removed matrixToEulerXYZ function in favor of Basis::get_euler.
2017-02-13 17:42:02 -06:00

1698 lines
45 KiB
C++

/*************************************************************************/
/* collision_solver_sat.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_sat.h"
#include "geometry.h"
#define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.02
struct _CollectorCallback {
CollisionSolverSW::CallbackResult callback;
void *userdata;
bool swap;
bool collided;
Vector3 normal;
Vector3 *prev_axis;
_FORCE_INLINE_ void call(const Vector3& p_point_A, const Vector3& p_point_B) {
/*
if (normal.dot(p_point_A) >= normal.dot(p_point_B))
return;
print_line("** A: "+p_point_A+" B: "+p_point_B+" D: "+rtos(p_point_A.distance_to(p_point_B)));
*/
if (swap)
callback(p_point_B,p_point_A,userdata);
else
callback(p_point_A,p_point_B,userdata);
}
};
typedef void (*GenerateContactsFunc)(const Vector3 *,int, const Vector3 *,int ,_CollectorCallback *);
static void _generate_contacts_point_point(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 1 );
#endif
p_callback->call(*p_points_A,*p_points_B);
}
static void _generate_contacts_point_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 2 );
#endif
Vector3 closest_B = Geometry::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B );
p_callback->call(*p_points_A,closest_B);
}
static void _generate_contacts_point_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B < 3 );
#endif
Vector3 closest_B=Plane(p_points_B[0],p_points_B[1],p_points_B[2]).project( *p_points_A );
p_callback->call(*p_points_A,closest_B);
}
static void _generate_contacts_edge_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 2 );
ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix
#endif
Vector3 rel_A=p_points_A[1]-p_points_A[0];
Vector3 rel_B=p_points_B[1]-p_points_B[0];
Vector3 c=rel_A.cross(rel_B).cross(rel_B);
//if ( Math::abs(rel_A.dot(c) )<_EDGE_IS_VALID_SUPPORT_TRESHOLD ) {
if ( Math::abs(rel_A.dot(c) )<CMP_EPSILON ) {
// should handle somehow..
//ERR_PRINT("TODO FIX");
//return;
Vector3 axis = rel_A.normalized(); //make an axis
Vector3 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
Vector3 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
//sort all 4 points in axis
real_t dvec[4]={ axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
SortArray<real_t> sa;
sa.sort(dvec,4);
//use the middle ones as contacts
p_callback->call(base_A+axis*dvec[1],base_B+axis*dvec[1]);
p_callback->call(base_A+axis*dvec[2],base_B+axis*dvec[2]);
return;
}
real_t d = (c.dot( p_points_B[0] ) - p_points_A[0].dot(c))/rel_A.dot(c);
if (d<0.0)
d=0.0;
else if (d>1.0)
d=1.0;
Vector3 closest_A=p_points_A[0]+rel_A*d;
Vector3 closest_B=Geometry::get_closest_point_to_segment_uncapped(closest_A, p_points_B);
p_callback->call(closest_A,closest_B);
}
static void _generate_contacts_face_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A <2 );
ERR_FAIL_COND( p_point_count_B <3 );
#endif
static const int max_clip=32;
Vector3 _clipbuf1[max_clip];
Vector3 _clipbuf2[max_clip];
Vector3 *clipbuf_src=_clipbuf1;
Vector3 *clipbuf_dst=_clipbuf2;
int clipbuf_len=p_point_count_A;
// copy A points to clipbuf_src
for (int i=0;i<p_point_count_A;i++) {
clipbuf_src[i]=p_points_A[i];
}
Plane plane_B(p_points_B[0],p_points_B[1],p_points_B[2]);
// go through all of B points
for (int i=0;i<p_point_count_B;i++) {
int i_n=(i+1)%p_point_count_B;
Vector3 edge0_B=p_points_B[i];
Vector3 edge1_B=p_points_B[i_n];
Vector3 clip_normal = (edge0_B - edge1_B).cross( plane_B.normal ).normalized();
// make a clip plane
Plane clip(edge0_B,clip_normal);
// avoid double clip if A is edge
int dst_idx=0;
bool edge = clipbuf_len==2;
for (int j=0;j<clipbuf_len;j++) {
int j_n=(j+1)%clipbuf_len;
Vector3 edge0_A=clipbuf_src[j];
Vector3 edge1_A=clipbuf_src[j_n];
real_t dist0 = clip.distance_to(edge0_A);
