godot/scene/animation/tween.cpp

1745 lines
58 KiB
C++

/*************************************************************************/
/* tween.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "tween.h"
#include "core/method_bind_ext.gen.inc"
void Tween::_add_pending_command(StringName p_key, const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5, const Variant &p_arg6, const Variant &p_arg7, const Variant &p_arg8, const Variant &p_arg9, const Variant &p_arg10) {
// Add a new pending command and reference it
pending_commands.push_back(PendingCommand());
PendingCommand &cmd = pending_commands.back()->get();
// Update the command with the target key
cmd.key = p_key;
// Determine command argument count
int &count = cmd.args;
if (p_arg10.get_type() != Variant::NIL)
count = 10;
else if (p_arg9.get_type() != Variant::NIL)
count = 9;
else if (p_arg8.get_type() != Variant::NIL)
count = 8;
else if (p_arg7.get_type() != Variant::NIL)
count = 7;
else if (p_arg6.get_type() != Variant::NIL)
count = 6;
else if (p_arg5.get_type() != Variant::NIL)
count = 5;
else if (p_arg4.get_type() != Variant::NIL)
count = 4;
else if (p_arg3.get_type() != Variant::NIL)
count = 3;
else if (p_arg2.get_type() != Variant::NIL)
count = 2;
else if (p_arg1.get_type() != Variant::NIL)
count = 1;
else
count = 0;
// Add the specified arguments to the command
if (count > 0)
cmd.arg[0] = p_arg1;
if (count > 1)
cmd.arg[1] = p_arg2;
if (count > 2)
cmd.arg[2] = p_arg3;
if (count > 3)
cmd.arg[3] = p_arg4;
if (count > 4)
cmd.arg[4] = p_arg5;
if (count > 5)
cmd.arg[5] = p_arg6;
if (count > 6)
cmd.arg[6] = p_arg7;
if (count > 7)
cmd.arg[7] = p_arg8;
if (count > 8)
cmd.arg[8] = p_arg9;
if (count > 9)
cmd.arg[9] = p_arg10;
}
void Tween::_process_pending_commands() {
// For each pending command...
for (List<PendingCommand>::Element *E = pending_commands.front(); E; E = E->next()) {
// Get the command
PendingCommand &cmd = E->get();
Callable::CallError err;
// Grab all of the arguments for the command
Variant *arg[10] = {
&cmd.arg[0],
&cmd.arg[1],
&cmd.arg[2],
&cmd.arg[3],
&cmd.arg[4],
&cmd.arg[5],
&cmd.arg[6],
&cmd.arg[7],
&cmd.arg[8],
&cmd.arg[9],
};
// Execute the command (and retrieve any errors)
this->call(cmd.key, (const Variant **)arg, cmd.args, err);
}
// Clear the pending commands
pending_commands.clear();
}
bool Tween::_set(const StringName &p_name, const Variant &p_value) {
// Set the correct attribute based on the given name
String name = p_name;
if (name == "playback/speed" || name == "speed") { // Backwards compatibility
set_speed_scale(p_value);
} else if (name == "playback/active") {
set_active(p_value);
} else if (name == "playback/repeat") {
set_repeat(p_value);
}
return true;
}
bool Tween::_get(const StringName &p_name, Variant &r_ret) const {
// Get the correct attribute based on the given name
String name = p_name;
if (name == "playback/speed") { // Backwards compatibility
r_ret = speed_scale;
} else if (name == "playback/active") {
r_ret = is_active();
} else if (name == "playback/repeat") {
r_ret = is_repeat();
}
return true;
}
void Tween::_get_property_list(List<PropertyInfo> *p_list) const {
// Add the property info for the Tween object
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/active", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::BOOL, "playback/repeat", PROPERTY_HINT_NONE, ""));
p_list->push_back(PropertyInfo(Variant::FLOAT, "playback/speed", PROPERTY_HINT_RANGE, "-64,64,0.01"));
}
void Tween::_notification(int p_what) {
// What notification did we receive?
switch (p_what) {
case NOTIFICATION_ENTER_TREE: {
// Are we not already active?
if (!is_active()) {
// Make sure that a previous process state was not saved
// Only process if "processing" is set
set_physics_process_internal(false);
set_process_internal(false);
}
} break;
case NOTIFICATION_READY: {
// Do nothing
} break;
case NOTIFICATION_INTERNAL_PROCESS: {
// Are we processing during physics time?
if (tween_process_mode == TWEEN_PROCESS_PHYSICS)
// Do nothing since we aren't aligned with physics when we should be
break;
// Should we update?
if (is_active())
// Update the tweens
_tween_process(get_process_delta_time());
} break;
case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: {
// Are we processing during 'regular' time?
if (tween_process_mode == TWEEN_PROCESS_IDLE)
// Do nothing since we would only process during idle time
break;
// Should we update?
