dc14636e68
Refactors the BVH to make it more generic and customizable. Instead of hard coding the system of pairable_mask and pairable_type into the BVH, this information is no longer stored internally, and instead the BVH uses callbacks both for determining whether pairs of objects can pair with each other, and for filtering cull / intersection tests. In addition, instead of hard coding the number of trees, the BVH now supports up to 32 trees, and each object can supply a tree collision mask to determine which trees it can collide against. This enables the BVH to scale to either the two or 3 trees needed in physics, and the single tree used without pairing in Godot 4 render tree.
574 lines
15 KiB
C++
574 lines
15 KiB
C++
public:
|
|
// cull parameters is a convenient way of passing a bunch
|
|
// of arguments through the culling functions without
|
|
// writing loads of code. Not all members are used for some cull checks
|
|
struct CullParams {
|
|
int result_count_overall; // both trees
|
|
int result_count; // this tree only
|
|
int result_max;
|
|
T **result_array;
|
|
int *subindex_array;
|
|
|
|
// We now process masks etc in a user template function,
|
|
// and these for simplicity assume even for cull tests there is a
|
|
// testing object (which has masks etc) for the user cull checks.
|
|
// This means for cull tests on their own, the client will usually
|
|
// want to create a dummy object, just in order to specify masks etc.
|
|
const T *tester;
|
|
|
|
// optional components for different tests
|
|
POINT point;
|
|
BVHABB_CLASS abb;
|
|
typename BVHABB_CLASS::ConvexHull hull;
|
|
typename BVHABB_CLASS::Segment segment;
|
|
|
|
// When collision testing, we can specify which tree ids
|
|
// to collide test against with the tree_collision_mask.
|
|
uint32_t tree_collision_mask;
|
|
};
|
|
|
|
private:
|
|
void _cull_translate_hits(CullParams &p) {
|
|
int num_hits = _cull_hits.size();
|
|
int left = p.result_max - p.result_count_overall;
|
|
|
|
if (num_hits > left) {
|
|
num_hits = left;
|
|
}
|
|
|
|
int out_n = p.result_count_overall;
|
|
|
|
for (int n = 0; n < num_hits; n++) {
|
|
uint32_t ref_id = _cull_hits[n];
|
|
|
|
const ItemExtra &ex = _extra[ref_id];
|
|
p.result_array[out_n] = ex.userdata;
|
|
|
|
if (p.subindex_array) {
|
|
p.subindex_array[out_n] = ex.subindex;
|
|
}
|
|
|
|
out_n++;
|
|
}
|
|
|
|
p.result_count = num_hits;
|
|
p.result_count_overall += num_hits;
|
|
}
|
|
|
|
public:
|
|
int cull_convex(CullParams &r_params, bool p_translate_hits = true) {
|
|
_cull_hits.clear();
|
|
r_params.result_count = 0;
|
|
|
|
uint32_t tree_test_mask = 0;
|
|
|
|
for (int n = 0; n < NUM_TREES; n++) {
|
|
tree_test_mask <<= 1;
|
|
if (!tree_test_mask) {
|
