576 lines
23 KiB
C++
576 lines
23 KiB
C++
/*
|
|
Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
|
|
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2019 Google Inc. http://bulletphysics.org
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btDeformableContactConstraint.h"
|
|
/* ================ Deformable Node Anchor =================== */
|
|
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btSoftBody::DeformableNodeRigidAnchor& a, const btContactSolverInfo& infoGlobal)
|
|
: m_anchor(&a)
|
|
, btDeformableContactConstraint(a.m_cti.m_normal, infoGlobal)
|
|
{
|
|
}
|
|
|
|
btDeformableNodeAnchorConstraint::btDeformableNodeAnchorConstraint(const btDeformableNodeAnchorConstraint& other)
|
|
: m_anchor(other.m_anchor)
|
|
, btDeformableContactConstraint(other)
|
|
{
|
|
}
|
|
|
|
btVector3 btDeformableNodeAnchorConstraint::getVa() const
|
|
{
|
|
const btSoftBody::sCti& cti = m_anchor->m_cti;
|
|
btVector3 va(0, 0, 0);
|
|
if (cti.m_colObj->hasContactResponse())
|
|
{
|
|
btRigidBody* rigidCol = 0;
|
|
btMultiBodyLinkCollider* multibodyLinkCol = 0;
|
|
|
|
// grab the velocity of the rigid body
|
|
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
|
{
|
|
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
|
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(m_anchor->m_c1)) : btVector3(0, 0, 0);
|
|
}
|
|
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
|
{
|
|
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
|
|
if (multibodyLinkCol)
|
|
{
|
|
const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
|
|
const btScalar* J_n = &m_anchor->jacobianData_normal.m_jacobians[0];
|
|
const btScalar* J_t1 = &m_anchor->jacobianData_t1.m_jacobians[0];
|
|
const btScalar* J_t2 = &m_anchor->jacobianData_t2.m_jacobians[0];
|
|
const btScalar* local_v = multibodyLinkCol->m_multiBody->getVelocityVector();
|
|
const btScalar* local_dv = multibodyLinkCol->m_multiBody->getDeltaVelocityVector();
|
|
// add in the normal component of the va
|
|
btScalar vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_n[k];
|
|
}
|
|
va = cti.m_normal * vel;
|
|
// add in the tangential components of the va
|
|
vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_t1[k];
|
|
}
|
|
va += m_anchor->t1 * vel;
|
|
vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_t2[k];
|
|
}
|
|
va += m_anchor->t2 * vel;
|
|
}
|
|
}
|
|
}
|
|
return va;
|
|
}
|
|
|
|
btScalar btDeformableNodeAnchorConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
const btSoftBody::sCti& cti = m_anchor->m_cti;
|
|
btVector3 va = getVa();
|
|
btVector3 vb = getVb();
|
|
btVector3 vr = (vb - va);
|
|
// + (m_anchor->m_node->m_x - cti.m_colObj->getWorldTransform() * m_anchor->m_local) * 10.0
|
|
const btScalar dn = btDot(vr, vr);
|
|
// dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
|
|
btScalar residualSquare = dn*dn;
|
|
btVector3 impulse = m_anchor->m_c0 * vr;
|
|
// apply impulse to deformable nodes involved and change their velocities
|
|
applyImpulse(impulse);
|
|
|
|
// apply impulse to the rigid/multibodies involved and change their velocities
|
|
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
|
{
|
|
btRigidBody* rigidCol = 0;
|
|
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
|
if (rigidCol)
|
|
{
|
|
rigidCol->applyImpulse(impulse, m_anchor->m_c1);
|
|
}
|
|
}
|
|
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
|
{
|
|
btMultiBodyLinkCollider* multibodyLinkCol = 0;
|
|
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
|
|
if (multibodyLinkCol)
|
|
{
|
|
const btScalar* deltaV_normal = &m_anchor->jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
|
|
// apply normal component of the impulse
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_normal, impulse.dot(cti.m_normal));
|
|
// apply tangential component of the impulse
|
|
const btScalar* deltaV_t1 = &m_anchor->jacobianData_t1.m_deltaVelocitiesUnitImpulse[0];
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t1, impulse.dot(m_anchor->t1));
|
|
const btScalar* deltaV_t2 = &m_anchor->jacobianData_t2.m_deltaVelocitiesUnitImpulse[0];
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t2, impulse.dot(m_anchor->t2));
|
|
}
|
|
}
|
|
return residualSquare;
|
|
}
|
|
|
|
btVector3 btDeformableNodeAnchorConstraint::getVb() const
|
|
{
|
|
return m_anchor->m_node->m_v;
|
|
}
|
|
|
|
void btDeformableNodeAnchorConstraint::applyImpulse(const btVector3& impulse)
|
|
{
|
|
btVector3 dv = impulse * m_anchor->m_c2;
|
|
m_anchor->m_node->m_v -= dv;
|
|
}
|
|
|
|
/* ================ Deformable vs. Rigid =================== */
|
|
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btSoftBody::DeformableRigidContact& c, const btContactSolverInfo& infoGlobal)
|
|
: m_contact(&c)
|
|
, btDeformableContactConstraint(c.m_cti.m_normal, infoGlobal)
|
|
{
|
|
m_total_normal_dv.setZero();
|
|
m_total_tangent_dv.setZero();
|
|
// The magnitude of penetration is the depth of penetration.
