godot/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp
Rémi Verschelde e12c89e8c9 bullet: Streamline bundling, remove extraneous src/ folder
Document version and how to extract sources in thirdparty/README.md.
Drop unnecessary CMake and Premake files.
Simplify SCsub, drop unused one.
2018-01-13 14:08:45 +01:00

1539 lines
49 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btDiscreteDynamicsWorld.h"
//collision detection
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btQuickprof.h"
//rigidbody & constraints
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
#include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h"
#include "BulletDynamics/ConstraintSolver/btHingeConstraint.h"
#include "BulletDynamics/ConstraintSolver/btConeTwistConstraint.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
#include "BulletDynamics/ConstraintSolver/btContactConstraint.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
#include "BulletDynamics/Dynamics/btActionInterface.h"
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btMotionState.h"
#include "LinearMath/btSerializer.h"
#if 0
btAlignedObjectArray<btVector3> debugContacts;
btAlignedObjectArray<btVector3> debugNormals;
int startHit=2;
int firstHit=startHit;
#endif
SIMD_FORCE_INLINE int btGetConstraintIslandId(const btTypedConstraint* lhs)
{
int islandId;
const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag();
return islandId;
}
class btSortConstraintOnIslandPredicate
{
public:
bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) const
{
int rIslandId0,lIslandId0;
rIslandId0 = btGetConstraintIslandId(rhs);
lIslandId0 = btGetConstraintIslandId(lhs);
return lIslandId0 < rIslandId0;
}
};
struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
{
btContactSolverInfo* m_solverInfo;
btConstraintSolver* m_solver;
btTypedConstraint** m_sortedConstraints;
int m_numConstraints;
btIDebugDraw* m_debugDrawer;
btDispatcher* m_dispatcher;
btAlignedObjectArray<btCollisionObject*> m_bodies;
btAlignedObjectArray<btPersistentManifold*> m_manifolds;
btAlignedObjectArray<btTypedConstraint*> m_constraints;
InplaceSolverIslandCallback(
btConstraintSolver* solver,
btStackAlloc* stackAlloc,
btDispatcher* dispatcher)
:m_solverInfo(NULL),
m_solver(solver),
m_sortedConstraints(NULL),
m_numConstraints(0),
m_debugDrawer(NULL),
m_dispatcher(dispatcher)
{
}
InplaceSolverIslandCallback& operator=(InplaceSolverIslandCallback& other)
{
btAssert(0);
(void)other;
return *this;
}
SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btIDebugDraw* debugDrawer)
{
btAssert(solverInfo);
m_solverInfo = solverInfo;
m_sortedConstraints = sortedConstraints;
m_numConstraints = numConstraints;
m_debugDrawer = debugDrawer;
m_bodies.resize (0);
m_manifolds.resize (0);
m_constraints.resize (0);
}
virtual void processIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId)
{
if (islandId<0)
{
///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
} else
{
//also add all non-contact constraints/joints for this island
btTypedConstraint** startConstraint = 0;
int numCurConstraints = 0;
int i;
//find the first constraint for this island
for (i=0;i<m_numConstraints;i++)
{
if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId)
{
startConstraint = &m_sortedConstraints[i];
break;
}
}
//count the number of constraints in this island
for (;i<m_numConstraints;i++)
{
if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId)
{
numCurConstraints++;
}
}
if (m_solverInfo->m_minimumSolverBatchSize<=1)
{
m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
} else
{
for (i=0;i<numBodies;i++)
m_bodies.push_back(bodies[i]);
for (i=0;i<numManifolds;i++)
m_manifolds.push_back(manifolds[i]);
for (i=0;i<numCurConstraints;i++)
m_constraints.push_back(startConstraint[i]);
if ((m_constraints.size()+m_manifolds.size())>m_solverInfo->m_minimumSolverBatchSize)
{
processConstraints();
} else
{
//printf("deferred\n");
}
}
}
}
void processConstraints()
{
btCollisionObject** bodies = m_bodies.size()? &m_bodies[0]:0;
btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0;
btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0;
m_solver->solveGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,*m_solverInfo,m_debugDrawer,m_dispatcher);
m_bodies.resize(0);
m_manifolds.resize(0);
m_constraints.resize(0);
}
};
btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration)
:btDynamicsWorld(dispatcher,pairCache,collisionConfiguration),
m_sortedConstraints (),
m_solverIslandCallback ( NULL ),
m_constraintSolver(constraintSolver),
m_gravity(0,-10,0),
m_localTime(0),
m_fixedTimeStep(0),
m_synchronizeAllMotionStates(false),
m_applySpeculativeContactRestitution(false),
m_profileTimings(0),
m_latencyMotionStateInterpolation(true)
{
if (!m_constraintSolver)
{
void* mem = btAlignedAlloc(sizeof(btSequentialImpulseConstraintSolver),16);
m_constraintSolver = new (mem) btSequentialImpulseConstraintSolver;
m_ownsConstraintSolver = true;
} else
{
m_ownsConstraintSolver = false;
}
{
void* mem = btAlignedAlloc(sizeof(btSimulationIslandManager),16);
m_islandManager = new (mem) btSimulationIslandManager();
}
m_ownsIslandManager = true;
