godot/modules/fbx/editor_scene_importer_fbx.cpp

1422 lines
55 KiB
C++

/*************************************************************************/
/* editor_scene_importer_fbx.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "editor_scene_importer_fbx.h"
#include "data/fbx_anim_container.h"
#include "data/fbx_material.h"
#include "data/fbx_mesh_data.h"
#include "data/fbx_skeleton.h"
#include "tools/import_utils.h"
#include "core/io/image_loader.h"
#include "editor/editor_log.h"
#include "editor/editor_node.h"
#include "editor/import/resource_importer_scene.h"
#include "scene/3d/bone_attachment.h"
#include "scene/3d/camera.h"
#include "scene/3d/light.h"
#include "scene/3d/mesh_instance.h"
#include "scene/main/node.h"
#include "scene/resources/material.h"
#include "fbx_parser/FBXDocument.h"
#include "fbx_parser/FBXImportSettings.h"
#include "fbx_parser/FBXMeshGeometry.h"
#include "fbx_parser/FBXParser.h"
#include "fbx_parser/FBXProperties.h"
#include "fbx_parser/FBXTokenizer.h"
#include <string>
void EditorSceneImporterFBX::get_extensions(List<String> *r_extensions) const {
// register FBX as the one and only format for FBX importing
const String import_setting_string = "filesystem/import/fbx/";
const String fbx_str = "fbx";
Vector<String> exts;
exts.push_back(fbx_str);
_register_project_setting_import(fbx_str, import_setting_string, exts, r_extensions,
true);
}
void EditorSceneImporterFBX::_register_project_setting_import(const String generic,
const String import_setting_string,
const Vector<String> &exts,
List<String> *r_extensions,
const bool p_enabled) const {
const String use_generic = "use_" + generic;
_GLOBAL_DEF(import_setting_string + use_generic, p_enabled, true);
if (ProjectSettings::get_singleton()->get(import_setting_string + use_generic)) {
for (int32_t i = 0; i < exts.size(); i++) {
r_extensions->push_back(exts[i]);
}
}
}
uint32_t EditorSceneImporterFBX::get_import_flags() const {
return IMPORT_SCENE;
}
Node *EditorSceneImporterFBX::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps,
List<String> *r_missing_deps, Error *r_err) {
// done for performance when re-importing lots of files when testing importer in verbose only!
if (OS::get_singleton()->is_stdout_verbose()) {
EditorLog *log = EditorNode::get_log();
log->clear();
}
Error err;
FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
ERR_FAIL_COND_V(!f, NULL);
{
PoolByteArray data;
// broadphase tokenizing pass in which we identify the core
// syntax elements of FBX (brackets, commas, key:value mappings)
FBXDocParser::TokenList tokens;
bool is_binary = false;
data.resize(f->get_len());
f->get_buffer(data.write().ptr(), data.size());
PoolByteArray fbx_header;
fbx_header.resize(64);
for (int32_t byte_i = 0; byte_i < 64; byte_i++) {
fbx_header.write()[byte_i] = data.read()[byte_i];
}
String fbx_header_string;
if (fbx_header.size() >= 0) {
PoolByteArray::Read r = fbx_header.read();
fbx_header_string.parse_utf8((const char *)r.ptr(), fbx_header.size());
}
print_verbose("[doc] opening fbx file: " + p_path);
print_verbose("[doc] fbx header: " + fbx_header_string);
// safer to check this way as there can be different formatted headers
if (fbx_header_string.find("Kaydara FBX Binary", 0) != -1) {
is_binary = true;
print_verbose("[doc] is binary");
FBXDocParser::TokenizeBinary(tokens, (const char *)data.write().ptr(), (size_t)data.size());
} else {
print_verbose("[doc] is ascii");
FBXDocParser::Tokenize(tokens, (const char *)data.write().ptr());
}
// The import process explained:
// 1. Tokens are made, these are then taken into the 'parser' below
// 2. The parser constructs 'Elements' and all 'real' FBX Types.
// 3. This creates a problem: shared_ptr ownership, should Elements later 'take ownership'
// 4. No, it shouldn't so we should either a.) use weak ref for elements; but this is not correct.
// use this information to construct a very rudimentary
// parse-tree representing the FBX scope structure
FBXDocParser::Parser parser(tokens, is_binary);
FBXDocParser::ImportSettings settings;
settings.strictMode = false;
// this function leaks a lot
FBXDocParser::Document doc(parser, settings);
// yeah so closing the file is a good idea (prevents readonly states)
f->close();
// safety for version handling
if (doc.IsSafeToImport()) {
Spatial *spatial = _generate_scene(p_path, &doc, p_flags, p_bake_fps, 8);
// todo: move to document shutdown (will need to be validated after moving; this code has been validated already)
for (FBXDocParser::TokenPtr token : tokens) {
if (token) {
delete token;
token = nullptr;
}
}
return spatial;
} else {
print_error("Cannot import file: " + p_path + " version of file is unsupported, please re-export in your modelling package file version is: " + itos(doc.FBXVersion()));
}
}
return memnew(Spatial);
}
template <class T>
struct EditorSceneImporterAssetImportInterpolate {
T lerp(const T &a, const T &b, float c) const {
return a + (b - a) * c;
}
T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
float t2 = t * t;
float t3 = t2 * t;
return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 +
(-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
}
T bezier(T start, T control_1, T control_2, T end, float t) {
/* Formula from Wikipedia article on Bezier curves. */
real_t omt = (1.0 - t);
real_t omt2 = omt * omt;
real_t omt3 = omt2 * omt;
real_t t2 = t * t;
real_t t3 = t2 * t;
return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
}
};
//thank you for existing, partial specialization
template <>
struct EditorSceneImporterAssetImportInterpolate<Quat> {
Quat lerp(const Quat &a, const Quat &b, float c) const {
ERR_FAIL_COND_V(!a.is_normalized(), Quat());
ERR_FAIL_COND_V(!b.is_normalized(), Quat());
return a.slerp(b, c).normalized();
}
Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) {
ERR_FAIL_COND_V(!p1.is_normalized(), Quat());
ERR_FAIL_COND_V(!p2.is_normalized(), Quat());
return p1.slerp(p2, c).normalized();
}
Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) {
ERR_FAIL_COND_V(!start.is_normalized(), Quat());
ERR_FAIL_COND_V(!end.is_normalized(), Quat());
return start.slerp(end, t).normalized();
}
};
template <class T>
T EditorSceneImporterFBX::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, float p_time,
AssetImportAnimation::Interpolation p_interp) {
//could use binary search, worth it?