if (is_active())
// Update the tweens
_tween_process(get_physics_process_delta_time());
} break;
case NOTIFICATION_EXIT_TREE: {
// We've left the tree. Stop all tweens
stop_all();
} break;
}
}
void Tween::_bind_methods() {
// Bind getters and setters
ClassDB::bind_method(D_METHOD("is_active"), &Tween::is_active);
ClassDB::bind_method(D_METHOD("set_active", "active"), &Tween::set_active);
ClassDB::bind_method(D_METHOD("is_repeat"), &Tween::is_repeat);
ClassDB::bind_method(D_METHOD("set_repeat", "repeat"), &Tween::set_repeat);
ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
ClassDB::bind_method(D_METHOD("get_speed_scale"), &Tween::get_speed_scale);
ClassDB::bind_method(D_METHOD("set_tween_process_mode", "mode"), &Tween::set_tween_process_mode);
ClassDB::bind_method(D_METHOD("get_tween_process_mode"), &Tween::get_tween_process_mode);
// Bind the various Tween control methods
ClassDB::bind_method(D_METHOD("start"), &Tween::start);
ClassDB::bind_method(D_METHOD("reset", "object", "key"), &Tween::reset, DEFVAL(""));
ClassDB::bind_method(D_METHOD("reset_all"), &Tween::reset_all);
ClassDB::bind_method(D_METHOD("stop", "object", "key"), &Tween::stop, DEFVAL(""));
ClassDB::bind_method(D_METHOD("stop_all"), &Tween::stop_all);
ClassDB::bind_method(D_METHOD("resume", "object", "key"), &Tween::resume, DEFVAL(""));
ClassDB::bind_method(D_METHOD("resume_all"), &Tween::resume_all);
ClassDB::bind_method(D_METHOD("remove", "object", "key"), &Tween::remove, DEFVAL(""));
ClassDB::bind_method(D_METHOD("_remove_by_uid", "uid"), &Tween::_remove_by_uid);
ClassDB::bind_method(D_METHOD("remove_all"), &Tween::remove_all);
ClassDB::bind_method(D_METHOD("seek", "time"), &Tween::seek);
ClassDB::bind_method(D_METHOD("tell"), &Tween::tell);
ClassDB::bind_method(D_METHOD("get_runtime"), &Tween::get_runtime);
// Bind interpolation and follow methods
ClassDB::bind_method(D_METHOD("interpolate_property", "object", "property", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_method", "object", "method", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::interpolate_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
ClassDB::bind_method(D_METHOD("interpolate_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("interpolate_deferred_callback", "object", "duration", "callback", "arg1", "arg2", "arg3", "arg4", "arg5"), &Tween::interpolate_deferred_callback, DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()), DEFVAL(Variant()));
ClassDB::bind_method(D_METHOD("follow_property", "object", "property", "initial_val", "target", "target_property", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
ClassDB::bind_method(D_METHOD("follow_method", "object", "method", "initial_val", "target", "target_method", "duration", "trans_type", "ease_type", "delay"), &Tween::follow_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
ClassDB::bind_method(D_METHOD("targeting_property", "object", "property", "initial", "initial_val", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_property, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
ClassDB::bind_method(D_METHOD("targeting_method", "object", "method", "initial", "initial_method", "final_val", "duration", "trans_type", "ease_type", "delay"), &Tween::targeting_method, DEFVAL(TRANS_LINEAR), DEFVAL(EASE_IN_OUT), DEFVAL(0));
// Add the Tween signals
ADD_SIGNAL(MethodInfo("tween_started", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
ADD_SIGNAL(MethodInfo("tween_step", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key"), PropertyInfo(Variant::FLOAT, "elapsed"), PropertyInfo(Variant::OBJECT, "value")));
ADD_SIGNAL(MethodInfo("tween_completed", PropertyInfo(Variant::OBJECT, "object"), PropertyInfo(Variant::NODE_PATH, "key")));
ADD_SIGNAL(MethodInfo("tween_all_completed"));
// Add the properties and tie them to the getters and setters
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "repeat"), "set_repeat", "is_repeat");
ADD_PROPERTY(PropertyInfo(Variant::INT, "playback_process_mode", PROPERTY_HINT_ENUM, "Physics,Idle"), "set_tween_process_mode", "get_tween_process_mode");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "playback_speed", PROPERTY_HINT_RANGE, "-64,64,0.01"), "set_speed_scale", "get_speed_scale");
// Bind Idle vs Physics process
BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
// Bind the Transition type constants
BIND_ENUM_CONSTANT(TRANS_LINEAR);
BIND_ENUM_CONSTANT(TRANS_SINE);
BIND_ENUM_CONSTANT(TRANS_QUINT);
BIND_ENUM_CONSTANT(TRANS_QUART);
BIND_ENUM_CONSTANT(TRANS_QUAD);
BIND_ENUM_CONSTANT(TRANS_EXPO);
BIND_ENUM_CONSTANT(TRANS_ELASTIC);
BIND_ENUM_CONSTANT(TRANS_CUBIC);
BIND_ENUM_CONSTANT(TRANS_CIRC);
BIND_ENUM_CONSTANT(TRANS_BOUNCE);
BIND_ENUM_CONSTANT(TRANS_BACK);
// Bind the easing constants
BIND_ENUM_CONSTANT(EASE_IN);
BIND_ENUM_CONSTANT(EASE_OUT);
BIND_ENUM_CONSTANT(EASE_IN_OUT);
BIND_ENUM_CONSTANT(EASE_OUT_IN);
}
Variant Tween::_get_initial_val(const InterpolateData &p_data) const {
// What type of data are we interpolating?
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
case FOLLOW_PROPERTY:
case FOLLOW_METHOD:
// Simply use the given initial value
return p_data.initial_val;
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
// Get the object that is being targeted
Object *object = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(object == NULL, p_data.initial_val);
// Are we targeting a property or a method?
Variant initial_val;
if (p_data.type == TARGETING_PROPERTY) {
// Get the property from the target object
bool valid = false;
initial_val = object->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
// Call the method and get the initial value from it
Callable::CallError error;
initial_val = object->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
}
return initial_val;
}
case INTER_CALLBACK:
// Callback does not have a special initial value
break;
}
// If we've made it here, just return the delta value as the initial value
return p_data.delta_val;
}
Variant Tween::_get_final_val(const InterpolateData &p_data) const {
switch (p_data.type) {
case FOLLOW_PROPERTY:
case FOLLOW_METHOD: {
// Get the object that is being followed
Object *target = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(target == NULL, p_data.initial_val);
// We want to figure out the final value
Variant final_val;
if (p_data.type == FOLLOW_PROPERTY) {
// Read the property as-is
bool valid = false;
final_val = target->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
// We're looking at a method. Call the method on the target object
Callable::CallError error;
final_val = target->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
}
// If we're looking at an INT value, instead convert it to a FLOAT
// This is better for interpolation
if (final_val.get_type() == Variant::INT) final_val = final_val.operator real_t();
return final_val;
}
default: {
// If we're not following a final value/method, use the final value from the data
return p_data.final_val;
}
}
}
Variant &Tween::_get_delta_val(InterpolateData &p_data) {
// What kind of data are we interpolating?