{
void* mem = btAlignedAlloc(sizeof(InplaceSolverIslandCallback),16);
m_solverIslandCallback = new (mem) InplaceSolverIslandCallback (m_constraintSolver, 0, dispatcher);
}
}
btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld()
{
//only delete it when we created it
if (m_ownsIslandManager)
{
m_islandManager->~btSimulationIslandManager();
btAlignedFree( m_islandManager);
}
if (m_solverIslandCallback)
{
m_solverIslandCallback->~InplaceSolverIslandCallback();
btAlignedFree(m_solverIslandCallback);
}
if (m_ownsConstraintSolver)
{
m_constraintSolver->~btConstraintSolver();
btAlignedFree(m_constraintSolver);
}
}
void btDiscreteDynamicsWorld::saveKinematicState(btScalar timeStep)
{
///would like to iterate over m_nonStaticRigidBodies, but unfortunately old API allows
///to switch status _after_ adding kinematic objects to the world
///fix it for Bullet 3.x release
for (int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body && body->getActivationState() != ISLAND_SLEEPING)
{
if (body->isKinematicObject())
{
//to calculate velocities next frame
body->saveKinematicState(timeStep);
}
}
}
}
void btDiscreteDynamicsWorld::debugDrawWorld()
{
BT_PROFILE("debugDrawWorld");
btCollisionWorld::debugDrawWorld();
bool drawConstraints = false;
if (getDebugDrawer())
{
int mode = getDebugDrawer()->getDebugMode();
if(mode & (btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits))
{
drawConstraints = true;
}
}
if(drawConstraints)
{
for(int i = getNumConstraints()-1; i>=0 ;i--)
{
btTypedConstraint* constraint = getConstraint(i);
debugDrawConstraint(constraint);
}
}
if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb | btIDebugDraw::DBG_DrawNormals)))
{
int i;
if (getDebugDrawer() && getDebugDrawer()->getDebugMode())
{
for (i=0;i<m_actions.size();i++)
{
m_actions[i]->debugDraw(m_debugDrawer);
}
}
}
if (getDebugDrawer())
getDebugDrawer()->flushLines();
}
void btDiscreteDynamicsWorld::clearForces()
{
///@todo: iterate over awake simulation islands!
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
//need to check if next line is ok
//it might break backward compatibility (people applying forces on sleeping objects get never cleared and accumulate on wake-up
body->clearForces();
}
}
///apply gravity, call this once per timestep
void btDiscreteDynamicsWorld::applyGravity()
{
///@todo: iterate over awake simulation islands!
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
if (body->isActive())
{
body->applyGravity();
}
}
}
void btDiscreteDynamicsWorld::synchronizeSingleMotionState(btRigidBody* body)
{
btAssert(body);
if (body->getMotionState() && !body->isStaticOrKinematicObject())
{
//we need to call the update at least once, even for sleeping objects
//otherwise the 'graphics' transform never updates properly
///@todo: add 'dirty' flag
//if (body->getActivationState() != ISLAND_SLEEPING)
{
btTransform interpolatedTransform;
btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(),
body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(),
(m_latencyMotionStateInterpolation && m_fixedTimeStep) ? m_localTime - m_fixedTimeStep : m_localTime*body->getHitFraction(),
interpolatedTransform);
body->getMotionState()->setWorldTransform(interpolatedTransform);
}
}
}
void btDiscreteDynamicsWorld::synchronizeMotionStates()
{
// BT_PROFILE("synchronizeMotionStates");
if (m_synchronizeAllMotionStates)
{
//iterate over all collision objects
for ( int i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
btRigidBody* body = btRigidBody::upcast(colObj);
if (body)
synchronizeSingleMotionState(body);
}
} else
{
//iterate over all active rigid bodies
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
if (body->isActive())
synchronizeSingleMotionState(body);
}
}
}
int btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep)
{
startProfiling(timeStep);
int numSimulationSubSteps = 0;
if (maxSubSteps)
{
//fixed timestep with interpolation
m_fixedTimeStep = fixedTimeStep;
m_localTime += timeStep;
if (m_localTime >= fixedTimeStep)
{
numSimulationSubSteps = int( m_localTime / fixedTimeStep);
m_localTime -= numSimulationSubSteps * fixedTimeStep;
}
} else
{
//variable timestep
fixedTimeStep = timeStep;
m_localTime = m_latencyMotionStateInterpolation ? 0 : timeStep;
m_fixedTimeStep = 0;
if (btFuzzyZero(timeStep))
{
numSimulationSubSteps = 0;
maxSubSteps = 0;
} else
{
numSimulationSubSteps = 1;
maxSubSteps = 1;
}
}
//process some debugging flags
if (getDebugDrawer())
{
btIDebugDraw* debugDrawer = getDebugDrawer ();
gDisableDeactivation = (debugDrawer->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0;
}
if (numSimulationSubSteps)
{
//clamp the number of substeps, to prevent simulation grinding spiralling down to a halt
int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps;
saveKinematicState(fixedTimeStep*clampedSimulationSteps);
applyGravity();
for (int i=0;i<clampedSimulationSteps;i++)
{
internalSingleStepSimulation(fixedTimeStep);
synchronizeMotionStates();
}
} else
{
synchronizeMotionStates();
}
clearForces();
#ifndef BT_NO_PROFILE
CProfileManager::Increment_Frame_Counter();
#endif //BT_NO_PROFILE
return numSimulationSubSteps;
