d95794ec8a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see".
476 lines
16 KiB
C++
476 lines
16 KiB
C++
/**************************************************************************/
|
|
/* geometry_2d.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef GEOMETRY_2D_H
|
|
#define GEOMETRY_2D_H
|
|
|
|
#include "core/math/delaunay_2d.h"
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/math/triangulate.h"
|
|
#include "core/math/vector2.h"
|
|
#include "core/math/vector2i.h"
|
|
#include "core/math/vector3.h"
|
|
#include "core/math/vector3i.h"
|
|
#include "core/templates/vector.h"
|
|
|
|
class Geometry2D {
|
|
public:
|
|
static real_t get_closest_points_between_segments(const Vector2 &p1, const Vector2 &q1, const Vector2 &p2, const Vector2 &q2, Vector2 &c1, Vector2 &c2) {
|
|
Vector2 d1 = q1 - p1; // Direction vector of segment S1.
|
|
Vector2 d2 = q2 - p2; // Direction vector of segment S2.
|
|
Vector2 r = p1 - p2;
|
|
real_t a = d1.dot(d1); // Squared length of segment S1, always nonnegative.
|
|
real_t e = d2.dot(d2); // Squared length of segment S2, always nonnegative.
|
|
real_t f = d2.dot(r);
|
|
real_t s, t;
|
|
// Check if either or both segments degenerate into points.
|
|
if (a <= (real_t)CMP_EPSILON && e <= (real_t)CMP_EPSILON) {
|
|
// Both segments degenerate into points.
|
|
c1 = p1;
|
|
c2 = p2;
|
|
return Math::sqrt((c1 - c2).dot(c1 - c2));
|
|
}
|
|
if (a <= (real_t)CMP_EPSILON) {
|
|
// First segment degenerates into a point.
|
|
s = 0.0;
|
|
t = f / e; // s = 0 => t = (b*s + f) / e = f / e
|
|
t = CLAMP(t, 0.0f, 1.0f);
|
|
} else {
|
|
real_t c = d1.dot(r);
|
|
if (e <= (real_t)CMP_EPSILON) {
|
|
// Second segment degenerates into a point.
|
|
t = 0.0;
|
|
s = CLAMP(-c / a, 0.0f, 1.0f); // t = 0 => s = (b*t - c) / a = -c / a
|
|
} else {
|
|
// The general nondegenerate case starts here.
|
|
real_t b = d1.dot(d2);
|
|
real_t denom = a * e - b * b; // Always nonnegative.
|
|
// If segments not parallel, compute closest point on L1 to L2 and
|
|
// clamp to segment S1. Else pick arbitrary s (here 0).
|
|
if (denom != 0.0f) {
|
|
s = CLAMP((b * f - c * e) / denom, 0.0f, 1.0f);
|
|
} else {
|
|
s = 0.0;
|
|
}
|
|
// Compute point on L2 closest to S1(s) using
|
|
// t = Dot((P1 + D1*s) - P2,D2) / Dot(D2,D2) = (b*s + f) / e
|
|
t = (b * s + f) / e;
|
|
|
|
//If t in [0,1] done. Else clamp t, recompute s for the new value
|
|
// of t using s = Dot((P2 + D2*t) - P1,D1) / Dot(D1,D1)= (t*b - c) / a
|
|
// and clamp s to [0, 1].
|
|
if (t < 0.0f) {
|
|
t = 0.0;
|
|
s = CLAMP(-c / a, 0.0f, 1.0f);
|
|
} else if (t > 1.0f) {
|
|
t = 1.0;
|
|
s = CLAMP((b - c) / a, 0.0f, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
c1 = p1 + d1 * s;
|
|
c2 = p2 + d2 * t;
|
|
return Math::sqrt((c1 - c2).dot(c1 - c2));
|
|
}
|
|
|
|
static Vector2 get_closest_point_to_segment(const Vector2 &p_point, const Vector2 *p_segment) {
|
|
Vector2 p = p_point - p_segment[0];
|
|
Vector2 n = p_segment[1] - p_segment[0];
|
|
real_t l2 = n.length_squared();
|
|
if (l2 < 1e-20f) {
|
|
return p_segment[0]; // Both points are the same, just give any.
|
|
}
|
|
|
|
real_t d = n.dot(p) / l2;
|
|
|
|
if (d <= 0.0f) {
|
|
return p_segment[0]; // Before first point.
|
|
} else if (d >= 1.0f) {
|
|
return p_segment[1]; // After first point.