real_t dist1 = clip.distance_to(edge1_A);
if ( dist0 <= 0 ) { // behind plane
ERR_FAIL_COND( dst_idx >= max_clip );
clipbuf_dst[dst_idx++]=clipbuf_src[j];
}
// check for different sides and non coplanar
//if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) {
if ( (dist0*dist1) < 0 && !(edge && j)) {
// calculate intersection
Vector3 rel = edge1_A - edge0_A;
real_t den=clip.normal.dot( rel );
real_t dist=-(clip.normal.dot( edge0_A )-clip.d)/den;
Vector3 inters = edge0_A+rel*dist;
ERR_FAIL_COND( dst_idx >= max_clip );
clipbuf_dst[dst_idx]=inters;
dst_idx++;
}
}
clipbuf_len=dst_idx;
SWAP(clipbuf_src,clipbuf_dst);
}
// generate contacts
//Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]);
int added=0;
for (int i=0;i<clipbuf_len;i++) {
real_t d = plane_B.distance_to(clipbuf_src[i]);
/*
if (d>CMP_EPSILON)
continue;
*/
Vector3 closest_B=clipbuf_src[i] - plane_B.normal*d;
if (p_callback->normal.dot(clipbuf_src[i]) >= p_callback->normal.dot(closest_B))
continue;
p_callback->call(clipbuf_src[i],closest_B);
added++;
}
}
static void _generate_contacts_from_supports(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A <1 );
ERR_FAIL_COND( p_point_count_B <1 );
#endif
static const GenerateContactsFunc generate_contacts_func_table[3][3]={
{
_generate_contacts_point_point,
_generate_contacts_point_edge,
_generate_contacts_point_face,
},{
0,
_generate_contacts_edge_edge,
_generate_contacts_face_face,
},{
0,0,
_generate_contacts_face_face,
}
};
int pointcount_B;
int pointcount_A;
const Vector3 *points_A;
const Vector3 *points_B;
if (p_point_count_A > p_point_count_B) {
//swap
p_callback->swap = !p_callback->swap;
p_callback->normal = -p_callback->normal;
pointcount_B = p_point_count_A;
pointcount_A = p_point_count_B;
points_A=p_points_B;
points_B=p_points_A;
} else {
pointcount_B = p_point_count_B;
pointcount_A = p_point_count_A;
points_A=p_points_A;
points_B=p_points_B;
}
int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1;
int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1;
GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
ERR_FAIL_COND(!contacts_func);
contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_callback);
}
template<class ShapeA, class ShapeB, bool withMargin=false>
class SeparatorAxisTest {
const ShapeA *shape_A;
const ShapeB *shape_B;
const Transform *transform_A;
const Transform *transform_B;
real_t best_depth;
Vector3 best_axis;
_CollectorCallback *callback;
real_t margin_A;
real_t margin_B;
Vector3 separator_axis;
public:
_FORCE_INLINE_ bool test_previous_axis() {
if (callback && callback->prev_axis && *callback->prev_axis!=Vector3())
return test_axis(*callback->prev_axis);
else
return true;
}
_FORCE_INLINE_ bool test_axis(const Vector3& p_axis) {
Vector3 axis=p_axis;
if ( Math::abs(axis.x)<CMP_EPSILON &&
Math::abs(axis.y)<CMP_EPSILON &&
Math::abs(axis.z)<CMP_EPSILON ) {
// strange case, try an upwards separator
axis=Vector3(0.0,1.0,0.0);
}
real_t min_A,max_A,min_B,max_B;
shape_A->project_range(axis,*transform_A,min_A,max_A);
shape_B->project_range(axis,*transform_B,min_B,max_B);
if (withMargin) {
min_A-=margin_A;
max_A+=margin_A;
min_B-=margin_B;
max_B+=margin_B;
}
min_B -= ( max_A - min_A ) * 0.5;
max_B += ( max_A - min_A ) * 0.5;
real_t dmin = min_B - ( min_A + max_A ) * 0.5;
real_t dmax = max_B - ( min_A + max_A ) * 0.5;
if (dmin > 0.0 || dmax < 0.0) {
separator_axis=axis;
return false; // doesn't contain 0
}
//use the smallest depth
dmin = Math::abs(dmin);
if ( dmax < dmin ) {
if ( dmax < best_depth ) {
best_depth=dmax;
best_axis=axis;
}
} else {
if ( dmin < best_depth ) {
best_depth=dmin;
best_axis=-axis; // keep it as A axis
}
}
return true;
}
_FORCE_INLINE_ void generate_contacts() {
// nothing to do, don't generate
if (best_axis==Vector3(0.0,0.0,0.0))
return;
if (!callback->callback) {
//just was checking intersection?