}
void btDiscreteDynamicsWorld::internalSingleStepSimulation(btScalar timeStep)
{
BT_PROFILE("internalSingleStepSimulation");
if(0 != m_internalPreTickCallback) {
(*m_internalPreTickCallback)(this, timeStep);
}
///apply gravity, predict motion
predictUnconstraintMotion(timeStep);
btDispatcherInfo& dispatchInfo = getDispatchInfo();
dispatchInfo.m_timeStep = timeStep;
dispatchInfo.m_stepCount = 0;
dispatchInfo.m_debugDraw = getDebugDrawer();
createPredictiveContacts(timeStep);
///perform collision detection
performDiscreteCollisionDetection();
calculateSimulationIslands();
getSolverInfo().m_timeStep = timeStep;
///solve contact and other joint constraints
solveConstraints(getSolverInfo());
///CallbackTriggers();
///integrate transforms
integrateTransforms(timeStep);
///update vehicle simulation
updateActions(timeStep);
updateActivationState( timeStep );
if(0 != m_internalTickCallback) {
(*m_internalTickCallback)(this, timeStep);
}
}
void btDiscreteDynamicsWorld::setGravity(const btVector3& gravity)
{
m_gravity = gravity;
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
if (body->isActive() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY))
{
body->setGravity(gravity);
}
}
}
btVector3 btDiscreteDynamicsWorld::getGravity () const
{
return m_gravity;
}
void btDiscreteDynamicsWorld::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
{
btCollisionWorld::addCollisionObject(collisionObject,collisionFilterGroup,collisionFilterMask);
}
void btDiscreteDynamicsWorld::removeCollisionObject(btCollisionObject* collisionObject)
{
btRigidBody* body = btRigidBody::upcast(collisionObject);
if (body)
removeRigidBody(body);
else
btCollisionWorld::removeCollisionObject(collisionObject);
}
void btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body)
{
m_nonStaticRigidBodies.remove(body);
btCollisionWorld::removeCollisionObject(body);
}
void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body)
{
if (!body->isStaticOrKinematicObject() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY))
{
body->setGravity(m_gravity);
}
if (body->getCollisionShape())
{
if (!body->isStaticObject())
{
m_nonStaticRigidBodies.push_back(body);
} else
{
body->setActivationState(ISLAND_SLEEPING);
}
bool isDynamic = !(body->isStaticObject() || body->isKinematicObject());
int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
addCollisionObject(body,collisionFilterGroup,collisionFilterMask);
}
}
void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body, int group, int mask)
{
if (!body->isStaticOrKinematicObject() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY))
{
body->setGravity(m_gravity);
}
if (body->getCollisionShape())
{
if (!body->isStaticObject())
{
m_nonStaticRigidBodies.push_back(body);
}
else
{
body->setActivationState(ISLAND_SLEEPING);
}
addCollisionObject(body,group,mask);
}
}
void btDiscreteDynamicsWorld::updateActions(btScalar timeStep)
{
BT_PROFILE("updateActions");
for ( int i=0;i<m_actions.size();i++)
{
m_actions[i]->updateAction( this, timeStep);
}
}
void btDiscreteDynamicsWorld::updateActivationState(btScalar timeStep)
{
BT_PROFILE("updateActivationState");
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
if (body)
{
body->updateDeactivation(timeStep);
if (body->wantsSleeping())
{
if (body->isStaticOrKinematicObject())
{
body->setActivationState(ISLAND_SLEEPING);
} else
{
if (body->getActivationState() == ACTIVE_TAG)
body->setActivationState( WANTS_DEACTIVATION );
if (body->getActivationState() == ISLAND_SLEEPING)
{
body->setAngularVelocity(btVector3(0,0,0));
body->setLinearVelocity(btVector3(0,0,0));
}
}
} else
{
if (body->getActivationState() != DISABLE_DEACTIVATION)
body->setActivationState( ACTIVE_TAG );
}
}
}
}
void btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint,bool disableCollisionsBetweenLinkedBodies)
{
m_constraints.push_back(constraint);
//Make sure the two bodies of a type constraint are different (possibly add this to the btTypedConstraint constructor?)
btAssert(&constraint->getRigidBodyA()!=&constraint->getRigidBodyB());
if (disableCollisionsBetweenLinkedBodies)
{
constraint->getRigidBodyA().addConstraintRef(constraint);
constraint->getRigidBodyB().addConstraintRef(constraint);
}
}
void btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint)
{
m_constraints.remove(constraint);
constraint->getRigidBodyA().removeConstraintRef(constraint);
constraint->getRigidBodyB().removeConstraintRef(constraint);
}
void btDiscreteDynamicsWorld::addAction(btActionInterface* action)
{
m_actions.push_back(action);
}
void btDiscreteDynamicsWorld::removeAction(btActionInterface* action)
{
m_actions.remove(action);
}
void btDiscreteDynamicsWorld::addVehicle(btActionInterface* vehicle)
{
addAction(vehicle);
}
void btDiscreteDynamicsWorld::removeVehicle(btActionInterface* vehicle)
{
removeAction(vehicle);
}
void btDiscreteDynamicsWorld::addCharacter(btActionInterface* character)
{
addAction(character);
}
void btDiscreteDynamicsWorld::removeCharacter(btActionInterface* character)
{
removeAction(character);
}
void btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
{
BT_PROFILE("solveConstraints");