|
tree_test_mask = 1;
|
|
}
|
|
|
|
if (_root_node_id[n] == BVHCommon::INVALID) {
|
|
continue;
|
|
}
|
|
|
|
if (!(r_params.tree_collision_mask & tree_test_mask)) {
|
|
continue;
|
|
}
|
|
|
|
_cull_convex_iterative(_root_node_id[n], r_params);
|
|
}
|
|
|
|
if (p_translate_hits) {
|
|
_cull_translate_hits(r_params);
|
|
}
|
|
|
|
return r_params.result_count;
|
|
}
|
|
|
|
int cull_segment(CullParams &r_params, bool p_translate_hits = true) {
|
|
_cull_hits.clear();
|
|
r_params.result_count = 0;
|
|
|
|
uint32_t tree_test_mask = 0;
|
|
|
|
for (int n = 0; n < NUM_TREES; n++) {
|
|
tree_test_mask <<= 1;
|
|
if (!tree_test_mask) {
|
|
tree_test_mask = 1;
|
|
}
|
|
|
|
if (_root_node_id[n] == BVHCommon::INVALID) {
|
|
continue;
|
|
}
|
|
|
|
if (!(r_params.tree_collision_mask & tree_test_mask)) {
|
|
continue;
|
|
}
|
|
|
|
_cull_segment_iterative(_root_node_id[n], r_params);
|
|
}
|
|
|
|
if (p_translate_hits) {
|
|
_cull_translate_hits(r_params);
|
|
}
|
|
|
|
return r_params.result_count;
|
|
}
|
|
|
|
int cull_point(CullParams &r_params, bool p_translate_hits = true) {
|
|
_cull_hits.clear();
|
|
r_params.result_count = 0;
|
|
|
|
uint32_t tree_test_mask = 0;
|
|
|
|
for (int n = 0; n < NUM_TREES; n++) {
|
|
tree_test_mask <<= 1;
|
|
if (!tree_test_mask) {
|
|
tree_test_mask = 1;
|
|
}
|
|
|
|
if (_root_node_id[n] == BVHCommon::INVALID) {
|
|
continue;
|
|
}
|
|
|
|
if (!(r_params.tree_collision_mask & tree_test_mask)) {
|
|
continue;
|
|
}
|
|
|
|
_cull_point_iterative(_root_node_id[n], r_params);
|
|
}
|
|
|
|
if (p_translate_hits) {
|
|
_cull_translate_hits(r_params);
|
|
}
|
|
|
|
return r_params.result_count;
|
|
}
|
|
|
|
int cull_aabb(CullParams &r_params, bool p_translate_hits = true) {
|
|
_cull_hits.clear();
|
|
r_params.result_count = 0;
|
|
|
|
uint32_t tree_test_mask = 0;
|
|
|
|
for (int n = 0; n < NUM_TREES; n++) {
|
|
tree_test_mask <<= 1;
|
|
if (!tree_test_mask) {
|
|
tree_test_mask = 1;
|
|
}
|
|
|
|
if (_root_node_id[n] == BVHCommon::INVALID) {
|
|
continue;
|
|
}
|
|
|
|
// the tree collision mask determines which trees to collide test against
|
|
if (!(r_params.tree_collision_mask & tree_test_mask)) {
|
|
continue;
|
|
}
|
|
|
|
_cull_aabb_iterative(_root_node_id[n], r_params);
|
|
}
|
|
|
|
if (p_translate_hits) {
|
|
_cull_translate_hits(r_params);
|
|
}
|
|
|
|
return r_params.result_count;
|
|
}
|
|
|
|
bool _cull_hits_full(const CullParams &p) {
|
|
// instead of checking every hit, we can do a lazy check for this condition.
|
|
// it isn't a problem if we write too much _cull_hits because they only the
|
|
// result_max amount will be translated and outputted. But we might as
|
|
// well stop our cull checks after the maximum has been reached.