|
|
} else {
|
|
return p_segment[0] + n * d; // Inside.
|
|
}
|
|
}
|
|
|
|
static bool is_point_in_triangle(const Vector2 &s, const Vector2 &a, const Vector2 &b, const Vector2 &c) {
|
|
Vector2 an = a - s;
|
|
Vector2 bn = b - s;
|
|
Vector2 cn = c - s;
|
|
|
|
bool orientation = an.cross(bn) > 0;
|
|
|
|
if ((bn.cross(cn) > 0) != orientation) {
|
|
return false;
|
|
}
|
|
|
|
return (cn.cross(an) > 0) == orientation;
|
|
}
|
|
|
|
static Vector2 get_closest_point_to_segment_uncapped(const Vector2 &p_point, const Vector2 *p_segment) {
|
|
Vector2 p = p_point - p_segment[0];
|
|
Vector2 n = p_segment[1] - p_segment[0];
|
|
real_t l2 = n.length_squared();
|
|
if (l2 < 1e-20f) {
|
|
return p_segment[0]; // Both points are the same, just give any.
|
|
}
|
|
|
|
real_t d = n.dot(p) / l2;
|
|
|
|
return p_segment[0] + n * d; // Inside.
|
|
}
|
|
|
|
// Disable False Positives in MSVC compiler; we correctly check for 0 here to prevent a division by 0.
|
|
// See: https://github.com/godotengine/godot/pull/44274
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable : 4723)
|
|
#endif
|
|
|
|
static bool line_intersects_line(const Vector2 &p_from_a, const Vector2 &p_dir_a, const Vector2 &p_from_b, const Vector2 &p_dir_b, Vector2 &r_result) {
|
|
// See http://paulbourke.net/geometry/pointlineplane/
|
|
|
|
const real_t denom = p_dir_b.y * p_dir_a.x - p_dir_b.x * p_dir_a.y;
|
|
if (Math::is_zero_approx(denom)) { // Parallel?
|
|
return false;
|
|
}
|
|
|
|
const Vector2 v = p_from_a - p_from_b;
|
|
const real_t t = (p_dir_b.x * v.y - p_dir_b.y * v.x) / denom;
|
|
r_result = p_from_a + t * p_dir_a;
|
|
return true;
|
|
}
|
|
|
|
// Re-enable division by 0 warning
|
|
#ifdef _MSC_VER
|
|
#pragma warning(default : 4723)
|
|
#endif
|
|
|
|
static bool segment_intersects_segment(const Vector2 &p_from_a, const Vector2 &p_to_a, const Vector2 &p_from_b, const Vector2 &p_to_b, Vector2 *r_result) {
|
|
Vector2 B = p_to_a - p_from_a;
|
|
Vector2 C = p_from_b - p_from_a;
|
|
Vector2 D = p_to_b - p_from_a;
|
|
|
|
real_t ABlen = B.dot(B);
|
|
if (ABlen <= 0) {
|
|
return false;
|
|
}
|
|
Vector2 Bn = B / ABlen;
|
|
C = Vector2(C.x * Bn.x + C.y * Bn.y, C.y * Bn.x - C.x * Bn.y);
|
|
D = Vector2(D.x * Bn.x + D.y * Bn.y, D.y * Bn.x - D.x * Bn.y);
|
|
|
|
// Fail if C x B and D x B have the same sign (segments don't intersect).
|
|
if ((C.y < (real_t)-CMP_EPSILON && D.y < (real_t)-CMP_EPSILON) || (C.y > (real_t)CMP_EPSILON && D.y > (real_t)CMP_EPSILON)) {
|
|
return false;
|
|
}
|
|
|
|
// Fail if segments are parallel or colinear.
|
|
// (when A x B == zero, i.e (C - D) x B == zero, i.e C x B == D x B)
|
|
if (Math::is_equal_approx(C.y, D.y)) {
|
|
return false;
|
|
}
|
|
|
|
real_t ABpos = D.x + (C.x - D.x) * D.y / (D.y - C.y);
|
|
|
|
// Fail if segment C-D crosses line A-B outside of segment A-B.
|
|
if ((ABpos < 0) || (ABpos > 1)) {
|
|
return false;
|
|
}
|
|
|
|
// Apply the discovered position to line A-B in the original coordinate system.