m_sortedConstraints.resize( m_constraints.size());
int i;
for (i=0;i<getNumConstraints();i++)
{
m_sortedConstraints[i] = m_constraints[i];
}
// btAssert(0);
m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate());
btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0;
m_solverIslandCallback->setup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),getDebugDrawer());
m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds());
/// solve all the constraints for this island
m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverIslandCallback);
m_solverIslandCallback->processConstraints();
m_constraintSolver->allSolved(solverInfo, m_debugDrawer);
}
void btDiscreteDynamicsWorld::calculateSimulationIslands()
{
BT_PROFILE("calculateSimulationIslands");
getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher());
{
//merge islands based on speculative contact manifolds too
for (int i=0;i<this->m_predictiveManifolds.size();i++)
{
btPersistentManifold* manifold = m_predictiveManifolds[i];
const btCollisionObject* colObj0 = manifold->getBody0();
const btCollisionObject* colObj1 = manifold->getBody1();
if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
{
getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
}
}
}
{
int i;
int numConstraints = int(m_constraints.size());
for (i=0;i< numConstraints ; i++ )
{
btTypedConstraint* constraint = m_constraints[i];
if (constraint->isEnabled())
{
const btRigidBody* colObj0 = &constraint->getRigidBodyA();
const btRigidBody* colObj1 = &constraint->getRigidBodyB();
if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
{
getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
}
}
}
}
//Store the island id in each body
getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld());
}
class btClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback
{
public:
btCollisionObject* m_me;
btScalar m_allowedPenetration;
btOverlappingPairCache* m_pairCache;
btDispatcher* m_dispatcher;
public:
btClosestNotMeConvexResultCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) :
btCollisionWorld::ClosestConvexResultCallback(fromA,toA),
m_me(me),
m_allowedPenetration(0.0f),
m_pairCache(pairCache),
m_dispatcher(dispatcher)
{
}
virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace)
{
if (convexResult.m_hitCollisionObject == m_me)
return 1.0f;
//ignore result if there is no contact response
if(!convexResult.m_hitCollisionObject->hasContactResponse())
return 1.0f;
btVector3 linVelA,linVelB;
linVelA = m_convexToWorld-m_convexFromWorld;
linVelB = btVector3(0,0,0);//toB.getOrigin()-fromB.getOrigin();
btVector3 relativeVelocity = (linVelA-linVelB);
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
if (convexResult.m_hitNormalLocal.dot(relativeVelocity)>=-m_allowedPenetration)
return 1.f;
return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace);
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
//don't collide with itself
if (proxy0->m_clientObject == m_me)
return false;
///don't do CCD when the collision filters are not matching
if (!ClosestConvexResultCallback::needsCollision(proxy0))
return false;
btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject;
//call needsResponse, see http://code.google.com/p/bullet/issues/detail?id=179
if (m_dispatcher->needsResponse(m_me,otherObj))
{
#if 0
///don't do CCD when there are already contact points (touching contact/penetration)
btAlignedObjectArray<btPersistentManifold*> manifoldArray;
btBroadphasePair* collisionPair = m_pairCache->findPair(m_me->getBroadphaseHandle(),proxy0);
if (collisionPair)
{
if (collisionPair->m_algorithm)
{
manifoldArray.resize(0);
collisionPair->m_algorithm->getAllContactManifolds(manifoldArray);
for (int j=0;j<manifoldArray.size();j++)
{
btPersistentManifold* manifold = manifoldArray[j];
if (manifold->getNumContacts()>0)
return false;
}
}
}
#endif
return true;
}
return false;
}
};
///internal debugging variable. this value shouldn't be too high
int gNumClampedCcdMotions=0;
void btDiscreteDynamicsWorld::createPredictiveContactsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep)
{
btTransform predictedTrans;
for ( int i=0;i<numBodies;i++)
{
btRigidBody* body = bodies[i];
body->setHitFraction(1.f);
if (body->isActive() && (!body->isStaticOrKinematicObject()))
{
body->predictIntegratedTransform(timeStep, predictedTrans);
btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();
if (getDispatchInfo().m_useContinuous && body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion)
{
BT_PROFILE("predictive convexSweepTest");
if (body->getCollisionShape()->isConvex())
{
gNumClampedCcdMotions++;
#ifdef PREDICTIVE_CONTACT_USE_STATIC_ONLY
class StaticOnlyCallback : public btClosestNotMeConvexResultCallback
{
public:
StaticOnlyCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) :
btClosestNotMeConvexResultCallback(me,fromA,toA,pairCache,dispatcher)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject;
if (!otherObj->isStaticOrKinematicObject())
return false;
return btClosestNotMeConvexResultCallback::needsCollision(proxy0);
}
};
StaticOnlyCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#else
btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#endif
//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
sweepResults.m_allowedPenetration=getDispatchInfo().m_allowedCcdPenetration;
sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup;
sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask;
btTransform modifiedPredictedTrans = predictedTrans;
modifiedPredictedTrans.setBasis(body->getWorldTransform().getBasis());
convexSweepTest(&tmpSphere,body->getWorldTransform(),modifiedPredictedTrans,sweepResults);
if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f))
{
btVector3 distVec = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin())*sweepResults.m_closestHitFraction;
btScalar distance = distVec.dot(-sweepResults.m_hitNormalWorld);
btPersistentManifold* manifold = m_dispatcher1->getNewManifold(body,sweepResults.m_hitCollisionObject);
btMutexLock( &m_predictiveManifoldsMutex );
m_predictiveManifolds.push_back(manifold);
btMutexUnlock( &m_predictiveManifoldsMutex );
btVector3 worldPointB = body->getWorldTransform().getOrigin()+distVec;
btVector3 localPointB = sweepResults.m_hitCollisionObject->getWorldTransform().inverse()*worldPointB;
btManifoldPoint newPoint(btVector3(0,0,0), localPointB,sweepResults.m_hitNormalWorld,distance);
bool isPredictive = true;
int index = manifold->addManifoldPoint(newPoint, isPredictive);
btManifoldPoint& pt = manifold->getContactPoint(index);
pt.m_combinedRestitution = 0;
pt.m_combinedFriction = gCalculateCombinedFrictionCallback(body,sweepResults.m_hitCollisionObject);
pt.m_positionWorldOnA = body->getWorldTransform().getOrigin();
pt.m_positionWorldOnB = worldPointB;
}
}
}
}
}
}
void btDiscreteDynamicsWorld::releasePredictiveContacts()
{
BT_PROFILE( "release predictive contact manifolds" );
for ( int i = 0; i < m_predictiveManifolds.size(); i++ )
{
btPersistentManifold* manifold = m_predictiveManifolds[ i ];
this->m_dispatcher1->releaseManifold( manifold );
}
m_predictiveManifolds.clear();
}
void btDiscreteDynamicsWorld::createPredictiveContacts(btScalar timeStep)
{
BT_PROFILE("createPredictiveContacts");
releasePredictiveContacts();
if (m_nonStaticRigidBodies.size() > 0)
{
createPredictiveContactsInternal( &m_nonStaticRigidBodies[ 0 ], m_nonStaticRigidBodies.size(), timeStep );
}
}
void btDiscreteDynamicsWorld::integrateTransformsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep )
{
btTransform predictedTrans;
for (int i=0;i<numBodies;i++)
{
btRigidBody* body = bodies[i];
body->setHitFraction(1.f);
if (body->isActive() && (!body->isStaticOrKinematicObject()))
{
body->predictIntegratedTransform(timeStep, predictedTrans);
btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();
if (getDispatchInfo().m_useContinuous && body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion)
{
BT_PROFILE("CCD motion clamping");
if (body->getCollisionShape()->isConvex())
{
gNumClampedCcdMotions++;
#ifdef USE_STATIC_ONLY
class StaticOnlyCallback : public btClosestNotMeConvexResultCallback
{
public:
StaticOnlyCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) :
btClosestNotMeConvexResultCallback(me,fromA,toA,pairCache,dispatcher)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject;
if (!otherObj->isStaticOrKinematicObject())
return false;
return btClosestNotMeConvexResultCallback::needsCollision(proxy0);
}
};
StaticOnlyCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#else
btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#endif
//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
sweepResults.m_allowedPenetration=getDispatchInfo().m_allowedCcdPenetration;
sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup;
sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask;
btTransform modifiedPredictedTrans = predictedTrans;
modifiedPredictedTrans.setBasis(body->getWorldTransform().getBasis());
convexSweepTest(&tmpSphere,body->getWorldTransform(),modifiedPredictedTrans,sweepResults);
if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f))
{
//printf("clamped integration to hit fraction = %f\n",fraction);
body->setHitFraction(sweepResults.m_closestHitFraction);
body->predictIntegratedTransform(timeStep*body->getHitFraction(), predictedTrans);
body->setHitFraction(0.f);
body->proceedToTransform( predictedTrans);
#if 0
btVector3 linVel = body->getLinearVelocity();
btScalar maxSpeed = body->getCcdMotionThreshold()/getSolverInfo().m_timeStep;
btScalar maxSpeedSqr = maxSpeed*maxSpeed;
if (linVel.length2()>maxSpeedSqr)
{
linVel.normalize();
linVel*= maxSpeed;
body->setLinearVelocity(linVel);
btScalar ms2 = body->getLinearVelocity().length2();
body->predictIntegratedTransform(timeStep, predictedTrans);
btScalar sm2 = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();
btScalar smt = body->getCcdSquareMotionThreshold();
printf("sm2=%f\n",sm2);
}
#else
//don't apply the collision response right now, it will happen next frame
//if you really need to, you can uncomment next 3 lines. Note that is uses zero restitution.
//btScalar appliedImpulse = 0.f;
//btScalar depth = 0.f;