callback->collided=true;
if (callback->prev_axis)
*callback->prev_axis=best_axis;
return;
}
static const int max_supports=16;
Vector3 supports_A[max_supports];
int support_count_A;
shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(),max_supports,supports_A,support_count_A);
for(int i=0;i<support_count_A;i++) {
supports_A[i] = transform_A->xform(supports_A[i]);
}
if (withMargin) {
for(int i=0;i<support_count_A;i++) {
supports_A[i]+=-best_axis*margin_A;
}
}
Vector3 supports_B[max_supports];
int support_count_B;
shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(),max_supports,supports_B,support_count_B);
for(int i=0;i<support_count_B;i++) {
supports_B[i] = transform_B->xform(supports_B[i]);
}
if (withMargin) {
for(int i=0;i<support_count_B;i++) {
supports_B[i]+=best_axis*margin_B;
}
}
/*
print_line("best depth: "+rtos(best_depth));
print_line("best axis: "+(best_axis));
for(int i=0;i<support_count_A;i++) {
print_line("A-"+itos(i)+": "+supports_A[i]);
}
for(int i=0;i<support_count_B;i++) {
print_line("B-"+itos(i)+": "+supports_B[i]);
}
*/
callback->normal=best_axis;
if (callback->prev_axis)
*callback->prev_axis=best_axis;
_generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback);
callback->collided=true;
//CollisionSolverSW::CallbackResult cbk=NULL;
//cbk(Vector3(),Vector3(),NULL);
}
_FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A,const Transform& p_transform_A, const ShapeB *p_shape_B,const Transform& p_transform_B,_CollectorCallback *p_callback,real_t p_margin_A=0,real_t p_margin_B=0) {
best_depth=1e15;
shape_A=p_shape_A;
shape_B=p_shape_B;
transform_A=&p_transform_A;
transform_B=&p_transform_B;
callback=p_callback;
margin_A=p_margin_A;
margin_B=p_margin_B;
}
};
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
typedef void (*CollisionFunc)(const ShapeSW*,const Transform&,const ShapeSW*,const Transform&,_CollectorCallback *p_callback,real_t,real_t);
template<bool withMargin>
static void _collision_sphere_sphere(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const SphereShapeSW *sphere_B = static_cast<const SphereShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,SphereShapeSW,withMargin> separator(sphere_A,p_transform_a,sphere_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
// previous axis
if (!separator.test_previous_axis())
return;
if (!separator.test_axis( (p_transform_a.origin-p_transform_b.origin).normalized() ))
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,BoxShapeSW,withMargin> separator(sphere_A,p_transform_a,box_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// test faces
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// calculate closest point to sphere
Vector3 cnormal=p_transform_b.xform_inv( p_transform_a.origin );
Vector3 cpoint=p_transform_b.xform( Vector3(
(cnormal.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
(cnormal.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
(cnormal.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z
) );
// use point to test axis
Vector3 point_axis = (p_transform_a.origin - cpoint).normalized();
if (!separator.test_axis( point_axis ))
return;
// test edges
for (int i=0;i<3;i++) {
Vector3 axis = point_axis.cross( p_transform_b.basis.get_axis(i) ).cross( p_transform_b.basis.get_axis(i) ).normalized();
if (!separator.test_axis( axis ))
return;
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,CapsuleShapeSW,withMargin> separator(sphere_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
//capsule sphere 1, sphere