switch (p_data.type) {
case INTER_PROPERTY:
case INTER_METHOD:
// Simply return the given delta value
return p_data.delta_val;
case FOLLOW_PROPERTY:
case FOLLOW_METHOD: {
// We're following an object, so grab that instance
Object *target = ObjectDB::get_instance(p_data.target_id);
ERR_FAIL_COND_V(target == NULL, p_data.initial_val);
// We want to figure out the final value
Variant final_val;
if (p_data.type == FOLLOW_PROPERTY) {
// Read the property as-is
bool valid = false;
final_val = target->get_indexed(p_data.target_key, &valid);
ERR_FAIL_COND_V(!valid, p_data.initial_val);
} else {
// We're looking at a method. Call the method on the target object
Callable::CallError error;
final_val = target->call(p_data.target_key[0], NULL, 0, error);
ERR_FAIL_COND_V(error.error != Callable::CallError::CALL_OK, p_data.initial_val);
}
// If we're looking at an INT value, instead convert it to a FLOAT
// This is better for interpolation
if (final_val.get_type() == Variant::INT) final_val = final_val.operator real_t();
// Calculate the delta based on the initial value and the final value
_calc_delta_val(p_data.initial_val, final_val, p_data.delta_val);
return p_data.delta_val;
}
case TARGETING_PROPERTY:
case TARGETING_METHOD: {
// Grab the initial value from the data to calculate delta
Variant initial_val = _get_initial_val(p_data);
// If we're looking at an INT value, instead convert it to a FLOAT
// This is better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
// Calculate the delta based on the initial value and the final value
_calc_delta_val(initial_val, p_data.final_val, p_data.delta_val);
return p_data.delta_val;
}
case INTER_CALLBACK:
// Callbacks have no special delta
break;
}
// If we've made it here, use the initial value as the delta
return p_data.initial_val;
}
Variant Tween::_run_equation(InterpolateData &p_data) {
// Get the initial and delta values from the data
Variant initial_val = _get_initial_val(p_data);
Variant &delta_val = _get_delta_val(p_data);
Variant result;
#define APPLY_EQUATION(element) \
r.element = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, i.element, d.element, p_data.duration);
// What type of data are we interpolating?
switch (initial_val.get_type()) {
case Variant::BOOL:
// Run the boolean specific equation (checking if it is at least 0.5)
result = (_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, initial_val, delta_val, p_data.duration)) >= 0.5;
break;
case Variant::INT:
// Run the integer specific equation
result = (int)_run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (int)initial_val, (int)delta_val, p_data.duration);
break;
case Variant::FLOAT:
// Run the FLOAT specific equation
result = _run_equation(p_data.trans_type, p_data.ease_type, p_data.elapsed - p_data.delay, (real_t)initial_val, (real_t)delta_val, p_data.duration);
break;
case Variant::VECTOR2: {
// Get vectors for initial and delta values
Vector2 i = initial_val;
Vector2 d = delta_val;
Vector2 r;
// Execute the equation and mutate the r vector
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
result = r;
} break;
case Variant::RECT2: {
// Get the Rect2 for initial and delta value
Rect2 i = initial_val;
Rect2 d = delta_val;
Rect2 r;
// Execute the equation for the position and size of Rect2
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
result = r;
} break;
case Variant::VECTOR3: {
// Get vectors for initial and delta values
Vector3 i = initial_val;
Vector3 d = delta_val;
Vector3 r;
// Execute the equation and mutate the r vector
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
result = r;
} break;
case Variant::TRANSFORM2D: {
// Get the transforms for initial and delta values
Transform2D i = initial_val;
Transform2D d = delta_val;
Transform2D r;
// Execute the equation on the transforms and mutate the r transform
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
result = r;
} break;
case Variant::QUAT: {
// Get the quaternian for the initial and delta values
Quat i = initial_val;
Quat d = delta_val;
Quat r;
// Execute the equation on the quaternian values and mutate the r quaternian
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
result = r;
} break;
case Variant::AABB: {
// Get the AABB's for the initial and delta values
AABB i = initial_val;
AABB d = delta_val;
AABB r;
// Execute the equation for the position and size of the AABB's and mutate the r AABB
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
result = r;
} break;
case Variant::BASIS: {
// Get the basis for initial and delta values
Basis i = initial_val;
Basis d = delta_val;
Basis r;
// Execute the equation on all the basis and mutate the r basis
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[0][2]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[1][2]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
APPLY_EQUATION(elements[2][2]);
result = r;
} break;
case Variant::TRANSFORM: {
// Get the transforms for the initial and delta values
Transform i = initial_val;
Transform d = delta_val;
Transform r;
// Execute the equation for each of the transforms and their origin and mutate the r transform
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(basis.elements[0][0]);
APPLY_EQUATION(basis.elements[0][1]);
APPLY_EQUATION(basis.elements[0][2]);
APPLY_EQUATION(basis.elements[1][0]);
APPLY_EQUATION(basis.elements[1][1]);
APPLY_EQUATION(basis.elements[1][2]);
APPLY_EQUATION(basis.elements[2][0]);
APPLY_EQUATION(basis.elements[2][1]);
APPLY_EQUATION(basis.elements[2][2]);
APPLY_EQUATION(origin.x);
APPLY_EQUATION(origin.y);
APPLY_EQUATION(origin.z);
result = r;
} break;
case Variant::COLOR: {
// Get the Color for initial and delta value
Color i = initial_val;
Color d = delta_val;
Color r;
// Apply the equation on the Color RGBA, and mutate the r color
// This uses the custom APPLY_EQUATION macro defined above
APPLY_EQUATION(r);
APPLY_EQUATION(g);
APPLY_EQUATION(b);
APPLY_EQUATION(a);
result = r;
} break;
default: {
// If unknown, just return the initial value
result = initial_val;
} break;
};
#undef APPLY_EQUATION
// Return the result that was computed
return result;
}
bool Tween::_apply_tween_value(InterpolateData &p_data, Variant &value) {
// Get the object we want to apply the new value to
Object *object = ObjectDB::get_instance(p_data.id);
ERR_FAIL_COND_V(object == NULL, false);
// What kind of data are we mutating?