|
|
m_penetration = c.m_cti.m_offset;
|
|
// m_penetration = btMin(btScalar(0),c.m_cti.m_offset);
|
|
}
|
|
|
|
btDeformableRigidContactConstraint::btDeformableRigidContactConstraint(const btDeformableRigidContactConstraint& other)
|
|
: m_contact(other.m_contact)
|
|
, btDeformableContactConstraint(other)
|
|
, m_penetration(other.m_penetration)
|
|
{
|
|
m_total_normal_dv = other.m_total_normal_dv;
|
|
m_total_tangent_dv = other.m_total_tangent_dv;
|
|
}
|
|
|
|
|
|
btVector3 btDeformableRigidContactConstraint::getVa() const
|
|
{
|
|
const btSoftBody::sCti& cti = m_contact->m_cti;
|
|
btVector3 va(0, 0, 0);
|
|
if (cti.m_colObj->hasContactResponse())
|
|
{
|
|
btRigidBody* rigidCol = 0;
|
|
btMultiBodyLinkCollider* multibodyLinkCol = 0;
|
|
|
|
// grab the velocity of the rigid body
|
|
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
|
{
|
|
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
|
va = rigidCol ? (rigidCol->getVelocityInLocalPoint(m_contact->m_c1)) : btVector3(0, 0, 0);
|
|
}
|
|
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
|
{
|
|
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
|
|
if (multibodyLinkCol)
|
|
{
|
|
const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
|
|
const btScalar* J_n = &m_contact->jacobianData_normal.m_jacobians[0];
|
|
const btScalar* J_t1 = &m_contact->jacobianData_t1.m_jacobians[0];
|
|
const btScalar* J_t2 = &m_contact->jacobianData_t2.m_jacobians[0];
|
|
const btScalar* local_v = multibodyLinkCol->m_multiBody->getVelocityVector();
|
|
const btScalar* local_dv = multibodyLinkCol->m_multiBody->getDeltaVelocityVector();
|
|
// add in the normal component of the va
|
|
btScalar vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_n[k];
|
|
}
|
|
va = cti.m_normal * vel;
|
|
// add in the tangential components of the va
|
|
vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_t1[k];
|
|
}
|
|
va += m_contact->t1 * vel;
|
|
vel = 0.0;
|
|
for (int k = 0; k < ndof; ++k)
|
|
{
|
|
vel += (local_v[k]+local_dv[k]) * J_t2[k];
|
|
}
|
|
va += m_contact->t2 * vel;
|
|
}
|
|
}
|
|
}
|
|
return va;
|
|
}
|
|
|
|
btScalar btDeformableRigidContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
const btSoftBody::sCti& cti = m_contact->m_cti;
|
|
btVector3 va = getVa();
|
|
btVector3 vb = getVb();
|
|
btVector3 vr = vb - va;
|
|
btScalar dn = btDot(vr, cti.m_normal) + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep;
|
|
// dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
|
|
btScalar residualSquare = dn*dn;
|
|
btVector3 impulse = m_contact->m_c0 * (vr + m_penetration * infoGlobal.m_deformable_erp / infoGlobal.m_timeStep * cti.m_normal) ;
|
|
const btVector3 impulse_normal = m_contact->m_c0 * (cti.m_normal * dn);
|
|
btVector3 impulse_tangent = impulse - impulse_normal;
|
|
btVector3 old_total_tangent_dv = m_total_tangent_dv;
|
|
// m_c2 is the inverse mass of the deformable node/face
|
|
m_total_normal_dv -= impulse_normal * m_contact->m_c2;
|
|
m_total_tangent_dv -= impulse_tangent * m_contact->m_c2;