Vector3 capsule_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
Vector3 capsule_ball_1 = p_transform_b.origin + capsule_axis;
if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) )
return;
//capsule sphere 2, sphere
Vector3 capsule_ball_2 = p_transform_b.origin - capsule_axis;
if (!separator.test_axis( (capsule_ball_2 - p_transform_a.origin).normalized() ) )
return;
//capsule edge, sphere
Vector3 b2a = p_transform_a.origin - p_transform_b.origin;
Vector3 axis = b2a.cross( capsule_axis ).cross( capsule_axis ).normalized();
if (!separator.test_axis( axis ))
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,ConvexPolygonShapeSW,withMargin> separator(sphere_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// edges of B
for(int i=0;i<edge_count;i++) {
Vector3 v1=p_transform_b.xform( vertices[ edges[i].a ] );
Vector3 v2=p_transform_b.xform( vertices[ edges[i].b ] );
Vector3 v3=p_transform_a.origin;
Vector3 n1=v2-v1;
Vector3 n2=v2-v3;
Vector3 axis = n1.cross(n2).cross(n1).normalized();
if (!separator.test_axis( axis ))
return;
}
// vertices of B
for(int i=0;i<vertex_count;i++) {
Vector3 v1=p_transform_b.xform( vertices[i] );
Vector3 v2=p_transform_a.origin;
Vector3 axis = (v2-v1).normalized();
if (!separator.test_axis( axis ))
return;
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,FaceShapeSW,withMargin> separator(sphere_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// edges and points of B
for(int i=0;i<3;i++) {
Vector3 n1=vertex[i]-p_transform_a.origin;
if (!separator.test_axis( n1.normalized() )) {
return;
}
Vector3 n2=vertex[(i+1)%3]-vertex[i];
Vector3 axis = n1.cross(n2).cross(n2).normalized();
if (!separator.test_axis( axis )) {
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,BoxShapeSW,withMargin> separator(box_A,p_transform_a,box_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// test faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// test faces of B
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// test combined edges
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
Vector3 axis = p_transform_a.basis.get_axis(i).cross( p_transform_b.basis.get_axis(j) );
if (axis.length_squared()<CMP_EPSILON)
continue;
axis.normalize();
if (!separator.test_axis( axis )) {
return;
}
}
}
if (withMargin) {
//add endpoint test between closest vertices and edges
// calculate closest point to sphere
Vector3 ab_vec = p_transform_b.origin - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 cnormal_b=p_transform_b.basis.xform_inv( -ab_vec );
Vector3 support_b=p_transform_b.xform( Vector3(
(cnormal_b.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
(cnormal_b.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
(cnormal_b.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z
) );
Vector3 axis_ab = (support_a-support_b);
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
//b ->a
Vector3 axis_b = p_transform_b.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_b).cross(axis_b).normalized() ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,CapsuleShapeSW,withMargin> separator(box_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis ))
return;
}
Vector3 cyl_axis = p_transform_b.basis.get_axis(2).normalized();
// edges of A, capsule cylinder
for (int i=0;i<3;i++) {
// cylinder
Vector3 box_axis = p_transform_a.basis.get_axis(i);
Vector3 axis = box_axis.cross( cyl_axis );
if (axis.length_squared() < CMP_EPSILON)
continue;
if (!separator.test_axis( axis.normalized() ))
return;
}
// points of A, capsule cylinder
// this sure could be made faster somehow..