switch (p_data.type) {
case INTER_PROPERTY:
case FOLLOW_PROPERTY:
case TARGETING_PROPERTY: {
// Simply set the property on the object
bool valid = false;
object->set_indexed(p_data.key, value, &valid);
return valid;
}
case INTER_METHOD:
case FOLLOW_METHOD:
case TARGETING_METHOD: {
// We want to call the method on the target object
Callable::CallError error;
// Do we have a non-nil value passed in?
if (value.get_type() != Variant::NIL) {
// Pass it as an argument to the function call
Variant *arg[1] = { &value };
object->call(p_data.key[0], (const Variant **)arg, 1, error);
} else {
// Don't pass any argument
object->call(p_data.key[0], NULL, 0, error);
}
// Did we get an error from the function call?
return error.error == Callable::CallError::CALL_OK;
}
case INTER_CALLBACK:
// Nothing to apply for a callback
break;
};
// No issues found!
return true;
}
void Tween::_tween_process(float p_delta) {
// Process all of the pending commands
_process_pending_commands();
// If the scale is 0, make no progress on the tweens
if (speed_scale == 0)
return;
// Update the delta and whether we are pending an update
p_delta *= speed_scale;
pending_update++;
// Are we repeating the interpolations?
if (repeat) {
// For each interpolation...
bool repeats_finished = true;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the data from it
InterpolateData &data = E->get();
// Is not finished?
if (!data.finish) {
// We aren't finished yet, no need to check the rest
repeats_finished = false;
break;
}
}
// If we are all finished, we can reset all of the tweens
if (repeats_finished)
reset_all();
}
// Are all of the tweens complete?
bool all_finished = true;
// For each tween we wish to interpolate...
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the data from it
InterpolateData &data = E->get();
// Track if we hit one that isn't finished yet
all_finished = all_finished && data.finish;
// Is the data not active or already finished? No need to go any further
if (!data.active || data.finish)
continue;
// Get the target object for this interpolation
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
// Are we still delaying this tween?
bool prev_delaying = data.elapsed <= data.delay;
data.elapsed += p_delta;
if (data.elapsed < data.delay)
continue;
else if (prev_delaying) {
// We can apply the tween's value to the data and emit that the tween has started
_apply_tween_value(data, data.initial_val);
emit_signal("tween_started", object, NodePath(Vector<StringName>(), data.key, false));
}
// Are we at the end of the tween?
if (data.elapsed > (data.delay + data.duration)) {
// Set the elapsed time to the end and mark this one as finished
data.elapsed = data.delay + data.duration;
data.finish = true;
}
// Are we interpolating a callback?
if (data.type == INTER_CALLBACK) {
// Is the tween completed?
if (data.finish) {
// Are we calling this callback deferred or immediately?
if (data.call_deferred) {
// Run the deferred function callback, applying the correct number of arguments
switch (data.args) {
case 0:
object->call_deferred(data.key[0]);
break;
case 1:
object->call_deferred(data.key[0], data.arg[0]);
break;
case 2:
object->call_deferred(data.key[0], data.arg[0], data.arg[1]);
break;
case 3:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2]);
break;
case 4:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3]);
break;
case 5:
object->call_deferred(data.key[0], data.arg[0], data.arg[1], data.arg[2], data.arg[3], data.arg[4]);
break;
}
} else {
// Call the function directly with the arguments
Callable::CallError error;
Variant *arg[5] = {
&data.arg[0],
&data.arg[1],
&data.arg[2],
&data.arg[3],
&data.arg[4],
};
object->call(data.key[0], (const Variant **)arg, data.args, error);
}
}
} else {
// We can apply the value directly
Variant result = _run_equation(data);
_apply_tween_value(data, result);
// Emit that the tween has taken a step
emit_signal("tween_step", object, NodePath(Vector<StringName>(), data.key, false), data.elapsed, result);
}
// Is the tween now finished?
if (data.finish) {
// Set it to the final value directly
Variant final_val = _get_final_val(data);
_apply_tween_value(data, final_val);
// Mark the tween as completed and emit the signal
data.elapsed = 0;
emit_signal("tween_completed", object, NodePath(Vector<StringName>(), data.key, false));
// If we are not repeating the tween, remove it
if (!repeat)
call_deferred("_remove_by_uid", data.uid);
} else if (!repeat) {
// Check whether all tweens are finished
all_finished = all_finished && data.finish;
}
}
// One less update left to go
pending_update--;
// If all tweens are completed, we no longer need to be active
if (all_finished) {
set_active(false);
emit_signal("tween_all_completed");
}
}
void Tween::set_tween_process_mode(TweenProcessMode p_mode) {
tween_process_mode = p_mode;
}
Tween::TweenProcessMode Tween::get_tween_process_mode() const {
return tween_process_mode;
}
bool Tween::is_active() const {
return is_processing_internal() || is_physics_processing_internal();
}
void Tween::set_active(bool p_active) {
// Do nothing if it's the same active mode that we currently are
if (is_active() == p_active)
return;
// Depending on physics or idle, set processing
switch (tween_process_mode) {
case TWEEN_PROCESS_IDLE: set_process_internal(p_active); break;
case TWEEN_PROCESS_PHYSICS: set_physics_process_internal(p_active); break;
}
}
bool Tween::is_repeat() const {
return repeat;
}
void Tween::set_repeat(bool p_repeat) {
repeat = p_repeat;
}
void Tween::set_speed_scale(float p_speed) {
speed_scale = p_speed;
}
float Tween::get_speed_scale() const {
return speed_scale;
}
void Tween::start() {
ERR_FAIL_COND_MSG(!is_inside_tree(), "Tween was not added to the SceneTree!");
// Are there any pending updates?
if (pending_update != 0) {
// Start the tweens after deferring
call_deferred("start");
return;
}
// We want to be activated
set_active(true);
}
void Tween::reset(Object *p_object, StringName p_key) {
// Find all interpolations that use the same object and target string
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the target object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
// Do we have the correct object and key?