|
|
|
|
if (m_total_normal_dv.dot(cti.m_normal) < 0)
|
|
{
|
|
// separating in the normal direction
|
|
m_static = false;
|
|
m_total_tangent_dv = btVector3(0,0,0);
|
|
impulse_tangent.setZero();
|
|
}
|
|
else
|
|
{
|
|
if (m_total_normal_dv.norm() * m_contact->m_c3 < m_total_tangent_dv.norm())
|
|
{
|
|
// dynamic friction
|
|
// with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
|
|
m_static = false;
|
|
if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
|
|
{
|
|
m_total_tangent_dv = btVector3(0,0,0);
|
|
}
|
|
else
|
|
{
|
|
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_c3;
|
|
}
|
|
impulse_tangent = -btScalar(1)/m_contact->m_c2 * (m_total_tangent_dv - old_total_tangent_dv);
|
|
}
|
|
else
|
|
{
|
|
// static friction
|
|
m_static = true;
|
|
}
|
|
}
|
|
impulse = impulse_normal + impulse_tangent;
|
|
// apply impulse to deformable nodes involved and change their velocities
|
|
applyImpulse(impulse);
|
|
if (residualSquare < 1e-7)
|
|
return residualSquare;
|
|
// apply impulse to the rigid/multibodies involved and change their velocities
|
|
if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
|
|
{
|
|
btRigidBody* rigidCol = 0;
|
|
rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
|
|
if (rigidCol)
|
|
{
|
|
rigidCol->applyImpulse(impulse, m_contact->m_c1);
|
|
}
|
|
}
|
|
else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
|
|
{
|
|
btMultiBodyLinkCollider* multibodyLinkCol = 0;
|
|
multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
|
|
if (multibodyLinkCol)
|
|
{
|
|
const btScalar* deltaV_normal = &m_contact->jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
|
|
// apply normal component of the impulse
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_normal, impulse.dot(cti.m_normal));
|
|
if (impulse_tangent.norm() > SIMD_EPSILON)
|
|
{
|
|
// apply tangential component of the impulse
|
|
const btScalar* deltaV_t1 = &m_contact->jacobianData_t1.m_deltaVelocitiesUnitImpulse[0];
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t1, impulse.dot(m_contact->t1));
|
|
const btScalar* deltaV_t2 = &m_contact->jacobianData_t2.m_deltaVelocitiesUnitImpulse[0];
|
|
multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof2(deltaV_t2, impulse.dot(m_contact->t2));
|
|
}
|
|
}
|
|
}
|
|
// va = getVa();
|
|
// vb = getVb();
|
|
// vr = vb - va;
|
|
// btScalar dn1 = btDot(vr, cti.m_normal) / 150;
|
|
// m_penetration += dn1;
|
|
return residualSquare;
|
|
}
|
|
/* ================ Node vs. Rigid =================== */
|
|
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btSoftBody::DeformableNodeRigidContact& contact, const btContactSolverInfo& infoGlobal)
|
|
: m_node(contact.m_node)
|
|
, btDeformableRigidContactConstraint(contact, infoGlobal)
|
|
{
|
|
}
|
|
|
|
btDeformableNodeRigidContactConstraint::btDeformableNodeRigidContactConstraint(const btDeformableNodeRigidContactConstraint& other)
|
|
: m_node(other.m_node)
|
|
, btDeformableRigidContactConstraint(other)
|
|
{
|
|
}
|
|
|
|