int idx = -1;
for (int i = 0; i < p_times.size(); i++) {
if (p_times[i] > p_time)
break;
idx++;
}
EditorSceneImporterAssetImportInterpolate<T> interp;
switch (p_interp) {
case AssetImportAnimation::INTERP_LINEAR: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.lerp(p_values[idx], p_values[idx + 1], c);
} break;
case AssetImportAnimation::INTERP_STEP: {
if (idx == -1) {
return p_values[0];
} else if (idx >= p_times.size() - 1) {
return p_values[p_times.size() - 1];
}
return p_values[idx];
} break;
case AssetImportAnimation::INTERP_CATMULLROMSPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[1 + p_times.size() - 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
} break;
case AssetImportAnimation::INTERP_CUBIC_SPLINE: {
if (idx == -1) {
return p_values[1];
} else if (idx >= p_times.size() - 1) {
return p_values[(p_times.size() - 1) * 3 + 1];
}
float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
T from = p_values[idx * 3 + 1];
T c1 = from + p_values[idx * 3 + 2];
T to = p_values[idx * 3 + 4];
T c2 = to + p_values[idx * 3 + 3];
return interp.bezier(from, c1, c2, to, c);
} break;
}
ERR_FAIL_V(p_values[0]);
}
void set_owner_recursive(Node *root, Node *current_node) {
current_node->set_owner(root);
for (int child_id = 0; child_id < current_node->get_child_count(); child_id++) {
Node *child = current_node->get_child(child_id);
set_owner_recursive(root, child); // recursive
}
}
// tool which can get the global transform for a scene which isn't loaded.
Transform get_global_transform(Spatial *root, Spatial *child_node) {
// state.root is armature and you are using this for an armature check.
if (root == child_node) {
return root->get_transform();
}
Transform t = Transform();
Node *iter = child_node;
while (iter != nullptr && iter != root) {
Spatial *spatial = Object::cast_to<Spatial>(iter);
if (spatial) {
t *= spatial->get_transform();
}
iter = iter->get_parent();
}
return t;
}
Spatial *EditorSceneImporterFBX::_generate_scene(
const String &p_path,
const FBXDocParser::Document *p_document,
const uint32_t p_flags,
int p_bake_fps,
const int32_t p_max_bone_weights) {
ImportState state;
state.path = p_path;
state.animation_player = NULL;
// create new root node for scene
Spatial *scene_root = memnew(Spatial);
state.root = memnew(Spatial);
state.root_owner = scene_root; // the real scene root... sorry compatibility code is painful...
state.root->set_name("RootNode");
scene_root->add_child(state.root);
state.root->set_owner(scene_root);
state.fbx_root_node.instance();
state.fbx_root_node->godot_node = state.root;
// Size relative to cm.
const real_t fbx_unit_scale = p_document->GlobalSettingsPtr()->UnitScaleFactor();
// Set FBX file scale is relative to CM must be converted to M
state.scale = fbx_unit_scale / 100.0;
print_verbose("FBX unit scale is: " + rtos(state.scale));
// Enabled by default.
state.enable_material_import = true;
// Enabled by default.
state.enable_animation_import = true;
Ref<FBXNode> root_node;
root_node.instance();
root_node->node_name = "root node";
root_node->current_node_id = 0;
root_node->godot_node = state.root;
// cache this node onto the fbx_target map.
state.fbx_target_map.insert(0, root_node);
// cache basic node information from FBX document
// grabs all FBX bones
BuildDocumentBones(Ref<FBXBone>(), state, p_document, 0L);
BuildDocumentNodes(nullptr, state, p_document, 0L, nullptr);
// Build document skinning information
for (uint64_t skin_id : p_document->GetSkinIDs()) {
// Validate the parser
FBXDocParser::LazyObject *lazy_skin = p_document->GetObject(skin_id);
ERR_CONTINUE_MSG(lazy_skin == nullptr, "invalid lazy object [serious parser bug]");
// Validate the parser
const FBXDocParser::Skin *skin = lazy_skin->Get<FBXDocParser::Skin>();
ERR_CONTINUE_MSG(skin == nullptr, "invalid skin added to skin list [parser bug]");
const std::vector<const FBXDocParser::Connection *> source_to_destination = p_document->GetConnectionsBySourceSequenced(skin_id);
const std::vector<const FBXDocParser::Connection *> destination_to_source = p_document->GetConnectionsByDestinationSequenced(skin_id);
FBXDocParser::MeshGeometry *mesh = nullptr;
uint64_t mesh_id = 0;
// Most likely only contains the mesh link for the skin
// The mesh geometry.
for (const FBXDocParser::Connection *con : source_to_destination) {
// do something
print_verbose("src: " + itos(con->src));
FBXDocParser::Object *ob = con->DestinationObject();
mesh = dynamic_cast<FBXDocParser::MeshGeometry *>(ob);
if (mesh) {
mesh_id = mesh->ID();
break;
}
}
// Validate the mesh exists and was retrieved
ERR_CONTINUE_MSG(mesh_id == 0, "mesh id is invalid");
// NOTE: this will ONLY work on skinned bones (it is by design.)
// A cluster is a skinned bone so SKINS won't contain unskinned bones so we need to pre-add all bones and parent them in a step beforehand.
for (const FBXDocParser::Connection *con : destination_to_source) {
FBXDocParser::Object *ob = con->SourceObject();
//
// Read the FBX Document bone information
//
// Get bone weight data
const FBXDocParser::Cluster *deformer = dynamic_cast<const FBXDocParser::Cluster *>(ob);
ERR_CONTINUE_MSG(deformer == nullptr, "invalid bone cluster");
const uint64_t deformer_id = deformer->ID();
std::vector<const FBXDocParser::Connection *> connections = p_document->GetConnectionsByDestinationSequenced(deformer_id);
// Weight data always has a node in the scene lets grab the limb's node in the scene :) (reverse set to true since it's the opposite way around)
const FBXDocParser::ModelLimbNode *limb_node = ProcessDOMConnection<FBXDocParser::ModelLimbNode>(p_document, deformer_id, true);
ERR_CONTINUE_MSG(limb_node == nullptr, "unable to resolve model for skinned bone");
const uint64_t model_id = limb_node->ID();
// This will never happen, so if it does you know you fucked up.