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
// Reset the tween to the initial state
data.elapsed = 0;
data.finish = false;
// Also apply the initial state if there isn't a delay
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
}
pending_update--;
}
void Tween::reset_all() {
// Go through all interpolations
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the target data and set it back to the initial state
InterpolateData &data = E->get();
data.elapsed = 0;
data.finish = false;
// If there isn't a delay, apply the value to the object
if (data.delay == 0)
_apply_tween_value(data, data.initial_val);
}
pending_update--;
}
void Tween::stop(Object *p_object, StringName p_key) {
// Find the tween that has the given target object and string key
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the object the tween is targeting
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
// Is this the correct object and does it have the given key?
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
// Disable the tween
data.active = false;
}
pending_update--;
}
void Tween::stop_all() {
// We no longer need to be active since all tweens have been stopped
set_active(false);
// For each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Simply set it inactive
InterpolateData &data = E->get();
data.active = false;
}
pending_update--;
}
void Tween::resume(Object *p_object, StringName p_key) {
// We need to be activated
// TODO: What if no tween is found??
set_active(true);
// Find the tween that uses the given target object and string key
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Grab the object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
// If the object and string key match, activate it
if (object == p_object && (data.concatenated_key == p_key || p_key == ""))
data.active = true;
}
pending_update--;
}
void Tween::resume_all() {
// Set ourselves active so we can process tweens
// TODO: What if there are no tweens? We get set to active for no reason!
set_active(true);
// For each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Simply grab it and set it to active
InterpolateData &data = E->get();
data.active = true;
}
pending_update--;
}
void Tween::remove(Object *p_object, StringName p_key) {
// If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("remove", p_object, p_key);
return;
}
// For each interpolation...
List<List<InterpolateData>::Element *> for_removal;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the target object
InterpolateData &data = E->get();
Object *object = ObjectDB::get_instance(data.id);
if (object == NULL)
continue;
// If the target object and string key match, queue it for removal
if (object == p_object && (data.concatenated_key == p_key || p_key == "")) {
for_removal.push_back(E);
}
}
// For each interpolation we wish to remove...
for (List<List<InterpolateData>::Element *>::Element *E = for_removal.front(); E; E = E->next()) {
// Erase it
interpolates.erase(E->get());
}
}
void Tween::_remove_by_uid(int uid) {
// If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("_remove_by_uid", uid);
return;
}
// Find the interpolation that matches the given UID
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
if (uid == E->get().uid) {
// It matches, erase it and stop looking
E->erase();
break;
}
}
}
void Tween::_push_interpolate_data(InterpolateData &p_data) {
pending_update++;
// Add the new interpolation
p_data.uid = ++uid;
interpolates.push_back(p_data);
pending_update--;
}
void Tween::remove_all() {
// If we are still updating, call this function again later
if (pending_update != 0) {
call_deferred("remove_all");
return;
}
// We no longer need to be active
set_active(false);
// Clear out all interpolations and reset the uid
interpolates.clear();
uid = 0;
}
void Tween::seek(real_t p_time) {
// Go through each interpolation...
pending_update++;
for (List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the target data
InterpolateData &data = E->get();
// Update the elapsed data to be set to the target time
data.elapsed = p_time;
// Are we at the end?
if (data.elapsed < data.delay) {
// There is still time left to go
data.finish = false;
continue;
} else if (data.elapsed >= (data.delay + data.duration)) {
// We are past the end of it, set the elapsed time to the end and mark as finished
data.elapsed = (data.delay + data.duration);
data.finish = true;
} else {
// We are not finished with this interpolation yet
data.finish = false;
}
// If we are a callback, do nothing special
if (data.type == INTER_CALLBACK) {
continue;
}
// Run the equation on the data and apply the value
Variant result = _run_equation(data);
_apply_tween_value(data, result);
}
pending_update--;
}
real_t Tween::tell() const {
// We want to grab the position of the furthest along tween
pending_update++;
real_t pos = 0;
// For each interpolation...
for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the data and figure out if it's position is further along than the previous ones
const InterpolateData &data = E->get();
if (data.elapsed > pos)
// Save it if so
pos = data.elapsed;
}
pending_update--;
return pos;
}
real_t Tween::get_runtime() const {
// If the tween isn't moving, it'll last forever
if (speed_scale == 0) {
return INFINITY;
}
pending_update++;
// For each interpolation...
real_t runtime = 0;
for (const List<InterpolateData>::Element *E = interpolates.front(); E; E = E->next()) {
// Get the tween data and see if it's runtime is greater than the previous tweens
const InterpolateData &data = E->get();
real_t t = data.delay + data.duration;
if (t > runtime)
// This is the longest running tween
runtime = t;
}
pending_update--;
// Adjust the runtime for the current speed scale
return runtime / speed_scale;
}
bool Tween::_calc_delta_val(const Variant &p_initial_val, const Variant &p_final_val, Variant &p_delta_val) {
// Get the initial, final, and delta values
const Variant &initial_val = p_initial_val;
const Variant &final_val = p_final_val;
Variant &delta_val = p_delta_val;
// What kind of data are we interpolating?