//appliedImpulse = resolveSingleCollision(body,(btCollisionObject*)sweepResults.m_hitCollisionObject,sweepResults.m_hitPointWorld,sweepResults.m_hitNormalWorld,getSolverInfo(), depth);
#endif
continue;
}
}
}
body->proceedToTransform( predictedTrans);
}
}
}
void btDiscreteDynamicsWorld::integrateTransforms(btScalar timeStep)
{
BT_PROFILE("integrateTransforms");
if (m_nonStaticRigidBodies.size() > 0)
{
integrateTransformsInternal(&m_nonStaticRigidBodies[0], m_nonStaticRigidBodies.size(), timeStep);
}
///this should probably be switched on by default, but it is not well tested yet
if (m_applySpeculativeContactRestitution)
{
BT_PROFILE("apply speculative contact restitution");
for (int i=0;i<m_predictiveManifolds.size();i++)
{
btPersistentManifold* manifold = m_predictiveManifolds[i];
btRigidBody* body0 = btRigidBody::upcast((btCollisionObject*)manifold->getBody0());
btRigidBody* body1 = btRigidBody::upcast((btCollisionObject*)manifold->getBody1());
for (int p=0;p<manifold->getNumContacts();p++)
{
const btManifoldPoint& pt = manifold->getContactPoint(p);
btScalar combinedRestitution = gCalculateCombinedRestitutionCallback(body0, body1);
if (combinedRestitution>0 && pt.m_appliedImpulse != 0.f)
//if (pt.getDistance()>0 && combinedRestitution>0 && pt.m_appliedImpulse != 0.f)
{
btVector3 imp = -pt.m_normalWorldOnB * pt.m_appliedImpulse* combinedRestitution;
const btVector3& pos1 = pt.getPositionWorldOnA();
const btVector3& pos2 = pt.getPositionWorldOnB();
btVector3 rel_pos0 = pos1 - body0->getWorldTransform().getOrigin();
btVector3 rel_pos1 = pos2 - body1->getWorldTransform().getOrigin();
if (body0)
body0->applyImpulse(imp,rel_pos0);
if (body1)
body1->applyImpulse(-imp,rel_pos1);
}
}
}
}
}
void btDiscreteDynamicsWorld::predictUnconstraintMotion(btScalar timeStep)
{
BT_PROFILE("predictUnconstraintMotion");
for ( int i=0;i<m_nonStaticRigidBodies.size();i++)
{
btRigidBody* body = m_nonStaticRigidBodies[i];
if (!body->isStaticOrKinematicObject())
{
//don't integrate/update velocities here, it happens in the constraint solver
body->applyDamping(timeStep);
body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform());
}
}
}
void btDiscreteDynamicsWorld::startProfiling(btScalar timeStep)
{
(void)timeStep;
#ifndef BT_NO_PROFILE
CProfileManager::Reset();
#endif //BT_NO_PROFILE
}
void btDiscreteDynamicsWorld::debugDrawConstraint(btTypedConstraint* constraint)
{
bool drawFrames = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawConstraints) != 0;
bool drawLimits = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawConstraintLimits) != 0;
btScalar dbgDrawSize = constraint->getDbgDrawSize();
if(dbgDrawSize <= btScalar(0.f))
{
return;
}
switch(constraint->getConstraintType())
{
case POINT2POINT_CONSTRAINT_TYPE:
{
btPoint2PointConstraint* p2pC = (btPoint2PointConstraint*)constraint;
btTransform tr;
tr.setIdentity();
btVector3 pivot = p2pC->getPivotInA();
pivot = p2pC->getRigidBodyA().getCenterOfMassTransform() * pivot;
tr.setOrigin(pivot);
getDebugDrawer()->drawTransform(tr, dbgDrawSize);
// that ideally should draw the same frame
pivot = p2pC->getPivotInB();
pivot = p2pC->getRigidBodyB().getCenterOfMassTransform() * pivot;
tr.setOrigin(pivot);
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
}
break;
case HINGE_CONSTRAINT_TYPE:
{
btHingeConstraint* pHinge = (btHingeConstraint*)constraint;
btTransform tr = pHinge->getRigidBodyA().getCenterOfMassTransform() * pHinge->getAFrame();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
tr = pHinge->getRigidBodyB().getCenterOfMassTransform() * pHinge->getBFrame();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
btScalar minAng = pHinge->getLowerLimit();
btScalar maxAng = pHinge->getUpperLimit();
if(minAng == maxAng)
{
break;
}
bool drawSect = true;
if(!pHinge->hasLimit())
{
minAng = btScalar(0.f);
maxAng = SIMD_2_PI;
drawSect = false;
}
if(drawLimits)
{
btVector3& center = tr.getOrigin();
btVector3 normal = tr.getBasis().getColumn(2);
btVector3 axis = tr.getBasis().getColumn(0);
getDebugDrawer()->drawArc(center, normal, axis, dbgDrawSize, dbgDrawSize, minAng, maxAng, btVector3(0,0,0), drawSect);
}
}
break;
case CONETWIST_CONSTRAINT_TYPE:
{
btConeTwistConstraint* pCT = (btConeTwistConstraint*)constraint;
btTransform tr = pCT->getRigidBodyA().getCenterOfMassTransform() * pCT->getAFrame();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
tr = pCT->getRigidBodyB().getCenterOfMassTransform() * pCT->getBFrame();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
if(drawLimits)
{
//const btScalar length = btScalar(5);
const btScalar length = dbgDrawSize;
static int nSegments = 8*4;
btScalar fAngleInRadians = btScalar(2.*3.1415926) * (btScalar)(nSegments-1)/btScalar(nSegments);
btVector3 pPrev = pCT->GetPointForAngle(fAngleInRadians, length);
pPrev = tr * pPrev;
for (int i=0; i<nSegments; i++)
{
fAngleInRadians = btScalar(2.*3.1415926) * (btScalar)i/btScalar(nSegments);
btVector3 pCur = pCT->GetPointForAngle(fAngleInRadians, length);
pCur = tr * pCur;
getDebugDrawer()->drawLine(pPrev, pCur, btVector3(0,0,0));
if (i%(nSegments/8) == 0)
getDebugDrawer()->drawLine(tr.getOrigin(), pCur, btVector3(0,0,0));
pPrev = pCur;
}