ERR_CONTINUE_MSG(!state.fbx_bone_map.has(model_id), "missing LimbNode detected");
// new bone instance
Ref<FBXBone> bone_element = state.fbx_bone_map[model_id];
//
// Bone Weight Information Configuration
//
// Cache Weight Information into bone for later usage if you want the raw data.
const std::vector<unsigned int> &indexes = deformer->GetIndices();
const std::vector<float> &weights = deformer->GetWeights();
Ref<FBXMeshData> mesh_vertex_data;
// this data will pre-exist if vertex weight information is found
if (state.renderer_mesh_data.has(mesh_id)) {
mesh_vertex_data = state.renderer_mesh_data[mesh_id];
} else {
mesh_vertex_data.instance();
state.renderer_mesh_data.insert(mesh_id, mesh_vertex_data);
}
mesh_vertex_data->armature_id = bone_element->armature_id;
mesh_vertex_data->valid_armature_id = true;
//print_verbose("storing mesh vertex data for mesh to use later");
ERR_CONTINUE_MSG(indexes.size() != weights.size(), "[doc] error mismatch between weight info");
for (size_t idx = 0; idx < indexes.size(); idx++) {
const size_t vertex_index = indexes[idx];
const real_t influence_weight = weights[idx];
VertexWeightMapping &vm = mesh_vertex_data->vertex_weights[vertex_index];
vm.weights.push_back(influence_weight);
vm.bones.push_back(0);
vm.bones_ref.push_back(bone_element);
}
for (const int *vertex_index = mesh_vertex_data->vertex_weights.next(nullptr);
vertex_index != nullptr;
vertex_index = mesh_vertex_data->vertex_weights.next(vertex_index)) {
VertexWeightMapping *vm = mesh_vertex_data->vertex_weights.getptr(*vertex_index);
const int influence_count = vm->weights.size();
if (influence_count > mesh_vertex_data->max_weight_count) {
mesh_vertex_data->max_weight_count = influence_count;
mesh_vertex_data->valid_weight_count = true;
}
}
if (mesh_vertex_data->max_weight_count > 4) {
if (mesh_vertex_data->max_weight_count > 8) {
ERR_PRINT("[doc] Serious: maximum bone influences is 8 in this branch.");
}
// Clamp to 8 bone vertex influences.
mesh_vertex_data->max_weight_count = 8;
print_verbose("[doc] Using 8 vertex bone influences configuration.");
} else {
mesh_vertex_data->max_weight_count = 4;
print_verbose("[doc] Using 4 vertex bone influences configuration.");
}
}
}
// do we globally allow for import of materials
// (prevents overwrite of materials; so you can handle them explicitly)
if (state.enable_material_import) {
const std::vector<uint64_t> &materials = p_document->GetMaterialIDs();
for (uint64_t material_id : materials) {
FBXDocParser::LazyObject *lazy_material = p_document->GetObject(material_id);
FBXDocParser::Material *mat = (FBXDocParser::Material *)lazy_material->Get<FBXDocParser::Material>();
ERR_CONTINUE_MSG(!mat, "Could not convert fbx material by id: " + itos(material_id));
Ref<FBXMaterial> material;
material.instance();
material->set_imported_material(mat);
Ref<SpatialMaterial> godot_material = material->import_material(state);
state.cached_materials.insert(material_id, godot_material);
}
}
// build skin and skeleton information
print_verbose("[doc] Skeleton Bone count: " + itos(state.fbx_bone_map.size()));
// Importing bones using document based method from FBX directly
// We do not use the assimp bone format to determine this information anymore.
if (state.fbx_bone_map.size() > 0) {
// We are using a single skeleton only method here
// this is because we really have no concept of skeletons in FBX
// their are bones in a scene but they have no specific armature
// we can detect armatures but the issue lies in the complexity
// we opted to merge the entire scene onto one skeleton for now
// if we need to change this we have an archive of the old code.
const std::vector<uint64_t> &bind_pose_ids = p_document->GetBindPoseIDs();
for (uint64_t skin_id : bind_pose_ids) {
FBXDocParser::LazyObject *lazy_skin = p_document->GetObject(skin_id);
const FBXDocParser::FbxPose *active_skin = lazy_skin->Get<FBXDocParser::FbxPose>();
if (active_skin) {
const std::vector<FBXDocParser::FbxPoseNode *> &bind_poses = active_skin->GetBindPoses();
for (FBXDocParser::FbxPoseNode *pose_node : bind_poses) {
Transform t = pose_node->GetBindPose();
uint64_t fbx_node_id = pose_node->GetNodeID();
if (state.fbx_bone_map.has(fbx_node_id)) {
Ref<FBXBone> bone = state.fbx_bone_map[fbx_node_id];
if (bone.is_valid()) {
print_verbose("assigned skin pose from the file for bone " + bone->bone_name + ", transform: " + t);
bone->pose_node = t;
bone->assigned_pose_node = true;
}
}
}
}
}
// bind pose normally only has 1 per mesh but can have more than one
// this is the point of skins
// in FBX first bind pose is the master for the first skin
// In order to handle the FBX skeleton we must also inverse any parent transforms on the bones
// just to rule out any parent node transforms in the bone data
// this is trivial to do and allows us to use the single skeleton method and merge them
// this means that the nodes from maya kLocators will be preserved as bones
// in the same rig without having to match this across skeletons and merge by detection
// we can just merge and undo any parent transforms
for (Map<uint64_t, Ref<FBXBone> >::Element *bone_element = state.fbx_bone_map.front(); bone_element; bone_element = bone_element->next()) {
Ref<FBXBone> bone = bone_element->value();
Ref<FBXSkeleton> fbx_skeleton_inst;
uint64_t armature_id = bone->armature_id;
if (state.skeleton_map.has(armature_id)) {
fbx_skeleton_inst = state.skeleton_map[armature_id];
} else {
fbx_skeleton_inst.instance();
state.skeleton_map.insert(armature_id, fbx_skeleton_inst);
}
print_verbose("populating skeleton with bone: " + bone->bone_name);
// // populate bone skeleton - since fbx has no DOM for the skeleton just a node.
// bone->bone_skeleton = fbx_skeleton_inst;
// now populate bone on the armature node list
fbx_skeleton_inst->skeleton_bones.push_back(bone);
// we need to have a valid armature id and the model configured for the bone to be assigned fully.
// happens once per skeleton
if (state.fbx_target_map.has(armature_id) && !fbx_skeleton_inst->has_model()) {
Ref<FBXNode> node = state.fbx_target_map[armature_id];
fbx_skeleton_inst->set_model(node->get_model());
fbx_skeleton_inst->fbx_node = node;
print_verbose("allocated fbx skeleton primary / armature node for the level: " + node->node_name);
} else if (!state.fbx_target_map.has(armature_id) && !fbx_skeleton_inst->has_model()) {
print_error("bones are not mapped to an armature node for armature id: " + itos(armature_id) + " bone: " + bone->bone_name);
// this means bone will be removed and not used, which is safe actually and no skeleton will be created.