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
//Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized();
Vector3 axis = Plane(cyl_axis,0).project(point).normalized();
if (!separator.test_axis( axis ))
return;
}
}
}
// capsule balls, edges of A
for (int i=0;i<2;i++) {
Vector3 capsule_axis = p_transform_b.basis.get_axis(2)*(capsule_B->get_height()*0.5);
Vector3 sphere_pos = p_transform_b.origin + ((i==0)?capsule_axis:-capsule_axis);
Vector3 cnormal=p_transform_a.xform_inv( sphere_pos );
Vector3 cpoint=p_transform_a.xform( Vector3(
(cnormal.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
// use point to test axis
Vector3 point_axis = (sphere_pos - cpoint).normalized();
if (!separator.test_axis( point_axis ))
return;
// test edges of A
for (int i=0;i<3;i++) {
Vector3 axis = point_axis.cross( p_transform_a.basis.get_axis(i) ).cross( p_transform_a.basis.get_axis(i) ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,ConvexPolygonShapeSW,withMargin> separator(box_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<3;i++) {
Vector3 e1 = p_transform_a.basis.get_axis(i);
for (int j=0;j<edge_count;j++) {
Vector3 e2=p_transform_b.basis.xform(vertices[edges[j].a]) - p_transform_b.basis.xform(vertices[edges[j].b]);
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
// calculate closest points between vertices and box edges
for(int v=0;v<vertex_count;v++) {
Vector3 vtxb = p_transform_b.xform(vertices[v]);
Vector3 ab_vec = vtxb - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 axis_ab = support_a-vtxb;
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
}
}
//convex edges and box points
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
for(int e=0;e<edge_count;e++) {
Vector3 p1=p_transform_b.xform(vertices[edges[e].a]);
Vector3 p2=p_transform_b.xform(vertices[edges[e].b]);
Vector3 n = (p2-p1);
if (!separator.test_axis( (point-p2).cross(n).cross(n).normalized() ))
return;
}
}
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,FaceShapeSW,withMargin> separator(box_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// combined edges
for(int i=0;i<3;i++) {
Vector3 e=vertex[i]-vertex[(i+1)%3];
for (int j=0;j<3;j++) {
Vector3 axis = p_transform_a.basis.get_axis(j);
if (!separator.test_axis( e.cross(axis).normalized() ))
return;
}
}
if (withMargin) {
// calculate closest points between vertices and box edges
for(int v=0;v<3;v++) {
Vector3 ab_vec = vertex[v] - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 axis_ab = support_a-vertex[v];
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
}
}
//convex edges and box points, there has to be a way to speed up this (get closest point?)
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
for(int e=0;e<3;e++) {
Vector3 p1=vertex[e];
Vector3 p2=vertex[(e+1)%3];
Vector3 n = (p2-p1);
if (!separator.test_axis( (point-p2).cross(n).cross(n).normalized() ))
return;
}
}
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,CapsuleShapeSW,withMargin> separator(capsule_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// some values
Vector3 capsule_A_axis = p_transform_a.basis.get_axis(2) * (capsule_A->get_height() * 0.5);
Vector3 capsule_B_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis;
Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis;
Vector3 capsule_B_ball_1 = p_transform_b.origin + capsule_B_axis;
Vector3 capsule_B_ball_2 = p_transform_b.origin - capsule_B_axis;
//balls-balls
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_1 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_2 ).normalized() ) )
return;
// edges-balls
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_1 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_2 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
return;
// edges
if (!separator.test_axis( capsule_A_axis.cross(capsule_B_axis).normalized() ) )
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,ConvexPolygonShapeSW,withMargin> separator(capsule_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// edges of B, capsule cylinder
for (int i=0;i<edge_count;i++) {
// cylinder
Vector3 edge_axis = p_transform_b.basis.xform( vertices[ edges[i].a] ) - p_transform_b.basis.xform( vertices[ edges[i].b] );