btScalar tws = pCT->getTwistSpan();
btScalar twa = pCT->getTwistAngle();
bool useFrameB = (pCT->getRigidBodyB().getInvMass() > btScalar(0.f));
if(useFrameB)
{
tr = pCT->getRigidBodyB().getCenterOfMassTransform() * pCT->getBFrame();
}
else
{
tr = pCT->getRigidBodyA().getCenterOfMassTransform() * pCT->getAFrame();
}
btVector3 pivot = tr.getOrigin();
btVector3 normal = tr.getBasis().getColumn(0);
btVector3 axis1 = tr.getBasis().getColumn(1);
getDebugDrawer()->drawArc(pivot, normal, axis1, dbgDrawSize, dbgDrawSize, -twa-tws, -twa+tws, btVector3(0,0,0), true);
}
}
break;
case D6_SPRING_CONSTRAINT_TYPE:
case D6_CONSTRAINT_TYPE:
{
btGeneric6DofConstraint* p6DOF = (btGeneric6DofConstraint*)constraint;
btTransform tr = p6DOF->getCalculatedTransformA();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
tr = p6DOF->getCalculatedTransformB();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
if(drawLimits)
{
tr = p6DOF->getCalculatedTransformA();
const btVector3& center = p6DOF->getCalculatedTransformB().getOrigin();
btVector3 up = tr.getBasis().getColumn(2);
btVector3 axis = tr.getBasis().getColumn(0);
btScalar minTh = p6DOF->getRotationalLimitMotor(1)->m_loLimit;
btScalar maxTh = p6DOF->getRotationalLimitMotor(1)->m_hiLimit;
btScalar minPs = p6DOF->getRotationalLimitMotor(2)->m_loLimit;
btScalar maxPs = p6DOF->getRotationalLimitMotor(2)->m_hiLimit;
getDebugDrawer()->drawSpherePatch(center, up, axis, dbgDrawSize * btScalar(.9f), minTh, maxTh, minPs, maxPs, btVector3(0,0,0));
axis = tr.getBasis().getColumn(1);
btScalar ay = p6DOF->getAngle(1);
btScalar az = p6DOF->getAngle(2);
btScalar cy = btCos(ay);
btScalar sy = btSin(ay);
btScalar cz = btCos(az);
btScalar sz = btSin(az);
btVector3 ref;
ref[0] = cy*cz*axis[0] + cy*sz*axis[1] - sy*axis[2];
ref[1] = -sz*axis[0] + cz*axis[1];
ref[2] = cz*sy*axis[0] + sz*sy*axis[1] + cy*axis[2];
tr = p6DOF->getCalculatedTransformB();
btVector3 normal = -tr.getBasis().getColumn(0);
btScalar minFi = p6DOF->getRotationalLimitMotor(0)->m_loLimit;
btScalar maxFi = p6DOF->getRotationalLimitMotor(0)->m_hiLimit;
if(minFi > maxFi)
{
getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, -SIMD_PI, SIMD_PI, btVector3(0,0,0), false);
}
else if(minFi < maxFi)
{
getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, minFi, maxFi, btVector3(0,0,0), true);
}
tr = p6DOF->getCalculatedTransformA();
btVector3 bbMin = p6DOF->getTranslationalLimitMotor()->m_lowerLimit;
btVector3 bbMax = p6DOF->getTranslationalLimitMotor()->m_upperLimit;
getDebugDrawer()->drawBox(bbMin, bbMax, tr, btVector3(0,0,0));
}
}
break;
///note: the code for D6_SPRING_2_CONSTRAINT_TYPE is identical to D6_CONSTRAINT_TYPE, the D6_CONSTRAINT_TYPE+D6_SPRING_CONSTRAINT_TYPE will likely become obsolete/deprecated at some stage
case D6_SPRING_2_CONSTRAINT_TYPE:
{
{
btGeneric6DofSpring2Constraint* p6DOF = (btGeneric6DofSpring2Constraint*)constraint;
btTransform tr = p6DOF->getCalculatedTransformA();
if (drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
tr = p6DOF->getCalculatedTransformB();
if (drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
if (drawLimits)
{
tr = p6DOF->getCalculatedTransformA();
const btVector3& center = p6DOF->getCalculatedTransformB().getOrigin();
btVector3 up = tr.getBasis().getColumn(2);
btVector3 axis = tr.getBasis().getColumn(0);
btScalar minTh = p6DOF->getRotationalLimitMotor(1)->m_loLimit;
btScalar maxTh = p6DOF->getRotationalLimitMotor(1)->m_hiLimit;
btScalar minPs = p6DOF->getRotationalLimitMotor(2)->m_loLimit;
btScalar maxPs = p6DOF->getRotationalLimitMotor(2)->m_hiLimit;
getDebugDrawer()->drawSpherePatch(center, up, axis, dbgDrawSize * btScalar(.9f), minTh, maxTh, minPs, maxPs, btVector3(0, 0, 0));
axis = tr.getBasis().getColumn(1);
btScalar ay = p6DOF->getAngle(1);
btScalar az = p6DOF->getAngle(2);
btScalar cy = btCos(ay);
btScalar sy = btSin(ay);
btScalar cz = btCos(az);
btScalar sz = btSin(az);
btVector3 ref;
ref[0] = cy*cz*axis[0] + cy*sz*axis[1] - sy*axis[2];
ref[1] = -sz*axis[0] + cz*axis[1];
ref[2] = cz*sy*axis[0] + sz*sy*axis[1] + cy*axis[2];
tr = p6DOF->getCalculatedTransformB();
btVector3 normal = -tr.getBasis().getColumn(0);
btScalar minFi = p6DOF->getRotationalLimitMotor(0)->m_loLimit;
btScalar maxFi = p6DOF->getRotationalLimitMotor(0)->m_hiLimit;
if (minFi > maxFi)
{
getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, -SIMD_PI, SIMD_PI, btVector3(0, 0, 0), false);
}
else if (minFi < maxFi)
{
getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, minFi, maxFi, btVector3(0, 0, 0), true);
}
tr = p6DOF->getCalculatedTransformA();
btVector3 bbMin = p6DOF->getTranslationalLimitMotor()->m_lowerLimit;
btVector3 bbMax = p6DOF->getTranslationalLimitMotor()->m_upperLimit;
getDebugDrawer()->drawBox(bbMin, bbMax, tr, btVector3(0, 0, 0));
}
}
break;
}
case SLIDER_CONSTRAINT_TYPE:
{
btSliderConstraint* pSlider = (btSliderConstraint*)constraint;
btTransform tr = pSlider->getCalculatedTransformA();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
tr = pSlider->getCalculatedTransformB();
if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize);
if(drawLimits)
{