}
}
// setup skeleton instances if required :)
for (Map<uint64_t, Ref<FBXSkeleton> >::Element *skeleton_node = state.skeleton_map.front(); skeleton_node; skeleton_node = skeleton_node->next()) {
skeleton_node->value()->init_skeleton(state);
}
}
// build godot node tree
if (state.fbx_node_list.size() > 0) {
for (List<Ref<FBXNode> >::Element *node_element = state.fbx_node_list.front();
node_element;
node_element = node_element->next()) {
Ref<FBXNode> fbx_node = node_element->get();
MeshInstance *mesh_node = nullptr;
Ref<FBXMeshData> mesh_data_precached;
// check for valid geometry
if (fbx_node->fbx_model == nullptr) {
print_error("[doc] fundamental flaw, submit bug immediately with full import log with verbose logging on");
} else {
const std::vector<const FBXDocParser::Geometry *> &geometry = fbx_node->fbx_model->GetGeometry();
for (const FBXDocParser::Geometry *mesh : geometry) {
print_verbose("[doc] [" + itos(mesh->ID()) + "] mesh: " + fbx_node->node_name);
if (mesh == nullptr)
continue;
const FBXDocParser::MeshGeometry *mesh_geometry = dynamic_cast<const FBXDocParser::MeshGeometry *>(mesh);
if (mesh_geometry) {
uint64_t mesh_id = mesh_geometry->ID();
// this data will pre-exist if vertex weight information is found
if (state.renderer_mesh_data.has(mesh_id)) {
mesh_data_precached = state.renderer_mesh_data[mesh_id];
} else {
mesh_data_precached.instance();
state.renderer_mesh_data.insert(mesh_id, mesh_data_precached);
}
// mesh node, mesh id
mesh_node = mesh_data_precached->create_fbx_mesh(state, mesh_geometry, fbx_node->fbx_model, (p_flags & IMPORT_USE_COMPRESSION) != 0);
if (!state.MeshNodes.has(mesh_id)) {
state.MeshNodes.insert(mesh_id, fbx_node);
}
}
const FBXDocParser::ShapeGeometry *shape_geometry = dynamic_cast<const FBXDocParser::ShapeGeometry *>(mesh);
if (shape_geometry != nullptr) {
print_verbose("[doc] valid shape geometry converted");
}
}
}
Ref<FBXSkeleton> node_skeleton = fbx_node->skeleton_node;
if (node_skeleton.is_valid()) {
Skeleton *skel = node_skeleton->skeleton;
fbx_node->godot_node = skel;
} else if (mesh_node == nullptr) {
fbx_node->godot_node = memnew(Spatial);
} else {
fbx_node->godot_node = mesh_node;
}
fbx_node->godot_node->set_name(fbx_node->node_name);
// assign parent if valid
if (fbx_node->fbx_parent.is_valid()) {
fbx_node->fbx_parent->godot_node->add_child(fbx_node->godot_node);
fbx_node->godot_node->set_owner(state.root_owner);
}
// Node Transform debug, set local xform data.
fbx_node->godot_node->set_transform(get_unscaled_transform(fbx_node->pivot_transform->LocalTransform, state.scale));
// populate our mesh node reference
if (mesh_node != nullptr && mesh_data_precached.is_valid()) {
mesh_data_precached->godot_mesh_instance = mesh_node;
}
}
}
for (Map<uint64_t, Ref<FBXNode> >::Element *skin_mesh = state.MeshNodes.front(); skin_mesh; skin_mesh = skin_mesh->next()) {
const uint64_t mesh_id = skin_mesh->key();
Ref<FBXNode> fbx_node = skin_mesh->value();
ERR_CONTINUE_MSG(state.MeshSkins.has(skin_mesh->key()), "invalid skin already exists for this mesh?");
print_verbose("[doc] caching skin for " + itos(mesh_id) + ", mesh node name: " + fbx_node->node_name);
Ref<Skin> skin;
skin.instance();
for (Map<uint64_t, Ref<FBXBone> >::Element *elem = state.fbx_bone_map.front(); elem; elem = elem->next()) {
Ref<FBXBone> bone = elem->value();
Transform ignore_t;
Ref<FBXSkeleton> skeleton = bone->fbx_skeleton;
// grab the skin bind
bool valid_bind = false;
Transform bind = bone->get_vertex_skin_xform(state, fbx_node->pivot_transform->GlobalTransform, valid_bind);
ERR_CONTINUE_MSG(!valid_bind, "invalid bind");
if (bind.basis.determinant() == 0) {
bind = Transform(Basis(), bind.origin);
}
skin->add_named_bind(bone->bone_name, get_unscaled_transform(bind, state.scale));
}
state.MeshSkins.insert(mesh_id, skin);
}
// mesh data iteration for populating skeleton mapping
for (Map<uint64_t, Ref<FBXMeshData> >::Element *mesh_data = state.renderer_mesh_data.front(); mesh_data; mesh_data = mesh_data->next()) {
Ref<FBXMeshData> mesh = mesh_data->value();
const uint64_t mesh_id = mesh_data->key();
MeshInstance *mesh_instance = mesh->godot_mesh_instance;
const int mesh_weights = mesh->max_weight_count;
Ref<FBXSkeleton> skeleton;
const bool valid_armature = mesh->valid_armature_id;
const uint64_t armature = mesh->armature_id;
if (mesh_weights > 0) {
// this is a bug, it means the weights were found but the skeleton wasn't
ERR_CONTINUE_MSG(!valid_armature, "[doc] fbx armature is missing");
} else {
continue; // safe to continue not a bug just a normal mesh
}
if (state.skeleton_map.has(armature)) {
skeleton = state.skeleton_map[armature];
print_verbose("[doc] armature mesh to skeleton mapping has been allocated");
} else {
print_error("[doc] unable to find armature mapping");
}
ERR_CONTINUE_MSG(!mesh_instance, "[doc] invalid mesh mapping for skeleton assignment");
ERR_CONTINUE_MSG(skeleton.is_null(), "[doc] unable to resolve the correct skeleton but we have weights!");
mesh_instance->set_skeleton_path(mesh_instance->get_path_to(skeleton->skeleton));
print_verbose("[doc] allocated skeleton to mesh " + mesh_instance->get_name());
// do we have a mesh skin for this mesh
ERR_CONTINUE_MSG(!state.MeshSkins.has(mesh_id), "no skin found for mesh");
Ref<Skin> mesh_skin = state.MeshSkins[mesh_id];
ERR_CONTINUE_MSG(mesh_skin.is_null(), "invalid skin stored in map");
print_verbose("[doc] allocated skin to mesh " + mesh_instance->get_name());
mesh_instance->set_skin(mesh_skin);
}
// build skin and skeleton information
print_verbose("[doc] Skeleton Bone count: " + itos(state.fbx_bone_map.size()));
const FBXDocParser::FileGlobalSettings *FBXSettings = p_document->GlobalSettingsPtr();
// Configure constraints
// NOTE: constraints won't be added quite yet, we don't have a real need for them *yet*. (they can be supported later on)
// const std::vector<uint64_t> fbx_constraints = p_document->GetConstraintStackIDs();
// get the animation FPS
float fps_setting = ImportUtils::get_fbx_fps(FBXSettings);
// enable animation import, only if local animation is enabled
if (state.enable_animation_import && (p_flags & IMPORT_ANIMATION)) {
// document animation stack list - get by ID so we can unload any non used animation stack
const std::vector<uint64_t> animation_stack = p_document->GetAnimationStackIDs();
for (uint64_t anim_id : animation_stack) {
FBXDocParser::LazyObject *lazyObject = p_document->GetObject(anim_id);
const FBXDocParser::AnimationStack *stack = lazyObject->Get<FBXDocParser::AnimationStack>();
if (stack != nullptr) {
String animation_name = ImportUtils::FBXNodeToName(stack->Name());
print_verbose("Valid animation stack has been found: " + animation_name);
// ReferenceTime is the same for some animations?