btVector3 btDeformableNodeRigidContactConstraint::getVb() const
|
|
{
|
|
return m_node->m_v;
|
|
}
|
|
|
|
|
|
btVector3 btDeformableNodeRigidContactConstraint::getDv(const btSoftBody::Node* node) const
|
|
{
|
|
return m_total_normal_dv + m_total_tangent_dv;
|
|
}
|
|
|
|
void btDeformableNodeRigidContactConstraint::applyImpulse(const btVector3& impulse)
|
|
{
|
|
const btSoftBody::DeformableNodeRigidContact* contact = getContact();
|
|
btVector3 dv = impulse * contact->m_c2;
|
|
contact->m_node->m_v -= dv;
|
|
}
|
|
|
|
/* ================ Face vs. Rigid =================== */
|
|
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btSoftBody::DeformableFaceRigidContact& contact, const btContactSolverInfo& infoGlobal, bool useStrainLimiting)
|
|
: m_face(contact.m_face)
|
|
, m_useStrainLimiting(useStrainLimiting)
|
|
, btDeformableRigidContactConstraint(contact, infoGlobal)
|
|
{
|
|
}
|
|
|
|
btDeformableFaceRigidContactConstraint::btDeformableFaceRigidContactConstraint(const btDeformableFaceRigidContactConstraint& other)
|
|
: m_face(other.m_face)
|
|
, m_useStrainLimiting(other.m_useStrainLimiting)
|
|
, btDeformableRigidContactConstraint(other)
|
|
{
|
|
}
|
|
|
|
btVector3 btDeformableFaceRigidContactConstraint::getVb() const
|
|
{
|
|
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
|
btVector3 vb = m_face->m_n[0]->m_v * contact->m_bary[0] + m_face->m_n[1]->m_v * contact->m_bary[1] + m_face->m_n[2]->m_v * contact->m_bary[2];
|
|
return vb;
|
|
}
|
|
|
|
|
|
btVector3 btDeformableFaceRigidContactConstraint::getDv(const btSoftBody::Node* node) const
|
|
{
|
|
btVector3 face_dv = m_total_normal_dv + m_total_tangent_dv;
|
|
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
|
if (m_face->m_n[0] == node)
|
|
{
|
|
return face_dv * contact->m_weights[0];
|
|
}
|
|
if (m_face->m_n[1] == node)
|
|
{
|
|
return face_dv * contact->m_weights[1];
|
|
}
|
|
btAssert(node == m_face->m_n[2]);
|
|
return face_dv * contact->m_weights[2];
|
|
}
|
|
|
|
void btDeformableFaceRigidContactConstraint::applyImpulse(const btVector3& impulse)
|
|
{
|
|
const btSoftBody::DeformableFaceRigidContact* contact = getContact();
|
|
btVector3 dv = impulse * contact->m_c2;
|
|
btSoftBody::Face* face = contact->m_face;
|
|
|
|
btVector3& v0 = face->m_n[0]->m_v;
|
|
btVector3& v1 = face->m_n[1]->m_v;
|
|
btVector3& v2 = face->m_n[2]->m_v;
|
|
const btScalar& im0 = face->m_n[0]->m_im;
|
|
const btScalar& im1 = face->m_n[1]->m_im;
|
|
const btScalar& im2 = face->m_n[2]->m_im;
|
|
if (im0 > 0)
|
|
v0 -= dv * contact->m_weights[0];
|
|
if (im1 > 0)
|
|
v1 -= dv * contact->m_weights[1];
|
|
if (im2 > 0)
|
|
v2 -= dv * contact->m_weights[2];
|
|
if (m_useStrainLimiting)
|
|
{
|
|
btScalar relaxation = 1./btScalar(m_infoGlobal->m_numIterations);
|
|
btScalar m01 = (relaxation/(im0 + im1));
|
|
btScalar m02 = (relaxation/(im0 + im2));
|
|
btScalar m12 = (relaxation/(im1 + im2));
|
|
#ifdef USE_STRAIN_RATE_LIMITING
|
|
// apply strain limiting to prevent the new velocity to change the current length of the edge by more than 1%.