|
|
if (r_result) {
|
|
*r_result = p_from_a + B * ABpos;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool is_point_in_circle(const Vector2 &p_point, const Vector2 &p_circle_pos, real_t p_circle_radius) {
|
|
return p_point.distance_squared_to(p_circle_pos) <= p_circle_radius * p_circle_radius;
|
|
}
|
|
|
|
static real_t segment_intersects_circle(const Vector2 &p_from, const Vector2 &p_to, const Vector2 &p_circle_pos, real_t p_circle_radius) {
|
|
Vector2 line_vec = p_to - p_from;
|
|
Vector2 vec_to_line = p_from - p_circle_pos;
|
|
|
|
// Create a quadratic formula of the form ax^2 + bx + c = 0
|
|
real_t a, b, c;
|
|
|
|
a = line_vec.dot(line_vec);
|
|
b = 2 * vec_to_line.dot(line_vec);
|
|
c = vec_to_line.dot(vec_to_line) - p_circle_radius * p_circle_radius;
|
|
|
|
// Solve for t.
|
|
real_t sqrtterm = b * b - 4 * a * c;
|
|
|
|
// If the term we intend to square root is less than 0 then the answer won't be real,
|
|
// so it definitely won't be t in the range 0 to 1.
|
|
if (sqrtterm < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// If we can assume that the line segment starts outside the circle (e.g. for continuous time collision detection)
|
|
// then the following can be skipped and we can just return the equivalent of res1.
|
|
sqrtterm = Math::sqrt(sqrtterm);
|
|
real_t res1 = (-b - sqrtterm) / (2 * a);
|
|
real_t res2 = (-b + sqrtterm) / (2 * a);
|
|
|
|
if (res1 >= 0 && res1 <= 1) {
|
|
return res1;
|
|
}
|
|
if (res2 >= 0 && res2 <= 1) {
|
|
return res2;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
enum PolyBooleanOperation {
|
|
OPERATION_UNION,
|
|
OPERATION_DIFFERENCE,
|
|
OPERATION_INTERSECTION,
|
|
OPERATION_XOR
|
|
};
|
|
enum PolyJoinType {
|
|
JOIN_SQUARE,
|
|
JOIN_ROUND,
|
|
JOIN_MITER
|
|
};
|
|
enum PolyEndType {
|
|
END_POLYGON,
|
|
END_JOINED,
|
|
END_BUTT,
|
|
END_SQUARE,
|
|
END_ROUND
|
|
};
|
|
|
|
static Vector<Vector<Point2>> merge_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
|
return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> clip_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
|
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> intersect_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
|
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> exclude_polygons(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
|
return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> clip_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
|
|
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> intersect_polyline_with_polygon(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
|
|
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> offset_polygon(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
|
|
return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
|
|
}
|
|
|
|
static Vector<Vector<Point2>> offset_polyline(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
|
ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon instead).");
|
|
|
|
return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
|
|
}
|
|
|
|
static Vector<int> triangulate_delaunay(const Vector<Vector2> &p_points) {
|
|
Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
|
|
Vector<int> triangles;
|
|
|
|
for (int i = 0; i < tr.size(); i++) {
|
|
triangles.push_back(tr[i].points[0]);
|
|
triangles.push_back(tr[i].points[1]);
|
|
triangles.push_back(tr[i].points[2]);
|
|
}
|
|
return triangles;
|
|
}
|
|
|
|
static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
|
|
Vector<int> triangles;
|
|
if (!Triangulate::triangulate(p_polygon, triangles)) {
|
|
return Vector<int>(); //fail
|
|
}
|
|
return triangles;
|
|
}
|
|
|
|
static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
|
|
int c = p_polygon.size();
|
|
if (c < 3) {
|
|
return false;
|
|
}
|
|
const Vector2 *p = p_polygon.ptr();
|
|
real_t sum = 0;
|
|
for (int i = 0; i < c; i++) {
|
|
const Vector2 &v1 = p[i];
|
|
const Vector2 &v2 = p[(i + 1) % c];
|
|
sum += (v2.x - v1.x) * (v2.y + v1.y);
|
|
}
|
|
|
|
return sum > 0.0f;
|
|
}
|
|
|
|
// Alternate implementation that should be faster.