Vector3 axis = edge_axis.cross( p_transform_a.basis.get_axis(2) ).normalized();
if (!separator.test_axis( axis ))
return;
}
// capsule balls, edges of B
for (int i=0;i<2;i++) {
// edges of B, capsule cylinder
Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
Vector3 sphere_pos = p_transform_a.origin + ((i==0)?capsule_axis:-capsule_axis);
for (int j=0;j<edge_count;j++) {
Vector3 n1=sphere_pos - p_transform_b.xform( vertices[ edges[j].a] );
Vector3 n2=p_transform_b.basis.xform( vertices[ edges[j].a] ) - p_transform_b.basis.xform( vertices[ edges[j].b] );
Vector3 axis = n1.cross(n2).cross(n2).normalized();
if (!separator.test_axis( axis ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,FaceShapeSW,withMargin> separator(capsule_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// edges of B, capsule cylinder
Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
for (int i=0;i<3;i++) {
// edge-cylinder
Vector3 edge_axis = vertex[i]-vertex[(i+1)%3];
Vector3 axis = edge_axis.cross( capsule_axis ).normalized();
if (!separator.test_axis( axis ))
return;
if (!separator.test_axis( (p_transform_a.origin-vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized() ))
return;
for (int j=0;j<2;j++) {
// point-spheres
Vector3 sphere_pos = p_transform_a.origin + ( (j==0) ? capsule_axis : -capsule_axis );
Vector3 n1=sphere_pos - vertex[i];
if (!separator.test_axis( n1.normalized() ))
return;
Vector3 n2=edge_axis;
axis = n1.cross(n2).cross(n2);
if (!separator.test_axis( axis.normalized() ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_convex_polygon_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<ConvexPolygonShapeSW,ConvexPolygonShapeSW,withMargin> separator(convex_polygon_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh_A = convex_polygon_A->get_mesh();
const Geometry::MeshData::Face *faces_A = mesh_A.faces.ptr();
int face_count_A = mesh_A.faces.size();
const Geometry::MeshData::Edge *edges_A = mesh_A.edges.ptr();
int edge_count_A = mesh_A.edges.size();
const Vector3 *vertices_A = mesh_A.vertices.ptr();
int vertex_count_A = mesh_A.vertices.size();
const Geometry::MeshData &mesh_B = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces_B = mesh_B.faces.ptr();
int face_count_B = mesh_B.faces.size();
const Geometry::MeshData::Edge *edges_B = mesh_B.edges.ptr();
int edge_count_B = mesh_B.edges.size();
const Vector3 *vertices_B = mesh_B.vertices.ptr();
int vertex_count_B = mesh_B.vertices.size();
// faces of A
for (int i=0;i<face_count_A;i++) {
Vector3 axis = p_transform_a.xform( faces_A[i].plane ).normal;
//Vector3 axis = p_transform_a.basis.xform( faces_A[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// faces of B
for (int i=0;i<face_count_B;i++) {
Vector3 axis = p_transform_b.xform( faces_B[i].plane ).normal;
//Vector3 axis = p_transform_b.basis.xform( faces_B[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<edge_count_A;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices_A[ edges_A[i].a] ) -p_transform_a.basis.xform( vertices_A[ edges_A[i].b] );
for (int j=0;j<edge_count_B;j++) {
Vector3 e2=p_transform_b.basis.xform( vertices_B[ edges_B[j].a] ) -p_transform_b.basis.xform( vertices_B[ edges_B[j].b] );
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
//vertex-vertex
for(int i=0;i<vertex_count_A;i++) {
Vector3 va = p_transform_a.xform(vertices_A[i]);
for(int j=0;j<vertex_count_B;j++) {
if (!separator.test_axis( (va-p_transform_b.xform(vertices_B[j])).normalized() ))
return;
}
}
//edge-vertex( hsell)
for (int i=0;i<edge_count_A;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices_A[ edges_A[i].a] );
Vector3 e2=p_transform_a.basis.xform( vertices_A[ edges_A[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count_B;j++) {
Vector3 e3=p_transform_b.xform(vertices_B[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
for (int i=0;i<edge_count_B;i++) {
Vector3 e1=p_transform_b.basis.xform( vertices_B[ edges_B[i].a] );
Vector3 e2=p_transform_b.basis.xform( vertices_B[ edges_B[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count_A;j++) {
Vector3 e3=p_transform_a.xform(vertices_A[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_convex_polygon_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,real_t p_margin_a,real_t p_margin_b) {