|
|
btScalar p = 0.01;
|
|
btVector3& x0 = face->m_n[0]->m_x;
|
|
btVector3& x1 = face->m_n[1]->m_x;
|
|
btVector3& x2 = face->m_n[2]->m_x;
|
|
const btVector3 x_diff[3] = {x1-x0, x2-x0, x2-x1};
|
|
const btVector3 v_diff[3] = {v1-v0, v2-v0, v2-v1};
|
|
btVector3 u[3];
|
|
btScalar x_diff_dot_u, dn[3];
|
|
btScalar dt = m_infoGlobal->m_timeStep;
|
|
for (int i = 0; i < 3; ++i)
|
|
{
|
|
btScalar x_diff_norm = x_diff[i].safeNorm();
|
|
btScalar x_diff_norm_new = (x_diff[i] + v_diff[i] * dt).safeNorm();
|
|
btScalar strainRate = x_diff_norm_new/x_diff_norm;
|
|
u[i] = v_diff[i];
|
|
u[i].safeNormalize();
|
|
if (x_diff_norm == 0 || (1-p <= strainRate && strainRate <= 1+p))
|
|
{
|
|
dn[i] = 0;
|
|
continue;
|
|
}
|
|
x_diff_dot_u = btDot(x_diff[i], u[i]);
|
|
btScalar s;
|
|
if (1-p > strainRate)
|
|
{
|
|
s = 1/dt * (-x_diff_dot_u - btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p-2*p) * x_diff_norm * x_diff_norm));
|
|
}
|
|
else
|
|
{
|
|
s = 1/dt * (-x_diff_dot_u + btSqrt(x_diff_dot_u*x_diff_dot_u + (p*p+2*p) * x_diff_norm * x_diff_norm));
|
|
}
|
|
// x_diff_norm_new = (x_diff[i] + s * u[i] * dt).safeNorm();
|
|
// strainRate = x_diff_norm_new/x_diff_norm;
|
|
dn[i] = s - v_diff[i].safeNorm();
|
|
}
|
|
btVector3 dv0 = im0 * (m01 * u[0]*(-dn[0]) + m02 * u[1]*-(dn[1]));
|
|
btVector3 dv1 = im1 * (m01 * u[0]*(dn[0]) + m12 * u[2]*(-dn[2]));
|
|
btVector3 dv2 = im2 * (m12 * u[2]*(dn[2]) + m02 * u[1]*(dn[1]));
|
|
#else
|
|
// apply strain limiting to prevent undamped modes
|
|
btVector3 dv0 = im0 * (m01 * (v1-v0) + m02 * (v2-v0));
|
|
btVector3 dv1 = im1 * (m01 * (v0-v1) + m12 * (v2-v1));
|
|
btVector3 dv2 = im2 * (m12 * (v1-v2) + m02 * (v0-v2));
|
|
#endif
|
|
v0 += dv0;
|
|
v1 += dv1;
|
|
v2 += dv2;
|
|
}
|
|
}
|
|
|
|
/* ================ Face vs. Node =================== */
|
|
btDeformableFaceNodeContactConstraint::btDeformableFaceNodeContactConstraint(const btSoftBody::DeformableFaceNodeContact& contact, const btContactSolverInfo& infoGlobal)
|
|
: m_node(contact.m_node)
|
|
, m_face(contact.m_face)
|
|
, m_contact(&contact)
|
|
, btDeformableContactConstraint(contact.m_normal, infoGlobal)
|
|
{
|
|
m_total_normal_dv.setZero();
|
|
m_total_tangent_dv.setZero();
|
|
}
|
|
|
|
btVector3 btDeformableFaceNodeContactConstraint::getVa() const
|
|
{
|
|
return m_node->m_v;
|
|
}
|
|
|
|
btVector3 btDeformableFaceNodeContactConstraint::getVb() const
|
|
{
|
|
const btSoftBody::DeformableFaceNodeContact* contact = getContact();
|
|
btVector3 vb = m_face->m_n[0]->m_v * contact->m_bary[0] + m_face->m_n[1]->m_v * contact->m_bary[1] + m_face->m_n[2]->m_v * contact->m_bary[2];
|
|
return vb;
|
|
}
|
|
|
|
btVector3 btDeformableFaceNodeContactConstraint::getDv(const btSoftBody::Node* n) const
|
|
{
|
|
btVector3 dv = m_total_normal_dv + m_total_tangent_dv;
|
|
if (n == m_node)
|
|
return dv;
|
|
const btSoftBody::DeformableFaceNodeContact* contact = getContact();
|
|
if (m_face->m_n[0] == n)
|
|
{
|
|
return dv * contact->m_weights[0];
|
|
}
|
|
if (m_face->m_n[1] == n)
|
|
{
|
|
return dv * contact->m_weights[1];
|
|
}
|
|
btAssert(n == m_face->m_n[2]);
|
|