// LocalStop time is the start and end time
float r_start = CONVERT_FBX_TIME(stack->ReferenceStart());
float r_stop = CONVERT_FBX_TIME(stack->ReferenceStop());
float start_time = CONVERT_FBX_TIME(stack->LocalStart());
float end_time = CONVERT_FBX_TIME(stack->LocalStop());
float duration = end_time - start_time;
print_verbose("r_start " + rtos(r_start) + ", r_stop " + rtos(r_stop));
print_verbose("start_time" + rtos(start_time) + " end_time " + rtos(end_time));
print_verbose("anim duration : " + rtos(duration));
// we can safely create the animation player
if (state.animation_player == nullptr) {
print_verbose("Creating animation player");
state.animation_player = memnew(AnimationPlayer);
state.root->add_child(state.animation_player);
state.animation_player->set_owner(state.root_owner);
}
Ref<Animation> animation;
animation.instance();
animation->set_name(animation_name);
animation->set_length(duration);
print_verbose("Animation length: " + rtos(animation->get_length()) + " seconds");
// i think assimp was duplicating things, this lets me know to just reference or ignore this to prevent duplicate information in tracks
// this would mean that we would be doing three times as much work per track if my theory is correct.
// this was not the case but this is a good sanity check for the animation handler from the document.
// it also lets us know if the FBX specification massively changes the animation system, in theory such a change would make this show
// an fbx specification error, so best keep it in
// the overhead is tiny.
Map<uint64_t, const FBXDocParser::AnimationCurve *> CheckForDuplication;
const std::vector<const FBXDocParser::AnimationLayer *> &layers = stack->Layers();
print_verbose("FBX Animation layers: " + itos(layers.size()));
for (const FBXDocParser::AnimationLayer *layer : layers) {
std::vector<const FBXDocParser::AnimationCurveNode *> node_list = layer->Nodes();
print_verbose("Layer: " + ImportUtils::FBXNodeToName(layer->Name()) + ", " + " AnimCurveNode count " + itos(node_list.size()));
// first thing to do here is that i need to first get the animcurvenode to a Vector3
// we now need to put this into the track information for godot.
// to do this we need to know which track is what?
// target id, [ track name, [time index, vector] ]
// new map needs to be [ track name, keyframe_data ]
Map<uint64_t, Map<StringName, FBXTrack> > AnimCurveNodes;
// struct AnimTrack {
// // Animation track can be
// // visible, T, R, S
// Map<StringName, Map<uint64_t, Vector3> > animation_track;
// };
// Map<uint64_t, AnimTrack> AnimCurveNodes;
// so really, what does this mean to make an animtion track.
// we need to know what object the curves are for.
// we need the target ID and the target name for the track reduction.
FBXDocParser::Model::RotOrder quat_rotation_order = FBXDocParser::Model::RotOrder_EulerXYZ;
// T:: R:: S:: Visible:: Custom::
for (const FBXDocParser::AnimationCurveNode *curve_node : node_list) {
// when Curves() is called the curves are actually read, we could replace this with our own ProcessDomConnection code here if required.
// We may need to do this but ideally we use Curves
// note: when you call this there might be a delay in opening it
// uses mutable type to 'cache' the response until the AnimationCurveNode is cleaned up.
std::map<std::string, const FBXDocParser::AnimationCurve *> curves = curve_node->Curves();
const FBXDocParser::Object *object = curve_node->Target();
const FBXDocParser::Model *target = curve_node->TargetAsModel();
if (target == nullptr) {
if (object != nullptr) {
print_error("[doc] warning failed to find a target Model for curve: " + String(object->Name().c_str()));
} else {
//print_error("[doc] failed to resolve object");
continue;
}
continue;
} else {
//print_verbose("[doc] applied rotation order: " + itos(target->RotationOrder()));
quat_rotation_order = target->RotationOrder();
}
uint64_t target_id = target->ID();
String target_name = ImportUtils::FBXNodeToName(target->Name());
const FBXDocParser::PropertyTable *properties = curve_node->Props();
bool got_x = false, got_y = false, got_z = false;
float offset_x = FBXDocParser::PropertyGet<float>(properties, "d|X", got_x);
float offset_y = FBXDocParser::PropertyGet<float>(properties, "d|Y", got_y);
float offset_z = FBXDocParser::PropertyGet<float>(properties, "d|Z", got_z);
String curve_node_name = ImportUtils::FBXNodeToName(curve_node->Name());
// Reduce all curves for this node into a single container
// T, R, S is what we expect, although other tracks are possible
// like for example visibility tracks.