|
|
return (int)_cull_hits.size() >= p.result_max;
|
|
}
|
|
|
|
void _cull_hit(uint32_t p_ref_id, CullParams &p) {
|
|
// take into account masks etc
|
|
// this would be more efficient to do before plane checks,
|
|
// but done here for ease to get started
|
|
if (USE_PAIRS) {
|
|
const ItemExtra &ex = _extra[p_ref_id];
|
|
|
|
// user supplied function (for e.g. pairable types and pairable masks in the render tree)
|
|
if (!USER_CULL_TEST_FUNCTION::user_cull_check(p.tester, ex.userdata)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
_cull_hits.push_back(p_ref_id);
|
|
}
|
|
|
|
bool _cull_segment_iterative(uint32_t p_node_id, CullParams &r_params) {
|
|
// our function parameters to keep on a stack
|
|
struct CullSegParams {
|
|
uint32_t node_id;
|
|
};
|
|
|
|
// most of the iterative functionality is contained in this helper class
|
|
BVH_IterativeInfo<CullSegParams> ii;
|
|
|
|
// alloca must allocate the stack from this function, it cannot be allocated in the
|
|
// helper class
|
|
ii.stack = (CullSegParams *)alloca(ii.get_alloca_stacksize());
|
|
|
|
// seed the stack
|
|
ii.get_first()->node_id = p_node_id;
|
|
|
|
CullSegParams csp;
|
|
|
|
// while there are still more nodes on the stack
|
|
while (ii.pop(csp)) {
|
|
TNode &tnode = _nodes[csp.node_id];
|
|
|
|
if (tnode.is_leaf()) {
|
|
// lazy check for hits full up condition
|
|
if (_cull_hits_full(r_params)) {
|
|
return false;
|
|
}
|
|
|
|
TLeaf &leaf = _node_get_leaf(tnode);
|
|
|
|
// test children individually
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
|
|
|
|
if (aabb.intersects_segment(r_params.segment)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
}
|
|
} else {
|
|
// test children individually
|
|
for (int n = 0; n < tnode.num_children; n++) {
|
|
uint32_t child_id = tnode.children[n];
|
|
const BVHABB_CLASS &child_abb = _nodes[child_id].aabb;
|
|
|
|
if (child_abb.intersects_segment(r_params.segment)) {
|
|
// add to the stack
|
|
CullSegParams *child = ii.request();
|
|
child->node_id = child_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // while more nodes to pop
|
|
|
|
// true indicates results are not full
|
|
return true;
|
|
}
|
|
|
|
bool _cull_point_iterative(uint32_t p_node_id, CullParams &r_params) {
|
|
// our function parameters to keep on a stack
|
|
struct CullPointParams {
|
|
uint32_t node_id;
|
|
};
|
|
|
|
// most of the iterative functionality is contained in this helper class
|
|
BVH_IterativeInfo<CullPointParams> ii;
|
|
|
|
// alloca must allocate the stack from this function, it cannot be allocated in the
|
|
// helper class
|
|
ii.stack = (CullPointParams *)alloca(ii.get_alloca_stacksize());
|
|
|
|
// seed the stack
|
|
ii.get_first()->node_id = p_node_id;
|
|
|
|
CullPointParams cpp;
|
|
|
|
// while there are still more nodes on the stack
|
|
while (ii.pop(cpp)) {
|
|
TNode &tnode = _nodes[cpp.node_id];
|
|
// no hit with this node?
|
|
if (!tnode.aabb.intersects_point(r_params.point)) {
|
|
continue;
|
|
}
|
|
|
|
if (tnode.is_leaf()) {
|
|
// lazy check for hits full up condition
|
|
if (_cull_hits_full(r_params)) {
|
|
return false;
|
|
}
|
|
|
|
TLeaf &leaf = _node_get_leaf(tnode);
|
|
|
|
// test children individually
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
if (leaf.get_aabb(n).intersects_point(r_params.point)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
}
|
|
} else {
|
|
// test children individually
|
|
for (int n = 0; n < tnode.num_children; n++) {
|
|
uint32_t child_id = tnode.children[n];
|
|
|
|
// add to the stack
|
|
CullPointParams *child = ii.request();
|
|
child->node_id = child_id;
|
|
}
|
|
}
|
|
|
|
} // while more nodes to pop
|
|
|
|
// true indicates results are not full
|
|
return true;
|
|
}
|
|
|
|
// Note: This is a very hot loop profiling wise. Take care when changing this and profile.