|
|
static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
|
|
int c = p_polygon.size();
|
|
if (c < 3) {
|
|
return false;
|
|
}
|
|
const Vector2 *p = p_polygon.ptr();
|
|
Vector2 further_away(-1e20, -1e20);
|
|
Vector2 further_away_opposite(1e20, 1e20);
|
|
|
|
for (int i = 0; i < c; i++) {
|
|
further_away.x = MAX(p[i].x, further_away.x);
|
|
further_away.y = MAX(p[i].y, further_away.y);
|
|
further_away_opposite.x = MIN(p[i].x, further_away_opposite.x);
|
|
further_away_opposite.y = MIN(p[i].y, further_away_opposite.y);
|
|
}
|
|
|
|
// Make point outside that won't intersect with points in segment from p_point.
|
|
further_away += (further_away - further_away_opposite) * Vector2(1.221313, 1.512312);
|
|
|
|
int intersections = 0;
|
|
for (int i = 0; i < c; i++) {
|
|
const Vector2 &v1 = p[i];
|
|
const Vector2 &v2 = p[(i + 1) % c];
|
|
|
|
Vector2 res;
|
|
if (segment_intersects_segment(v1, v2, p_point, further_away, &res)) {
|
|
intersections++;
|
|
if (res.is_equal_approx(p_point)) {
|
|
// Point is in one of the polygon edges.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return (intersections & 1);
|
|
}
|
|
|
|
static bool is_segment_intersecting_polygon(const Vector2 &p_from, const Vector2 &p_to, const Vector<Vector2> &p_polygon) {
|
|
int c = p_polygon.size();
|
|
const Vector2 *p = p_polygon.ptr();
|
|
for (int i = 0; i < c; i++) {
|
|
const Vector2 &v1 = p[i];
|
|
const Vector2 &v2 = p[(i + 1) % c];
|
|
if (segment_intersects_segment(p_from, p_to, v1, v2, nullptr)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static real_t vec2_cross(const Point2 &O, const Point2 &A, const Point2 &B) {
|
|
return (real_t)(A.x - O.x) * (B.y - O.y) - (real_t)(A.y - O.y) * (B.x - O.x);
|
|
}
|
|
|
|
// Returns a list of points on the convex hull in counter-clockwise order.
|
|
// Note: the last point in the returned list is the same as the first one.
|
|
static Vector<Point2> convex_hull(Vector<Point2> P) {
|
|
int n = P.size(), k = 0;
|
|
Vector<Point2> H;
|
|
H.resize(2 * n);
|
|
|
|
// Sort points lexicographically.
|
|
P.sort();
|
|
|
|
// Build lower hull.
|
|
for (int i = 0; i < n; ++i) {
|
|
while (k >= 2 && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
|
|
k--;
|
|
}
|
|
H.write[k++] = P[i];
|
|
}
|
|
|
|
// Build upper hull.
|
|
for (int i = n - 2, t = k + 1; i >= 0; i--) {
|
|
while (k >= t && vec2_cross(H[k - 2], H[k - 1], P[i]) <= 0) {
|
|
k--;
|
|
}
|
|
H.write[k++] = P[i];
|
|
}
|
|
|
|
H.resize(k);
|
|
return H;
|
|
}
|
|
|
|
static Vector<Point2i> bresenham_line(const Point2i &p_start, const Point2i &p_end) {
|
|
Vector<Point2i> points;
|
|
|
|
Vector2i delta = (p_end - p_start).abs() * 2;
|
|
Vector2i step = (p_end - p_start).sign();
|
|
Vector2i current = p_start;
|
|
|
|
if (delta.x > delta.y) {
|
|
int err = delta.x / 2;
|
|
|
|
for (; current.x != p_end.x; current.x += step.x) {
|
|
points.push_back(current);
|
|
|
|
err -= delta.y;
|
|
if (err < 0) {
|
|
current.y += step.y;
|
|
err += delta.x;
|
|
}
|
|
}
|
|
} else {
|
|
int err = delta.y / 2;
|
|
|
|
for (; current.y != p_end.y; current.y += step.y) {
|
|
points.push_back(current);
|
|
|
|
err -= delta.x;
|
|
if (err < 0) {
|
|
current.x += step.x;
|
|
err += delta.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
points.push_back(current);
|
|
|
|
return points;
|
|
}
|
|
|
|
static Vector<Vector<Vector2>> decompose_polygon_in_convex(Vector<Point2> polygon);
|
|
|
|
static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
|
|
static Vector<Point2i> pack_rects(const Vector<Size2i> &p_sizes, const Size2i &p_atlas_size);
|
|
static Vector<Vector3i> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);
|
|
|
|
private:
|
|
static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
|
|
static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
|
|
};
|
|
|
|
#endif // GEOMETRY_2D_H
|