return dv * contact->m_weights[2];
|
|
}
|
|
|
|
btScalar btDeformableFaceNodeContactConstraint::solveConstraint(const btContactSolverInfo& infoGlobal)
|
|
{
|
|
btVector3 va = getVa();
|
|
btVector3 vb = getVb();
|
|
btVector3 vr = vb - va;
|
|
const btScalar dn = btDot(vr, m_contact->m_normal);
|
|
// dn is the normal component of velocity diffrerence. Approximates the residual. // todo xuchenhan@: this prob needs to be scaled by dt
|
|
btScalar residualSquare = dn*dn;
|
|
btVector3 impulse = m_contact->m_c0 * vr;
|
|
const btVector3 impulse_normal = m_contact->m_c0 * (m_contact->m_normal * dn);
|
|
btVector3 impulse_tangent = impulse - impulse_normal;
|
|
|
|
btVector3 old_total_tangent_dv = m_total_tangent_dv;
|
|
// m_c2 is the inverse mass of the deformable node/face
|
|
if (m_node->m_im > 0)
|
|
{
|
|
m_total_normal_dv -= impulse_normal * m_node->m_im;
|
|
m_total_tangent_dv -= impulse_tangent * m_node->m_im;
|
|
}
|
|
else
|
|
{
|
|
m_total_normal_dv -= impulse_normal * m_contact->m_imf;
|
|
m_total_tangent_dv -= impulse_tangent * m_contact->m_imf;
|
|
}
|
|
|
|
if (m_total_normal_dv.dot(m_contact->m_normal) > 0)
|
|
{
|
|
// separating in the normal direction
|
|
m_static = false;
|
|
m_total_tangent_dv = btVector3(0,0,0);
|
|
impulse_tangent.setZero();
|
|
}
|
|
else
|
|
{
|
|
if (m_total_normal_dv.norm() * m_contact->m_friction < m_total_tangent_dv.norm())
|
|
{
|
|
// dynamic friction
|
|
// with dynamic friction, the impulse are still applied to the two objects colliding, however, it does not pose a constraint in the cg solve, hence the change to dv merely serves to update velocity in the contact iterations.
|
|
m_static = false;
|
|
if (m_total_tangent_dv.safeNorm() < SIMD_EPSILON)
|
|
{
|
|
m_total_tangent_dv = btVector3(0,0,0);
|
|
}
|
|
else
|
|
{
|
|
m_total_tangent_dv = m_total_tangent_dv.normalized() * m_total_normal_dv.safeNorm() * m_contact->m_friction;
|
|
}
|
|
impulse_tangent = -btScalar(1)/m_node->m_im * (m_total_tangent_dv - old_total_tangent_dv);
|
|
}
|
|
else
|
|
{
|
|
// static friction
|
|
m_static = true;
|
|
}
|
|
}
|
|
impulse = impulse_normal + impulse_tangent;
|
|
// apply impulse to deformable nodes involved and change their velocities
|
|
applyImpulse(impulse);
|
|
return residualSquare;
|
|
}
|
|
|
|
void btDeformableFaceNodeContactConstraint::applyImpulse(const btVector3& impulse)
|
|
{
|
|
const btSoftBody::DeformableFaceNodeContact* contact = getContact();
|
|
btVector3 dva = impulse * contact->m_node->m_im;
|
|
btVector3 dvb = impulse * contact->m_imf;
|
|
if (contact->m_node->m_im > 0)
|
|
{
|
|
contact->m_node->m_v += dva;
|
|
}
|
|
|
|
btSoftBody::Face* face = contact->m_face;
|
|
btVector3& v0 = face->m_n[0]->m_v;
|
|
btVector3& v1 = face->m_n[1]->m_v;
|
|
btVector3& v2 = face->m_n[2]->m_v;
|
|
const btScalar& im0 = face->m_n[0]->m_im;
|
|
const btScalar& im1 = face->m_n[1]->m_im;
|
|
const btScalar& im2 = face->m_n[2]->m_im;
|
|
if (im0 > 0)
|
|
{
|
|
v0 -= dvb * contact->m_weights[0];
|
|
}
|
|
if (im1 > 0)
|
|
{
|
|
v1 -= dvb * contact->m_weights[1];
|
|
}
|
|
if (im2 > 0)
|
|
{
|
|
v2 -= dvb * contact->m_weights[2];
|
|
}
|
|
}
|