// We are not ordered here, we don't care about ordering, this happens automagically by godot when we insert with the
// key time :), so order is unimportant because the insertion will happen at a time index
// good to know: we do not need a list of these in another format :)
//Map<String, Vector<const Assimp::FBX::AnimationCurve *> > unordered_track;
// T
// R
// S
// Map[String, List<VECTOR>]
// So this is a reduction of the animation curve nodes
// We build this as a lookup, this is essentially our 'animation track'
//AnimCurveNodes.insert(curve_node_name, Map<uint64_t, Vector3>());
// create the animation curve information with the target id
// so the point of this makes a track with the name "T" for example
// the target ID is also set here, this means we don't need to do anything extra when we are in the 'create all animation tracks' step
FBXTrack &keyframe_map = AnimCurveNodes[target_id][StringName(curve_node_name)];
if (got_x && got_y && got_z) {
Vector3 default_value = Vector3(offset_x, offset_y, offset_z);
keyframe_map.default_value = default_value;
keyframe_map.has_default = true;
//print_verbose("track name: " + curve_node_name);
//print_verbose("xyz default: " + default_value);
}
// target id, [ track name, [time index, vector] ]
// Map<uint64_t, Map<StringName, Map<uint64_t, Vector3> > > AnimCurveNodes;
// we probably need the target id here.
// so map[uint64_t map]...
// Map<uint64_t, Vector3D> translation_keys, rotation_keys, scale_keys;
// extra const required by C++11 colon/Range operator
// note: do not use C++17 syntax here for dicts.
// this is banned in Godot.
for (std::pair<const std::string, const FBXDocParser::AnimationCurve *> &kvp : curves) {
const String curve_element = ImportUtils::FBXNodeToName(kvp.first);
const FBXDocParser::AnimationCurve *curve = kvp.second;
String curve_name = ImportUtils::FBXNodeToName(curve->Name());
uint64_t curve_id = curve->ID();
if (CheckForDuplication.has(curve_id)) {
print_error("(FBX spec changed?) We found a duplicate curve being used for an alternative node - report to godot issue tracker");
} else {
CheckForDuplication.insert(curve_id, curve);
}
// FBX has no name for AnimCurveNode::, most of the time, not seen any with valid name here.
const std::map<int64_t, float> &track_time = curve->GetValueTimeTrack();
if (track_time.size() > 0) {
for (std::pair<int64_t, float> keyframe : track_time) {
if (curve_element == "d|X") {
keyframe_map.keyframes[keyframe.first].x = keyframe.second;
} else if (curve_element == "d|Y") {
keyframe_map.keyframes[keyframe.first].y = keyframe.second;
} else if (curve_element == "d|Z") {
keyframe_map.keyframes[keyframe.first].z = keyframe.second;
} else {
//print_error("FBX Unsupported element: " + curve_element);
}
//print_verbose("[" + itos(target_id) + "] Keyframe added: " + itos(keyframe_map.size()));
//print_verbose("Keyframe t:" + rtos(animation_track_time) + " v: " + rtos(keyframe.second));
}
}
}
}
// Map<uint64_t, Map<StringName, Map<uint64_t, Vector3> > > AnimCurveNodes;
// add this animation track here
// target id, [ track name, [time index, vector] ]
//std::map<uint64_t, std::map<StringName, FBXTrack > > AnimCurveNodes;
for (Map<uint64_t, Map<StringName, FBXTrack> >::Element *track = AnimCurveNodes.front(); track; track = track->next()) {
// 5 tracks
// current track index
// track count is 5
// track count is 5.
// next track id is 5.
const uint64_t target_id = track->key();
int track_idx = animation->add_track(Animation::TYPE_TRANSFORM);
// animation->track_set_path(track_idx, node_path);
// animation->track_set_path(track_idx, node_path);
Ref<FBXBone> bone;
// note we must not run the below code if the entry doesn't exist, it will create dummy entries which is very bad.
// remember that state.fbx_bone_map[target_id] will create a new entry EVEN if you only read.
// this would break node animation targets, so if you change this be warned. :)
if (state.fbx_bone_map.has(target_id)) {
bone = state.fbx_bone_map[target_id];
}
Transform target_transform;
if (state.fbx_target_map.has(target_id)) {
Ref<FBXNode> node_ref = state.fbx_target_map[target_id];
target_transform = node_ref->pivot_transform->GlobalTransform;
//print_verbose("[doc] allocated animation node transform");
}
//int size_targets = state.fbx_target_map.size();
//print_verbose("Target ID map: " + itos(size_targets));
//print_verbose("[doc] debug bone map size: " + itos(state.fbx_bone_map.size()));
// if this is a skeleton mapped track we can just set the path for the track.
// todo: implement node paths here at some
if (state.fbx_bone_map.size() > 0 && state.fbx_bone_map.has(target_id)) {
if (bone->fbx_skeleton.is_valid() && bone.is_valid()) {
Ref<FBXSkeleton> fbx_skeleton = bone->fbx_skeleton;
String bone_path = state.root->get_path_to(fbx_skeleton->skeleton);
bone_path += ":" + fbx_skeleton->skeleton->get_bone_name(bone->godot_bone_id);
print_verbose("[doc] track bone path: " + bone_path);
NodePath path = bone_path;
animation->track_set_path(track_idx, path);
}
} else if (state.fbx_target_map.has(target_id)) {
//print_verbose("[doc] we have a valid target for a node animation");
Ref<FBXNode> target_node = state.fbx_target_map[target_id];
if (target_node.is_valid() && target_node->godot_node != nullptr) {
String node_path = state.root->get_path_to(target_node->godot_node);
NodePath path = node_path;
animation->track_set_path(track_idx, path);
//print_verbose("[doc] node animation path: " + node_path);
}
} else {
// note: this could actually be unsafe this means we should be careful about continuing here, if we see bizzare effects later we should disable this.
// I am not sure if this is unsafe or not, testing will tell us this.
print_error("[doc] invalid fbx target detected for this track");
continue;
}
// everything in FBX and Maya is a node therefore if this happens something is seriously broken.