switch (initial_val.get_type()) {
case Variant::BOOL:
// We'll treat booleans just like integers
case Variant::INT:
// Compute the integer delta
delta_val = (int)final_val - (int)initial_val;
break;
case Variant::FLOAT:
// Convert to FLOAT and find the delta
delta_val = (real_t)final_val - (real_t)initial_val;
break;
case Variant::VECTOR2:
// Convert to Vectors and find the delta
delta_val = final_val.operator Vector2() - initial_val.operator Vector2();
break;
case Variant::RECT2: {
// Build a new Rect2 and use the new position and sizes to make a delta
Rect2 i = initial_val;
Rect2 f = final_val;
delta_val = Rect2(f.position - i.position, f.size - i.size);
} break;
case Variant::VECTOR3:
// Convert to Vectors and find the delta
delta_val = final_val.operator Vector3() - initial_val.operator Vector3();
break;
case Variant::TRANSFORM2D: {
// Build a new transform which is the difference between the initial and final values
Transform2D i = initial_val;
Transform2D f = final_val;
Transform2D d = Transform2D();
d[0][0] = f.elements[0][0] - i.elements[0][0];
d[0][1] = f.elements[0][1] - i.elements[0][1];
d[1][0] = f.elements[1][0] - i.elements[1][0];
d[1][1] = f.elements[1][1] - i.elements[1][1];
d[2][0] = f.elements[2][0] - i.elements[2][0];
d[2][1] = f.elements[2][1] - i.elements[2][1];
delta_val = d;
} break;
case Variant::QUAT:
// Convert to quaternianls and find the delta
delta_val = final_val.operator Quat() - initial_val.operator Quat();
break;
case Variant::AABB: {
// Build a new AABB and use the new position and sizes to make a delta
AABB i = initial_val;
AABB f = final_val;
delta_val = AABB(f.position - i.position, f.size - i.size);
} break;
case Variant::BASIS: {
// Build a new basis which is the delta between the initial and final values
Basis i = initial_val;
Basis f = final_val;
delta_val = Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[1][2] - i.elements[1][2],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
} break;
case Variant::TRANSFORM: {
// Build a new transform which is the difference between the initial and final values
Transform i = initial_val;
Transform f = final_val;
Transform d;
d.set(f.basis.elements[0][0] - i.basis.elements[0][0],
f.basis.elements[0][1] - i.basis.elements[0][1],
f.basis.elements[0][2] - i.basis.elements[0][2],
f.basis.elements[1][0] - i.basis.elements[1][0],
f.basis.elements[1][1] - i.basis.elements[1][1],
f.basis.elements[1][2] - i.basis.elements[1][2],
f.basis.elements[2][0] - i.basis.elements[2][0],
f.basis.elements[2][1] - i.basis.elements[2][1],
f.basis.elements[2][2] - i.basis.elements[2][2],
f.origin.x - i.origin.x,
f.origin.y - i.origin.y,
f.origin.z - i.origin.z);
delta_val = d;
} break;
case Variant::COLOR: {
// Make a new color which is the difference between each the color's RGBA attributes
Color i = initial_val;
Color f = final_val;
delta_val = Color(f.r - i.r, f.g - i.g, f.b - i.b, f.a - i.a);
} break;
default: {
static Variant::Type supported_types[] = {
Variant::BOOL,
Variant::INT,
Variant::FLOAT,
Variant::VECTOR2,
Variant::RECT2,
Variant::VECTOR3,
Variant::TRANSFORM2D,
Variant::QUAT,
Variant::AABB,
Variant::BASIS,
Variant::TRANSFORM,
Variant::COLOR,
};
int length = *(&supported_types + 1) - supported_types;
String error_msg = "Invalid parameter type. Supported types are: ";
for (int i = 0; i < length; i++) {
if (i != 0) {
error_msg += ", ";
}
error_msg += Variant::get_type_name(supported_types[i]);
}
error_msg += ".";
ERR_PRINT(error_msg);
return false;
}
};
return true;
}
void Tween::_build_interpolation(InterpolateType p_interpolation_type, Object *p_object, NodePath *p_property, StringName *p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// TODO: Add initialization+implementation for remaining interpolation types
// TODO: Fix this method's organization to take advantage of the type
// Make a new interpolation data
InterpolateData data;
data.active = true;
data.type = p_interpolation_type;
data.finish = false;
data.elapsed = 0;
// Validate and apply interpolation data
// Give it the object
ERR_FAIL_COND_MSG(p_object == NULL, "Invalid object provided to Tween.");
data.id = p_object->get_instance_id();
// Validate the initial and final values
ERR_FAIL_COND_MSG(p_initial_val.get_type() != p_final_val.get_type(), "Initial value type '" + Variant::get_type_name(p_initial_val.get_type()) + "' does not match final value type '" + Variant::get_type_name(p_final_val.get_type()) + "'.");
data.initial_val = p_initial_val;
data.final_val = p_final_val;
// Check the Duration
ERR_FAIL_COND_MSG(p_duration < 0, "Only non-negative duration values allowed in Tweens.");
data.duration = p_duration;
// Tween Delay
ERR_FAIL_COND_MSG(p_delay < 0, "Only non-negative delay values allowed in Tweens.");
data.delay = p_delay;
// Transition type
ERR_FAIL_COND_MSG(p_trans_type < 0 || p_trans_type >= TRANS_COUNT, "Invalid transition type provided to Tween.");
data.trans_type = p_trans_type;
// Easing type
ERR_FAIL_COND_MSG(p_ease_type < 0 || p_ease_type >= EASE_COUNT, "Invalid easing type provided to Tween.");
data.ease_type = p_ease_type;
// Is the property defined?
if (p_property) {
// Check that the object actually contains the given property
bool prop_valid = false;
p_object->get_indexed(p_property->get_subnames(), &prop_valid);
ERR_FAIL_COND_MSG(!prop_valid, "Tween target object has no property named: " + p_property->get_concatenated_subnames() + ".");
data.key = p_property->get_subnames();
data.concatenated_key = p_property->get_concatenated_subnames();
}
// Is the method defined?
if (p_method) {
// Does the object even have the requested method?