|
|
bool _cull_aabb_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) {
|
|
// our function parameters to keep on a stack
|
|
struct CullAABBParams {
|
|
uint32_t node_id;
|
|
bool fully_within;
|
|
};
|
|
|
|
// most of the iterative functionality is contained in this helper class
|
|
BVH_IterativeInfo<CullAABBParams> ii;
|
|
|
|
// alloca must allocate the stack from this function, it cannot be allocated in the
|
|
// helper class
|
|
ii.stack = (CullAABBParams *)alloca(ii.get_alloca_stacksize());
|
|
|
|
// seed the stack
|
|
ii.get_first()->node_id = p_node_id;
|
|
ii.get_first()->fully_within = p_fully_within;
|
|
|
|
CullAABBParams cap;
|
|
|
|
// while there are still more nodes on the stack
|
|
while (ii.pop(cap)) {
|
|
TNode &tnode = _nodes[cap.node_id];
|
|
|
|
if (tnode.is_leaf()) {
|
|
// lazy check for hits full up condition
|
|
if (_cull_hits_full(r_params)) {
|
|
return false;
|
|
}
|
|
|
|
TLeaf &leaf = _node_get_leaf(tnode);
|
|
|
|
// if fully within we can just add all items
|
|
// as long as they pass mask checks
|
|
if (cap.fully_within) {
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
} else {
|
|
// This section is the hottest area in profiling, so
|
|
// is optimized highly
|
|
// get this into a local register and preconverted to correct type
|
|
int leaf_num_items = leaf.num_items;
|
|
|
|
BVHABB_CLASS swizzled_tester;
|
|
swizzled_tester.min = -r_params.abb.neg_max;
|
|
swizzled_tester.neg_max = -r_params.abb.min;
|
|
|
|
for (int n = 0; n < leaf_num_items; n++) {
|
|
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
|
|
|
|
if (swizzled_tester.intersects_swizzled(aabb)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
}
|
|
|
|
} // not fully within
|
|
} else {
|
|
if (!cap.fully_within) {
|
|
// test children individually
|
|
for (int n = 0; n < tnode.num_children; n++) {
|
|
uint32_t child_id = tnode.children[n];
|
|
const BVHABB_CLASS &child_abb = _nodes[child_id].aabb;
|
|
|
|
if (child_abb.intersects(r_params.abb)) {
|
|
// is the node totally within the aabb?
|
|
bool fully_within = r_params.abb.is_other_within(child_abb);
|
|
|
|
// add to the stack
|
|
CullAABBParams *child = ii.request();
|
|
|
|
// should always return valid child
|
|
child->node_id = child_id;
|
|
child->fully_within = fully_within;
|
|
}
|
|
}
|
|
} else {
|
|
for (int n = 0; n < tnode.num_children; n++) {
|
|
uint32_t child_id = tnode.children[n];
|
|
|
|
// add to the stack
|
|
CullAABBParams *child = ii.request();
|
|
|
|
// should always return valid child
|
|
child->node_id = child_id;
|
|
child->fully_within = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
} // while more nodes to pop
|
|
|
|
// true indicates results are not full
|
|
return true;
|
|
}
|
|
|
|
// returns full up with results
|
|
bool _cull_convex_iterative(uint32_t p_node_id, CullParams &r_params, bool p_fully_within = false) {
|
|
// our function parameters to keep on a stack
|
|
struct CullConvexParams {
|
|
uint32_t node_id;
|
|
bool fully_within;
|
|
};
|
|
|
|
// most of the iterative functionality is contained in this helper class
|
|
BVH_IterativeInfo<CullConvexParams> ii;
|
|
|
|
// alloca must allocate the stack from this function, it cannot be allocated in the
|
|
// helper class
|
|
ii.stack = (CullConvexParams *)alloca(ii.get_alloca_stacksize());
|
|
|
|
// seed the stack
|
|
ii.get_first()->node_id = p_node_id;
|
|
ii.get_first()->fully_within = p_fully_within;
|
|
|
|
// preallocate these as a once off to be reused
|
|