if (!state.fbx_target_map.has(target_id)) {
print_error("unable to resolve this to an FBX object.");
continue;
}
Ref<FBXNode> target_node = state.fbx_target_map[target_id];
const FBXDocParser::Model *model = target_node->fbx_model;
const FBXDocParser::PropertyTable *props = model->Props();
Map<StringName, FBXTrack> &track_data = track->value();
FBXTrack &translation_keys = track_data[StringName("T")];
FBXTrack &rotation_keys = track_data[StringName("R")];
FBXTrack &scale_keys = track_data[StringName("S")];
double increment = 1.0f / fps_setting;
double time = 0.0f;
bool last = false;
Vector<Vector3> pos_values;
Vector<float> pos_times;
Vector<Vector3> scale_values;
Vector<float> scale_times;
Vector<Quat> rot_values;
Vector<float> rot_times;
double max_duration = 0;
double anim_length = animation->get_length();
for (std::pair<int64_t, Vector3> position_key : translation_keys.keyframes) {
pos_values.push_back(position_key.second * state.scale);
double animation_track_time = CONVERT_FBX_TIME(position_key.first);
if (animation_track_time > max_duration) {
max_duration = animation_track_time;
}
//print_verbose("pos keyframe: t:" + rtos(animation_track_time) + " value " + position_key.second);
pos_times.push_back(animation_track_time);
}
for (std::pair<int64_t, Vector3> scale_key : scale_keys.keyframes) {
scale_values.push_back(scale_key.second);
double animation_track_time = CONVERT_FBX_TIME(scale_key.first);
if (animation_track_time > max_duration) {
max_duration = animation_track_time;
}
//print_verbose("scale keyframe t:" + rtos(animation_track_time));
scale_times.push_back(animation_track_time);
}
//
// Pre and Post keyframe rotation handler
// -- Required because Maya and Autodesk <3 the pain when it comes to implementing animation code! enjoy <3
bool got_pre = false;
bool got_post = false;
Quat post_rotation;
Quat pre_rotation;
// Rotation matrix
const Vector3 &PreRotation = FBXDocParser::PropertyGet<Vector3>(props, "PreRotation", got_pre);
const Vector3 &PostRotation = FBXDocParser::PropertyGet<Vector3>(props, "PostRotation", got_post);
FBXDocParser::Model::RotOrder rot_order = model->RotationOrder();
if (got_pre) {
pre_rotation = ImportUtils::EulerToQuaternion(rot_order, ImportUtils::deg2rad(PreRotation));
}
if (got_post) {
post_rotation = ImportUtils::EulerToQuaternion(rot_order, ImportUtils::deg2rad(PostRotation));
}
Quat lastQuat = Quat();
for (std::pair<int64_t, Vector3> rotation_key : rotation_keys.keyframes) {
double animation_track_time = CONVERT_FBX_TIME(rotation_key.first);
//print_verbose("euler rotation key: " + rotation_key.second);
Quat rot_key_value = ImportUtils::EulerToQuaternion(quat_rotation_order, ImportUtils::deg2rad(rotation_key.second));
if (lastQuat != Quat() && rot_key_value.dot(lastQuat) < 0) {
rot_key_value.x = -rot_key_value.x;
rot_key_value.y = -rot_key_value.y;
rot_key_value.z = -rot_key_value.z;
rot_key_value.w = -rot_key_value.w;
}
// pre_post rotation possibly could fix orientation
Quat final_rotation = pre_rotation * rot_key_value * post_rotation;
lastQuat = final_rotation;
if (animation_track_time > max_duration) {
max_duration = animation_track_time;
}
rot_values.push_back(final_rotation);
rot_times.push_back(animation_track_time);
}
bool valid_rest = false;
Transform bone_rest;
int skeleton_bone = -1;
if (state.fbx_bone_map.has(target_id)) {
if (bone.is_valid() && bone->fbx_skeleton.is_valid()) {
skeleton_bone = bone->godot_bone_id;
if (skeleton_bone >= 0) {
bone_rest = bone->fbx_skeleton->skeleton->get_bone_rest(skeleton_bone);
valid_rest = true;
}
}
if (!valid_rest) {
print_verbose("invalid rest!");
}
}
const Vector3 def_pos = translation_keys.has_default ? (translation_keys.default_value * state.scale) : bone_rest.origin;
const Quat def_rot = rotation_keys.has_default ? ImportUtils::EulerToQuaternion(quat_rotation_order, ImportUtils::deg2rad(rotation_keys.default_value)) : bone_rest.basis.get_rotation_quat();
const Vector3 def_scale = scale_keys.has_default ? scale_keys.default_value : bone_rest.basis.get_scale();
print_verbose("track defaults: p(" + def_pos + ") s(" + def_scale + ") r(" + def_rot + ")");
while (true) {
Vector3 pos = def_pos;
Quat rot = def_rot;
Vector3 scale = def_scale;
if (pos_values.size()) {
pos = _interpolate_track<Vector3>(pos_times, pos_values, time,
AssetImportAnimation::INTERP_LINEAR);
}
if (rot_values.size()) {
rot = _interpolate_track<Quat>(rot_times, rot_values, time,
AssetImportAnimation::INTERP_LINEAR);
}
if (scale_values.size()) {
scale = _interpolate_track<Vector3>(scale_times, scale_values, time,
AssetImportAnimation::INTERP_LINEAR);
}
// node animations must also include pivots
if (skeleton_bone >= 0) {
Transform xform = Transform();
xform.basis.set_quat_scale(rot, scale);
xform.origin = pos;
const Transform t = bone_rest.affine_inverse() * xform;
// populate this again
rot = t.basis.get_rotation_quat();
rot.normalize();
scale = t.basis.get_scale();
pos = t.origin;
}
animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
if (last) {
break;
}
time += increment;
if (time > anim_length) {
last = true;
time = anim_length;
break;
}
}
}
}
state.animation_player->add_animation(animation_name, animation);
}
}
// AnimStack elements contain start stop time and name of animation
// AnimLayer is the current active layer of the animation (multiple layers can be active we only support 1)
// AnimCurveNode has a OP link back to the model which is the real node.
// AnimCurveNode has a direct link to AnimationCurve (of which it may have more than one)
// Store animation stack in list
// iterate over all AnimStacks like the cache node algorithm recursively
// this can then be used with ProcessDomConnection<> to link from
// AnimStack:: <-- (OO) --> AnimLayer:: <-- (OO) --> AnimCurveNode:: (which can OP resolve) to Model::
}
//
// Cleanup operations - explicit to prevent errors on shutdown - found that ref to ref does behave badly sometimes.
//
state.renderer_mesh_data.clear();
state.MeshSkins.clear();
state.fbx_target_map.clear();
state.fbx_node_list.clear();
for (Map<uint64_t, Ref<FBXBone> >::Element *element = state.fbx_bone_map.front(); element; element = element->next()) {
Ref<FBXBone> bone = element->value();
bone->parent_bone.unref();
bone->pivot_xform.unref();
bone->fbx_skeleton.unref();
}
for (Map<uint64_t, Ref<FBXSkeleton> >::Element *element = state.skeleton_map.front(); element; element = element->next()) {
Ref<FBXSkeleton> skel = element->value();
skel->fbx_node.unref();
skel->skeleton_bones.clear();
}
state.fbx_bone_map.clear();
state.skeleton_map.clear();
state.fbx_root_node.unref();
return scene_root;
}
void EditorSceneImporterFBX::BuildDocumentBones(Ref<FBXBone> p_parent_bone,
ImportState &state, const FBXDocParser::Document *p_doc,
uint64_t p_id) {
const std::vector<const FBXDocParser::Connection *> &conns = p_doc->GetConnectionsByDestinationSequenced(p_id, "Model");
// FBX can do an join like this
// Model -> SubDeformer (bone) -> Deformer (skin pose)
// This is important because we need to somehow link skin back to bone id in skeleton :)
// The rules are:
// A subdeformer will exist if 'limbnode' class tag present
// The subdeformer will not necessarily have a deformer as joints do not have one
for (const FBXDocParser::Connection *con : conns) {
// goto: bone creation
//print_verbose("con: " + String(con->PropertyName().c_str()));
// ignore object-property links we want the object to object links nothing else
if (con->PropertyName().length()) {
continue;
}
// convert connection source object into Object base class
const FBXDocParser::Object *const object = con->SourceObject();
if (nullptr == object) {
print_verbose("failed to convert source object for Model link");
continue;
}
// FBX Model::Cube, Model::Bone001, etc elements
// This detects if we can cast the object into this model structure.