ERR_FAIL_COND_MSG(!p_object->has_method(*p_method), "Tween target object has no method named: " + *p_method + ".");
data.key.push_back(*p_method);
data.concatenated_key = *p_method;
}
// Is there not a valid delta?
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val))
return;
// Add this interpolation to the total
_push_interpolate_data(data);
}
void Tween::interpolate_property(Object *p_object, NodePath p_property, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are busy updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_property", p_object, p_property, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Get the property from the node path
p_property = p_property.get_as_property_path();
// If no initial value given, grab the initial value from the object
// TODO: Is this documented? This is very useful and removes a lot of clutter from tweens!
if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
// Convert any integers into REALs as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
// Build the interpolation data
_build_interpolation(INTER_PROPERTY, p_object, &p_property, NULL, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
}
void Tween::interpolate_method(Object *p_object, StringName p_method, Variant p_initial_val, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are busy updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_method", p_object, p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Convert any integers into REALs as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
// Build the interpolation data
_build_interpolation(INTER_METHOD, p_object, NULL, &p_method, p_initial_val, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
}
void Tween::interpolate_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
// If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return;
}
// Check that the target object is valid
ERR_FAIL_COND(p_object == NULL);
// Duration cannot be negative
ERR_FAIL_COND(p_duration < 0);
// Check whether the object even has the callback
ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
// Build a new InterpolationData
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
data.finish = false;
data.call_deferred = false;
data.elapsed = 0;
// Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
// Add arguments to the interpolation
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
else if (p_arg4.get_type() != Variant::NIL)
args = 4;
else if (p_arg3.get_type() != Variant::NIL)
args = 3;
else if (p_arg2.get_type() != Variant::NIL)
args = 2;
else if (p_arg1.get_type() != Variant::NIL)
args = 1;
else
args = 0;
data.args = args;
data.arg[0] = p_arg1;
data.arg[1] = p_arg2;
data.arg[2] = p_arg3;
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
// Add the new interpolation
_push_interpolate_data(data);
}
void Tween::interpolate_deferred_callback(Object *p_object, real_t p_duration, String p_callback, VARIANT_ARG_DECLARE) {
// If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("interpolate_deferred_callback", p_object, p_duration, p_callback, p_arg1, p_arg2, p_arg3, p_arg4, p_arg5);
return;
}
// Check that the target object is valid
ERR_FAIL_COND(p_object == NULL);
// No negative durations allowed
ERR_FAIL_COND(p_duration < 0);
// Confirm the callback exists on the object
ERR_FAIL_COND_MSG(!p_object->has_method(p_callback), "Object has no callback named: " + p_callback + ".");
// Create a new InterpolateData for the callback
InterpolateData data;
data.active = true;
data.type = INTER_CALLBACK;
data.finish = false;
data.call_deferred = true;
data.elapsed = 0;
// Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_callback);
data.concatenated_key = p_callback;
data.duration = p_duration;
data.delay = 0;
// Collect arguments for the callback
int args = 0;
if (p_arg5.get_type() != Variant::NIL)
args = 5;
else if (p_arg4.get_type() != Variant::NIL)
args = 4;
else if (p_arg3.get_type() != Variant::NIL)
args = 3;
else if (p_arg2.get_type() != Variant::NIL)
args = 2;
else if (p_arg1.get_type() != Variant::NIL)
args = 1;
else
args = 0;
data.args = args;
data.arg[0] = p_arg1;
data.arg[1] = p_arg2;
data.arg[2] = p_arg3;
data.arg[3] = p_arg4;
data.arg[4] = p_arg5;
// Add the new interpolation
_push_interpolate_data(data);
}
void Tween::follow_property(Object *p_object, NodePath p_property, Variant p_initial_val, Object *p_target, NodePath p_target_property, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are already updating, call this function again later
if (pending_update != 0) {
_add_pending_command("follow_property", p_object, p_property, p_initial_val, p_target, p_target_property, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Get the two properties from their paths
p_property = p_property.get_as_property_path();
p_target_property = p_target_property.get_as_property_path();
// If no initial value is given, grab it from the source object
// TODO: Is this documented? It's really helpful for decluttering tweens
if (p_initial_val.get_type() == Variant::NIL) p_initial_val = p_object->get_indexed(p_property.get_subnames());
// Convert initial INT values to FLOAT as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
// Confirm the source and target objects are valid
ERR_FAIL_COND(p_object == NULL);
ERR_FAIL_COND(p_target == NULL);
// No negative durations
ERR_FAIL_COND(p_duration < 0);
// Ensure transition and easing types are valid
ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
// No negative delays
ERR_FAIL_COND(p_delay < 0);
// Confirm the source and target objects have the desired properties
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND(!prop_valid);
bool target_prop_valid = false;
Variant target_val = p_target->get_indexed(p_target_property.get_subnames(), &target_prop_valid);
ERR_FAIL_COND(!target_prop_valid);
// Convert target INT to FLOAT since it is better for interpolation
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
// Verify that the target value and initial value are the same type
ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
// Create a new InterpolateData
InterpolateData data;
data.active = true;
data.type = FOLLOW_PROPERTY;
data.finish = false;
data.elapsed = 0;
// Give the InterpolateData it's configuration
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
data.initial_val = p_initial_val;
data.target_id = p_target->get_instance_id();
data.target_key = p_target_property.get_subnames();
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
// Add the interpolation
_push_interpolate_data(data);
}