const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<ConvexPolygonShapeSW,FaceShapeSW,withMargin> separator(convex_polygon_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
const Geometry::MeshData &mesh = convex_polygon_A->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// faces of A
for (int i=0;i<face_count;i++) {
//Vector3 axis = p_transform_a.xform( faces[i].plane ).normal;
Vector3 axis = p_transform_a.basis.xform( faces[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<edge_count;i++) {
Vector3 e1=p_transform_a.xform( vertices[edges[i].a] ) - p_transform_a.xform( vertices[edges[i].b] );
for (int j=0;j<3;j++) {
Vector3 e2=vertex[j]-vertex[(j+1)%3];
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
//vertex-vertex
for(int i=0;i<vertex_count;i++) {
Vector3 va = p_transform_a.xform(vertices[i]);
for(int j=0;j<3;j++) {
if (!separator.test_axis( (va-vertex[j]).normalized() ))
return;
}
}
//edge-vertex( hsell)
for (int i=0;i<edge_count;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices[ edges[i].a] );
Vector3 e2=p_transform_a.basis.xform( vertices[ edges[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<3;j++) {
Vector3 e3=vertex[j];
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
for (int i=0;i<3;i++) {
Vector3 e1=vertex[i];
Vector3 e2=vertex[(i+1)%3];
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count;j++) {
Vector3 e3=p_transform_a.xform(vertices[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
}
separator.generate_contacts();
}
bool sat_calculate_penetration(const ShapeSW *p_shape_A, const Transform& p_transform_A, const ShapeSW *p_shape_B, const Transform& p_transform_B, CollisionSolverSW::CallbackResult p_result_callback,void *p_userdata,bool p_swap,Vector3* r_prev_axis,real_t p_margin_a,real_t p_margin_b) {
PhysicsServer::ShapeType type_A=p_shape_A->get_type();
ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_PLANE,false);
ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_A->is_concave(),false);
PhysicsServer::ShapeType type_B=p_shape_B->get_type();
ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_PLANE,false);
ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_B->is_concave(),false);
static const CollisionFunc collision_table[5][5]={
{_collision_sphere_sphere<false>,
_collision_sphere_box<false>,
_collision_sphere_capsule<false>,
_collision_sphere_convex_polygon<false>,
_collision_sphere_face<false>},
{0,
_collision_box_box<false>,
_collision_box_capsule<false>,
_collision_box_convex_polygon<false>,
_collision_box_face<false>},
{0,
0,
_collision_capsule_capsule<false>,
_collision_capsule_convex_polygon<false>,
_collision_capsule_face<false>},
{0,
0,
0,
_collision_convex_polygon_convex_polygon<false>,
_collision_convex_polygon_face<false>},
{0,
0,
0,
0,
0},
};
static const CollisionFunc collision_table_margin[5][5]={
{_collision_sphere_sphere<true>,
_collision_sphere_box<true>,
_collision_sphere_capsule<true>,
_collision_sphere_convex_polygon<true>,
_collision_sphere_face<true>},
{0,
_collision_box_box<true>,
_collision_box_capsule<true>,
_collision_box_convex_polygon<true>,
_collision_box_face<true>},
{0,
0,
_collision_capsule_capsule<true>,
_collision_capsule_convex_polygon<true>,
_collision_capsule_face<true>},
{0,
0,
0,
_collision_convex_polygon_convex_polygon<true>,
_collision_convex_polygon_face<true>},
{0,
0,
0,
0,
0},
};
_CollectorCallback callback;
callback.callback=p_result_callback;
callback.swap=p_swap;
callback.userdata=p_userdata;
callback.collided=false;
callback.prev_axis=r_prev_axis;
const ShapeSW *A=p_shape_A;
const ShapeSW *B=p_shape_B;
const Transform *transform_A=&p_transform_A;
const Transform *transform_B=&p_transform_B;
real_t margin_A=p_margin_a;
real_t margin_B=p_margin_b;
if (type_A > type_B) {
SWAP(A,B);
SWAP(transform_A,transform_B);
SWAP(type_A,type_B);
SWAP(margin_A,margin_B);
callback.swap = !callback.swap;
}
CollisionFunc collision_func;
if (margin_A!=0.0 || margin_B!=0.0) {
collision_func = collision_table_margin[type_A-2][type_B-2];
} else {
collision_func = collision_table[type_A-2][type_B-2];
}
ERR_FAIL_COND_V(!collision_func,false);
collision_func(A,*transform_A,B,*transform_B,&callback,margin_A,margin_B);
return callback.collided;
}