btTransform tr = pSlider->getUseLinearReferenceFrameA() ? pSlider->getCalculatedTransformA() : pSlider->getCalculatedTransformB();
btVector3 li_min = tr * btVector3(pSlider->getLowerLinLimit(), 0.f, 0.f);
btVector3 li_max = tr * btVector3(pSlider->getUpperLinLimit(), 0.f, 0.f);
getDebugDrawer()->drawLine(li_min, li_max, btVector3(0, 0, 0));
btVector3 normal = tr.getBasis().getColumn(0);
btVector3 axis = tr.getBasis().getColumn(1);
btScalar a_min = pSlider->getLowerAngLimit();
btScalar a_max = pSlider->getUpperAngLimit();
const btVector3& center = pSlider->getCalculatedTransformB().getOrigin();
getDebugDrawer()->drawArc(center, normal, axis, dbgDrawSize, dbgDrawSize, a_min, a_max, btVector3(0,0,0), true);
}
}
break;
default :
break;
}
return;
}
void btDiscreteDynamicsWorld::setConstraintSolver(btConstraintSolver* solver)
{
if (m_ownsConstraintSolver)
{
btAlignedFree( m_constraintSolver);
}
m_ownsConstraintSolver = false;
m_constraintSolver = solver;
m_solverIslandCallback->m_solver = solver;
}
btConstraintSolver* btDiscreteDynamicsWorld::getConstraintSolver()
{
return m_constraintSolver;
}
int btDiscreteDynamicsWorld::getNumConstraints() const
{
return int(m_constraints.size());
}
btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index)
{
return m_constraints[index];
}
const btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) const
{
return m_constraints[index];
}
void btDiscreteDynamicsWorld::serializeRigidBodies(btSerializer* serializer)
{
int i;
//serialize all collision objects
for (i=0;i<m_collisionObjects.size();i++)
{
btCollisionObject* colObj = m_collisionObjects[i];
if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY)
{
int len = colObj->calculateSerializeBufferSize();
btChunk* chunk = serializer->allocate(len,1);
const char* structType = colObj->serialize(chunk->m_oldPtr, serializer);
serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,colObj);
}
}
for (i=0;i<m_constraints.size();i++)
{
btTypedConstraint* constraint = m_constraints[i];
int size = constraint->calculateSerializeBufferSize();
btChunk* chunk = serializer->allocate(size,1);
const char* structType = constraint->serialize(chunk->m_oldPtr,serializer);
serializer->finalizeChunk(chunk,structType,BT_CONSTRAINT_CODE,constraint);
}
}
void btDiscreteDynamicsWorld::serializeDynamicsWorldInfo(btSerializer* serializer)
{
#ifdef BT_USE_DOUBLE_PRECISION
int len = sizeof(btDynamicsWorldDoubleData);
btChunk* chunk = serializer->allocate(len,1);
btDynamicsWorldDoubleData* worldInfo = (btDynamicsWorldDoubleData*)chunk->m_oldPtr;
#else//BT_USE_DOUBLE_PRECISION
int len = sizeof(btDynamicsWorldFloatData);
btChunk* chunk = serializer->allocate(len,1);
btDynamicsWorldFloatData* worldInfo = (btDynamicsWorldFloatData*)chunk->m_oldPtr;
#endif//BT_USE_DOUBLE_PRECISION
memset(worldInfo ,0x00,len);
m_gravity.serialize(worldInfo->m_gravity);
worldInfo->m_solverInfo.m_tau = getSolverInfo().m_tau;
worldInfo->m_solverInfo.m_damping = getSolverInfo().m_damping;
worldInfo->m_solverInfo.m_friction = getSolverInfo().m_friction;
worldInfo->m_solverInfo.m_timeStep = getSolverInfo().m_timeStep;
worldInfo->m_solverInfo.m_restitution = getSolverInfo().m_restitution;
worldInfo->m_solverInfo.m_maxErrorReduction = getSolverInfo().m_maxErrorReduction;
worldInfo->m_solverInfo.m_sor = getSolverInfo().m_sor;
worldInfo->m_solverInfo.m_erp = getSolverInfo().m_erp;
worldInfo->m_solverInfo.m_erp2 = getSolverInfo().m_erp2;
worldInfo->m_solverInfo.m_globalCfm = getSolverInfo().m_globalCfm;
worldInfo->m_solverInfo.m_splitImpulsePenetrationThreshold = getSolverInfo().m_splitImpulsePenetrationThreshold;
worldInfo->m_solverInfo.m_splitImpulseTurnErp = getSolverInfo().m_splitImpulseTurnErp;
worldInfo->m_solverInfo.m_linearSlop = getSolverInfo().m_linearSlop;
worldInfo->m_solverInfo.m_warmstartingFactor = getSolverInfo().m_warmstartingFactor;
worldInfo->m_solverInfo.m_maxGyroscopicForce = getSolverInfo().m_maxGyroscopicForce;
worldInfo->m_solverInfo.m_singleAxisRollingFrictionThreshold = getSolverInfo().m_singleAxisRollingFrictionThreshold;
worldInfo->m_solverInfo.m_numIterations = getSolverInfo().m_numIterations;
worldInfo->m_solverInfo.m_solverMode = getSolverInfo().m_solverMode;
worldInfo->m_solverInfo.m_restingContactRestitutionThreshold = getSolverInfo().m_restingContactRestitutionThreshold;
worldInfo->m_solverInfo.m_minimumSolverBatchSize = getSolverInfo().m_minimumSolverBatchSize;
worldInfo->m_solverInfo.m_splitImpulse = getSolverInfo().m_splitImpulse;
// Fill padding with zeros to appease msan.
memset(worldInfo->m_solverInfo.m_padding, 0, sizeof(worldInfo->m_solverInfo.m_padding));
#ifdef BT_USE_DOUBLE_PRECISION
const char* structType = "btDynamicsWorldDoubleData";
#else//BT_USE_DOUBLE_PRECISION
const char* structType = "btDynamicsWorldFloatData";
#endif//BT_USE_DOUBLE_PRECISION
serializer->finalizeChunk(chunk,structType,BT_DYNAMICSWORLD_CODE,worldInfo);
}
void btDiscreteDynamicsWorld::serialize(btSerializer* serializer)
{
serializer->startSerialization();
serializeDynamicsWorldInfo(serializer);
serializeCollisionObjects(serializer);
serializeRigidBodies(serializer);
serializer->finishSerialization();
}