void Tween::follow_method(Object *p_object, StringName p_method, Variant p_initial_val, Object *p_target, StringName p_target_method, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("follow_method", p_object, p_method, p_initial_val, p_target, p_target_method, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Convert initial INT values to FLOAT as they are better for interpolation
if (p_initial_val.get_type() == Variant::INT) p_initial_val = p_initial_val.operator real_t();
// Verify the source and target objects are valid
ERR_FAIL_COND(p_object == NULL);
ERR_FAIL_COND(p_target == NULL);
// No negative durations
ERR_FAIL_COND(p_duration < 0);
// Ensure that the transition and ease types are valid
ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
// No negative delays
ERR_FAIL_COND(p_delay < 0);
// Confirm both objects have the target methods
ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
ERR_FAIL_COND_MSG(!p_target->has_method(p_target_method), "Target has no method named: " + p_target_method + ".");
// Call the method to get the target value
Callable::CallError error;
Variant target_val = p_target->call(p_target_method, NULL, 0, error);
ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
// Convert target INT values to FLOAT as they are better for interpolation
if (target_val.get_type() == Variant::INT) target_val = target_val.operator real_t();
ERR_FAIL_COND(target_val.get_type() != p_initial_val.get_type());
// Make the new InterpolateData for the method follow
InterpolateData data;
data.active = true;
data.type = FOLLOW_METHOD;
data.finish = false;
data.elapsed = 0;
// Give the data it's configuration
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
data.initial_val = p_initial_val;
data.target_id = p_target->get_instance_id();
data.target_key.push_back(p_target_method);
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
// Add the new interpolation
_push_interpolate_data(data);
}
void Tween::targeting_property(Object *p_object, NodePath p_property, Object *p_initial, NodePath p_initial_property, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("targeting_property", p_object, p_property, p_initial, p_initial_property, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Grab the target property and the target property
p_property = p_property.get_as_property_path();
p_initial_property = p_initial_property.get_as_property_path();
// Convert the initial INT values to FLOAT as they are better for Interpolation
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
// Verify both objects are valid
ERR_FAIL_COND(p_object == NULL);
ERR_FAIL_COND(p_initial == NULL);
// No negative durations
ERR_FAIL_COND(p_duration < 0);
// Ensure transition and easing types are valid
ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
// No negative delays
ERR_FAIL_COND(p_delay < 0);
// Ensure the initial and target properties exist on their objects
bool prop_valid = false;
p_object->get_indexed(p_property.get_subnames(), &prop_valid);
ERR_FAIL_COND(!prop_valid);
bool initial_prop_valid = false;
Variant initial_val = p_initial->get_indexed(p_initial_property.get_subnames(), &initial_prop_valid);
ERR_FAIL_COND(!initial_prop_valid);
// Convert the initial INT value to FLOAT as it is better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
// Build the InterpolateData object
InterpolateData data;
data.active = true;
data.type = TARGETING_PROPERTY;
data.finish = false;
data.elapsed = 0;
// Give the data it's configuration
data.id = p_object->get_instance_id();
data.key = p_property.get_subnames();
data.concatenated_key = p_property.get_concatenated_subnames();
data.target_id = p_initial->get_instance_id();
data.target_key = p_initial_property.get_subnames();
data.initial_val = initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
// Ensure there is a valid delta
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
return;
}
// Add the interpolation
_push_interpolate_data(data);
}
void Tween::targeting_method(Object *p_object, StringName p_method, Object *p_initial, StringName p_initial_method, Variant p_final_val, real_t p_duration, TransitionType p_trans_type, EaseType p_ease_type, real_t p_delay) {
// If we are currently updating, call this function again later
if (pending_update != 0) {
_add_pending_command("targeting_method", p_object, p_method, p_initial, p_initial_method, p_final_val, p_duration, p_trans_type, p_ease_type, p_delay);
return;
}
// Convert final INT values to FLOAT as they are better for interpolation
if (p_final_val.get_type() == Variant::INT) p_final_val = p_final_val.operator real_t();
// Make sure the given objects are valid
ERR_FAIL_COND(p_object == NULL);
ERR_FAIL_COND(p_initial == NULL);
// No negative durations
ERR_FAIL_COND(p_duration < 0);
// Ensure transition and easing types are valid
ERR_FAIL_COND(p_trans_type < 0 || p_trans_type >= TRANS_COUNT);
ERR_FAIL_COND(p_ease_type < 0 || p_ease_type >= EASE_COUNT);
// No negative delays
ERR_FAIL_COND(p_delay < 0);
// Make sure both objects have the given method
ERR_FAIL_COND_MSG(!p_object->has_method(p_method), "Object has no method named: " + p_method + ".");
ERR_FAIL_COND_MSG(!p_initial->has_method(p_initial_method), "Initial Object has no method named: " + p_initial_method + ".");
// Call the method to get the initial value
Callable::CallError error;
Variant initial_val = p_initial->call(p_initial_method, NULL, 0, error);
ERR_FAIL_COND(error.error != Callable::CallError::CALL_OK);
// Convert initial INT values to FLOAT as they aer better for interpolation
if (initial_val.get_type() == Variant::INT) initial_val = initial_val.operator real_t();
ERR_FAIL_COND(initial_val.get_type() != p_final_val.get_type());
// Build the new InterpolateData object
InterpolateData data;
data.active = true;
data.type = TARGETING_METHOD;
data.finish = false;
data.elapsed = 0;
// Configure the data
data.id = p_object->get_instance_id();
data.key.push_back(p_method);
data.concatenated_key = p_method;
data.target_id = p_initial->get_instance_id();
data.target_key.push_back(p_initial_method);
data.initial_val = initial_val;
data.final_val = p_final_val;
data.duration = p_duration;
data.trans_type = p_trans_type;
data.ease_type = p_ease_type;
data.delay = p_delay;
// Ensure there is a valid delta
if (!_calc_delta_val(data.initial_val, data.final_val, data.delta_val)) {
return;
}
// Add the interpolation
_push_interpolate_data(data);
}
Tween::Tween() {
// Initialize tween attributes
tween_process_mode = TWEEN_PROCESS_IDLE;
repeat = false;
speed_scale = 1;
pending_update = 0;
uid = 0;
}
Tween::~Tween() {
}