godot/doc/classes/Vector2.xml

510 lines
23 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector2" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Vector used for 2D math using floating point coordinates.
</brief_description>
<description>
2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
It uses floating-point coordinates. See [Vector2i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector2 will evaluate to [code]false[/code] if it's equal to [code]Vector2(0, 0)[/code]. Otherwise, a Vector2 will always evaluate to [code]true[/code].
</description>
<tutorials>
<link title="Math documentation index">$DOCS_URL/tutorials/math/index.html</link>
<link title="Vector math">$DOCS_URL/tutorials/math/vector_math.html</link>
<link title="Advanced vector math">$DOCS_URL/tutorials/math/vectors_advanced.html</link>
<link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
<link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
<link title="All 2D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/2d</link>
</tutorials>
<constructors>
<constructor name="Vector2">
<return type="Vector2" />
<description>
Constructs a default-initialized [Vector2] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector2">
<return type="Vector2" />
<argument index="0" name="from" type="Vector2" />
<description>
Constructs a [Vector2] as a copy of the given [Vector2].
</description>
</constructor>
<constructor name="Vector2">
<return type="Vector2" />
<argument index="0" name="from" type="Vector2i" />
<description>
Constructs a new [Vector2] from [Vector2i].
</description>
</constructor>
<constructor name="Vector2">
<return type="Vector2" />
<argument index="0" name="x" type="float" />
<argument index="1" name="y" type="float" />
<description>
Constructs a new [Vector2] from the given [code]x[/code] and [code]y[/code].
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector2" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="angle" qualifiers="const">
<return type="float" />
<description>
Returns this vector's angle with respect to the positive X axis, or [code](1, 0)[/code] vector, in radians.
For example, [code]Vector2.RIGHT.angle()[/code] will return zero, [code]Vector2.DOWN.angle()[/code] will return [code]PI / 2[/code] (a quarter turn, or 90 degrees), and [code]Vector2(1, -1).angle()[/code] will return [code]-PI / 4[/code] (a negative eighth turn, or -45 degrees).
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle.png]Illustration of the returned angle.[/url]
Equivalent to the result of [method @GlobalScope.atan2] when called with the vector's [member y] and [member x] as parameters: [code]atan2(y, x)[/code].
</description>
</method>
<method name="angle_to" qualifiers="const">
<return type="float" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns the angle to the given vector, in radians.
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to.png]Illustration of the returned angle.[/url]
</description>
</method>
<method name="angle_to_point" qualifiers="const">
<return type="float" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns the angle between the line connecting the two points and the X axis, in radians.
[code]a.angle_to_point(b)[/code] is equivalent of doing [code](b - a).angle()[/code].
[url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to_point.png]Illustration of the returned angle.[/url]
</description>
</method>
<method name="aspect" qualifiers="const">
<return type="float" />
<description>
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
</description>
</method>
<method name="bounce" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="n" type="Vector2" />
<description>
Returns the vector "bounced off" from a plane defined by the given normal.
</description>
</method>
<method name="ceil" qualifiers="const">
<return type="Vector2" />
<description>
Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="min" type="Vector2" />
<argument index="1" name="max" type="Vector2" />
<description>
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="cross" qualifiers="const">
<return type="float" />
<argument index="0" name="with" type="Vector2" />
<description>
Returns the 2D analog of the cross product for this vector and [code]with[/code].
This is the signed area of the parallelogram formed by the two vectors. If the second vector is clockwise from the first vector, then the cross product is the positive area. If counter-clockwise, the cross product is the negative area.
[b]Note:[/b] Cross product is not defined in 2D mathematically. This method embeds the 2D vectors in the XY plane of 3D space and uses their cross product's Z component as the analog.
</description>
</method>
<method name="cubic_interpolate" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="b" type="Vector2" />
<argument index="1" name="pre_a" type="Vector2" />
<argument index="2" name="post_b" type="Vector2" />
<argument index="3" name="weight" type="float" />
<description>
Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="direction_to" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns the normalized vector pointing from this vector to [code]to[/code]. This is equivalent to using [code](b - a).normalized()[/code].
</description>
</method>
<method name="distance_squared_to" qualifiers="const">
<return type="float" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns the squared distance between this vector and [code]to[/code].
This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="distance_to" qualifiers="const">
<return type="float" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns the distance between this vector and [code]to[/code].
</description>
</method>
<method name="dot" qualifiers="const">
<return type="float" />
<argument index="0" name="with" type="Vector2" />
<description>
Returns the dot product of this vector and [code]with[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
[b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
</description>
</method>
<method name="floor" qualifiers="const">
<return type="Vector2" />
<description>
Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<method name="from_angle" qualifiers="static">
<return type="Vector2" />
<argument index="0" name="angle" type="float" />
<description>
Creates a unit [Vector2] rotated to the given [code]angle[/code] in radians. This is equivalent to doing [code]Vector2(cos(angle), sin(angle))[/code] or [code]Vector2.RIGHT.rotated(angle)[/code].