uint32_t max_planes = r_params.hull.num_planes;
|
|
uint32_t *plane_ids = (uint32_t *)alloca(sizeof(uint32_t) * max_planes);
|
|
|
|
CullConvexParams ccp;
|
|
|
|
// while there are still more nodes on the stack
|
|
while (ii.pop(ccp)) {
|
|
const TNode &tnode = _nodes[ccp.node_id];
|
|
|
|
if (!ccp.fully_within) {
|
|
typename BVHABB_CLASS::IntersectResult res = tnode.aabb.intersects_convex(r_params.hull);
|
|
|
|
switch (res) {
|
|
default: {
|
|
continue; // miss, just move on to the next node in the stack
|
|
} break;
|
|
case BVHABB_CLASS::IR_PARTIAL: {
|
|
} break;
|
|
case BVHABB_CLASS::IR_FULL: {
|
|
ccp.fully_within = true;
|
|
} break;
|
|
}
|
|
|
|
} // if not fully within already
|
|
|
|
if (tnode.is_leaf()) {
|
|
// lazy check for hits full up condition
|
|
if (_cull_hits_full(r_params)) {
|
|
return false;
|
|
}
|
|
|
|
const TLeaf &leaf = _node_get_leaf(tnode);
|
|
|
|
// if fully within, simply add all items to the result
|
|
// (taking into account masks)
|
|
if (ccp.fully_within) {
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
|
|
} else {
|
|
// we can either use a naive check of all the planes against the AABB,
|
|
// or an optimized check, which finds in advance which of the planes can possibly
|
|
// cut the AABB, and only tests those. This can be much faster.
|
|
#define BVH_CONVEX_CULL_OPTIMIZED
|
|
#ifdef BVH_CONVEX_CULL_OPTIMIZED
|
|
// first find which planes cut the aabb
|
|
uint32_t num_planes = tnode.aabb.find_cutting_planes(r_params.hull, plane_ids);
|
|
BVH_ASSERT(num_planes <= max_planes);
|
|
|
|
//#define BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
|
|
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
|
|
// rigorous check
|
|
uint32_t results[MAX_ITEMS];
|
|
uint32_t num_results = 0;
|
|
#endif
|
|
|
|
// test children individually
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
//const Item &item = leaf.get_item(n);
|
|
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
|
|
|
|
if (aabb.intersects_convex_optimized(r_params.hull, plane_ids, num_planes)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
|
|
results[num_results++] = child_id;
|
|
#endif
|
|
|
|
// register hit
|
|
_cull_hit(child_id, r_params);
|
|
}
|
|
}
|
|
|
|
#ifdef BVH_CONVEX_CULL_OPTIMIZED_RIGOR_CHECK
|
|
uint32_t test_count = 0;
|
|
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
|
|
|
|
if (aabb.intersects_convex_partial(r_params.hull)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
CRASH_COND(child_id != results[test_count++]);
|
|
CRASH_COND(test_count > num_results);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
// not BVH_CONVEX_CULL_OPTIMIZED
|
|
// test children individually
|
|
for (int n = 0; n < leaf.num_items; n++) {
|
|
const BVHABB_CLASS &aabb = leaf.get_aabb(n);
|
|
|
|
if (aabb.intersects_convex_partial(r_params.hull)) {
|
|
uint32_t child_id = leaf.get_item_ref_id(n);
|
|
|
|
// full up with results? exit early, no point in further testing
|
|
if (!_cull_hit(child_id, r_params))
|
|
return false;
|
|
}
|
|
}
|
|
#endif // BVH_CONVEX_CULL_OPTIMIZED
|
|
} // if not fully within
|
|
} else {
|
|
for (int n = 0; n < tnode.num_children; n++) {
|
|
uint32_t child_id = tnode.children[n];
|
|
|
|
// add to the stack
|
|
CullConvexParams *child = ii.request();
|
|
|
|
// should always return valid child
|
|
child->node_id = child_id;
|
|
child->fully_within = ccp.fully_within;
|
|
}
|
|
}
|
|
|
|
} // while more nodes to pop
|
|
|
|
// true indicates results are not full
|
|
return true;
|
|
}
|