const FBXDocParser::Model *const model = dynamic_cast<const FBXDocParser::Model *>(object);
// declare our bone element reference (invalid, unless we create a bone in this step)
// this lets us pass valid armature information into children objects and this is why we moved this up here
// previously this was created .instanced() on the same line.
Ref<FBXBone> bone_element;
if (model != nullptr) {
// model marked with limb node / casted.
const FBXDocParser::ModelLimbNode *const limb_node = dynamic_cast<const FBXDocParser::ModelLimbNode *>(model);
if (limb_node != nullptr) {
// Write bone into bone list for FBX
ERR_FAIL_COND_MSG(state.fbx_bone_map.has(limb_node->ID()), "[serious] duplicate LimbNode detected");
bool parent_is_bone = state.fbx_bone_map.find(p_id);
bone_element.instance();
// used to build the bone hierarchy in the skeleton
bone_element->parent_bone_id = parent_is_bone ? p_id : 0;
bone_element->valid_parent = parent_is_bone;
bone_element->limb_node = limb_node;
// parent is a node and this is the first bone
if (!parent_is_bone) {
uint64_t armature_id = p_id;
bone_element->valid_armature_id = true;
bone_element->armature_id = armature_id;
print_verbose("[doc] valid armature has been configured for first child: " + itos(armature_id));
} else if (p_parent_bone.is_valid()) {
if (p_parent_bone->valid_armature_id) {
bone_element->valid_armature_id = true;
bone_element->armature_id = p_parent_bone->armature_id;
print_verbose("[doc] bone has valid armature id:" + itos(bone_element->armature_id));
} else {
print_error("[doc] unassigned armature id: " + String(limb_node->Name().c_str()));
}
} else {
print_error("[doc] error is this a bone? " + String(limb_node->Name().c_str()));
}
if (!parent_is_bone) {
print_verbose("[doc] Root bone: " + bone_element->bone_name);
}
uint64_t limb_id = limb_node->ID();
const FBXDocParser::Cluster *deformer = ProcessDOMConnection<FBXDocParser::Cluster>(p_doc, limb_id);
bone_element->bone_name = ImportUtils::FBXNodeToName(model->Name());
bone_element->parent_bone = p_parent_bone;
if (deformer != nullptr) {
print_verbose("[doc] Mesh Cluster: " + String(deformer->Name().c_str()) + ", " + deformer->TransformLink());
print_verbose("fbx node: debug name: " + String(model->Name().c_str()) + "bone name: " + String(deformer->Name().c_str()));
// assign FBX animation bind pose compensation data;
bone_element->transform_link = deformer->TransformLink();
bone_element->transform_matrix = deformer->GetTransform();
bone_element->cluster = deformer;
// skin configures target node ID.
bone_element->target_node_id = deformer->TargetNode()->ID();
bone_element->valid_target = true;
bone_element->bone_id = limb_id;
}
// insert limb by ID into list.
state.fbx_bone_map.insert(limb_node->ID(), bone_element);
}
// recursion call - child nodes
BuildDocumentBones(bone_element, state, p_doc, model->ID());
}
}
}
void EditorSceneImporterFBX::BuildDocumentNodes(
Ref<PivotTransform> parent_transform,
ImportState &state,
const FBXDocParser::Document *p_doc,
uint64_t id,
Ref<FBXNode> parent_node) {
// tree
// here we get the node 0 on the root by default
const std::vector<const FBXDocParser::Connection *> &conns = p_doc->GetConnectionsByDestinationSequenced(id, "Model");
// branch
for (const FBXDocParser::Connection *con : conns) {
// ignore object-property links
if (con->PropertyName().length()) {
// really important we document why this is ignored.
print_verbose("ignoring property link - no docs on why this is ignored");
continue;
}
// convert connection source object into Object base class
// Source objects can exist with 'null connections' this means that we only for sure know the source exists.
const FBXDocParser::Object *const source_object = con->SourceObject();
if (nullptr == source_object) {
print_verbose("failed to convert source object for Model link");
continue;
}
// FBX Model::Cube, Model::Bone001, etc elements
// This detects if we can cast the object into this model structure.
const FBXDocParser::Model *const model = dynamic_cast<const FBXDocParser::Model *>(source_object);
// model is the current node
if (nullptr != model) {
uint64_t current_node_id = model->ID();
Ref<FBXNode> new_node;
new_node.instance();
new_node->current_node_id = current_node_id;
new_node->node_name = ImportUtils::FBXNodeToName(model->Name());
Ref<PivotTransform> fbx_transform;
fbx_transform.instance();
fbx_transform->set_parent(parent_transform);
fbx_transform->set_model(model);
fbx_transform->debug_pivot_xform("name: " + new_node->node_name);
fbx_transform->Execute();
new_node->set_pivot_transform(fbx_transform);
// check if this node is a bone
if (state.fbx_bone_map.has(current_node_id)) {
Ref<FBXBone> bone = state.fbx_bone_map[current_node_id];
if (bone.is_valid()) {
bone->set_pivot_xform(fbx_transform);
print_verbose("allocated bone data: " + bone->bone_name);
}
}
// set the model, we can't just assign this safely
new_node->set_model(model);
if (parent_node.is_valid()) {
new_node->set_parent(parent_node);
} else {
new_node->set_parent(state.fbx_root_node);
}
// populate lookup tables with references
// [fbx_node_id, fbx_node]
state.fbx_node_list.push_back(new_node);
if (!state.fbx_target_map.has(new_node->current_node_id)) {
state.fbx_target_map[new_node->current_node_id] = new_node;
}
// print node name
print_verbose("[doc] new node " + new_node->node_name);
// sub branches
BuildDocumentNodes(new_node->pivot_transform, state, p_doc, current_node_id, new_node);
}
}
}