[codeblock]
print(Vector2.from_angle(0)) # Prints (1, 0).
print(Vector2(1, 0).angle()) # Prints 0, which is the angle used above.
print(Vector2.from_angle(PI / 2)) # Prints (0, 1).
[/codeblock]
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<argument index="0" name="to" type="Vector2" />
<description>
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_normalized" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="float" />
<description>
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
</description>
</method>
<method name="lerp" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="to" type="Vector2" />
<argument index="1" name="weight" type="float" />
<description>
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
</description>
</method>
<method name="limit_length" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="length" type="float" default="1.0" />
<description>
Returns the vector with a maximum length by limiting its length to [code]length[/code].
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y].
</description>
</method>
<method name="move_toward" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="to" type="Vector2" />
<argument index="1" name="delta" type="float" />
<description>
Returns a new vector moved toward [code]to[/code] by the fixed [code]delta[/code] amount. Will not go past the final value.
</description>
</method>
<method name="normalized" qualifiers="const">
<return type="Vector2" />
<description>
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
</description>
</method>
<method name="orthogonal" qualifiers="const">
<return type="Vector2" />
<description>
Returns a perpendicular vector rotated 90 degrees counter-clockwise compared to the original, with the same length.
</description>
</method>
<method name="posmod" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="mod" type="float" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
</description>
</method>
<method name="posmodv" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="modv" type="Vector2" />
<description>
Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
</description>
</method>
<method name="project" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="b" type="Vector2" />
<description>
Returns this vector projected onto the vector [code]b[/code].
</description>
</method>
<method name="reflect" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="n" type="Vector2" />
<description>
Returns the vector reflected (i.e. mirrored, or symmetric) over a line defined by the given direction vector [code]n[/code].
</description>
</method>
<method name="rotated" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="phi" type="float" />
<description>
Returns the vector rotated by [code]phi[/code] radians. See also [method @GlobalScope.deg2rad].
</description>
</method>
<method name="round" qualifiers="const">
<return type="Vector2" />
<description>
Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector2" />
<description>
Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
</description>
</method>
<method name="slerp" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="to" type="Vector2" />
<argument index="1" name="weight" type="float" />
<description>
Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
This method also handles interpolating the lengths if the input vectors have different lengths. For the special case of one or both input vectors having zero length, this method behaves like [method lerp].
</description>
</method>
<method name="slide" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="n" type="Vector2" />
<description>
Returns this vector slid along a plane defined by the given normal.
</description>
</method>
<method name="snapped" qualifiers="const">
<return type="Vector2" />
<argument index="0" name="step" type="Vector2" />
<description>
Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
</description>
</method>
</methods>
<members>
<member name="x" type="float" setter="" getter="" default="0.0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector2(0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector2(1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="INF" value="Vector2(inf, inf)">
Infinity vector, a vector with all components set to [constant @GDScript.INF].
</constant>
<constant name="LEFT" value="Vector2(-1, 0)">
Left unit vector. Represents the direction of left.
</constant>
<constant name="RIGHT" value="Vector2(1, 0)">
Right unit vector. Represents the direction of right.
</constant>
<constant name="UP" value="Vector2(0, -1)">
Up unit vector. Y is down in 2D, so this vector points -Y.
</constant>
<constant name="DOWN" value="Vector2(0, 1)">
Down unit vector. Y is down in 2D, so this vector points +Y.
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<argument index="0" name="right" type="Transform2D" />
<description>
Inversely transforms (multiplies) the [Vector2] by the given [Transform2D] transformation matrix.
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<argument index="0" name="right" type="Vector2" />
<description>
Multiplies each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) * Vector2(3, 4)) # Prints "(30, 80)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<argument index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector2] by the given [float].
</description>
</operator>
<operator name="operator *">
<return type="Vector2" />
<argument index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector2] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector2" />
<argument index="0" name="right" type="Vector2" />
<description>
Adds each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) + Vector2(3, 4)) # Prints "(13, 24)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector2" />
<argument index="0" name="right" type="Vector2" />
<description>
Subtracts each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) - Vector2(3, 4)) # Prints "(7, 16)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector2" />
<argument index="0" name="right" type="Vector2" />
<description>
Divides each component of the [Vector2] by the components of the given [Vector2].
[codeblock]
print(Vector2(10, 20) / Vector2(2, 5)) # Prints "(5, 4)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector2" />
<argument index="0" name="right" type="float" />
<description>
Divides each component of the [Vector2] by the given [float].
</description>
</operator>
<operator name="operator /">
<return type="Vector2" />
<argument index="0" name="right" type="int" />
<description>
Divides each component of the [Vector2] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Compares two [Vector2] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<description>
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector2" />
<description>
Compares two [Vector2] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator []">
<return type="float" />
<argument index="0" name="index" type="int" />
<description>
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector2" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector2" />
<description>
Returns the negative value of the [Vector2]. This is the same as writing [code]Vector2(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
</description>
</operator>
</operators>
</class>