godot/servers/visual/visual_server_scene.cpp
lawnjelly 279e6f65cd Portals - add reason string to unload message
To help users identify conditions that are causing room system invalidation, a reason message is passed to the unload function and logged.
2021-09-24 14:00:24 +01:00

4106 lines
142 KiB
C++

/*************************************************************************/
/* visual_server_scene.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "visual_server_scene.h"
#include "core/os/os.h"
#include "visual_server_globals.h"
#include "visual_server_raster.h"
#include <new>
/* CAMERA API */
RID VisualServerScene::camera_create() {
Camera *camera = memnew(Camera);
return camera_owner.make_rid(camera);
}
void VisualServerScene::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::PERSPECTIVE;
camera->fov = p_fovy_degrees;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void VisualServerScene::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::ORTHOGONAL;
camera->size = p_size;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void VisualServerScene::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->type = Camera::FRUSTUM;
camera->size = p_size;
camera->offset = p_offset;
camera->znear = p_z_near;
camera->zfar = p_z_far;
}
void VisualServerScene::camera_set_transform(RID p_camera, const Transform &p_transform) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->transform = p_transform.orthonormalized();
}
void VisualServerScene::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->visible_layers = p_layers;
}
void VisualServerScene::camera_set_environment(RID p_camera, RID p_env) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->env = p_env;
}
void VisualServerScene::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
Camera *camera = camera_owner.get(p_camera);
ERR_FAIL_COND(!camera);
camera->vaspect = p_enable;
}
/* SPATIAL PARTITIONING */
VisualServerScene::SpatialPartitioningScene_BVH::SpatialPartitioningScene_BVH() {
_bvh.params_set_thread_safe(GLOBAL_GET("rendering/threads/thread_safe_bvh"));
}
VisualServerScene::SpatialPartitionID VisualServerScene::SpatialPartitioningScene_BVH::create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
#if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED)
// we are relying on this instance to be valid in order to pass
// the visible flag to the bvh.
DEV_ASSERT(p_userdata);
#endif
return _bvh.create(p_userdata, p_userdata->visible, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask) + 1;
}
void VisualServerScene::SpatialPartitioningScene_BVH::erase(SpatialPartitionID p_handle) {
_bvh.erase(p_handle - 1);
}
void VisualServerScene::SpatialPartitioningScene_BVH::move(SpatialPartitionID p_handle, const AABB &p_aabb) {
_bvh.move(p_handle - 1, p_aabb);
}
void VisualServerScene::SpatialPartitioningScene_BVH::activate(SpatialPartitionID p_handle, const AABB &p_aabb) {
// be very careful here, we are deferring the collision check, expecting a set_pairable to be called
// immediately after.
// see the notes in the BVH function.
_bvh.activate(p_handle - 1, p_aabb, true);
}
void VisualServerScene::SpatialPartitioningScene_BVH::deactivate(SpatialPartitionID p_handle) {
_bvh.deactivate(p_handle - 1);
}
void VisualServerScene::SpatialPartitioningScene_BVH::force_collision_check(SpatialPartitionID p_handle) {
_bvh.force_collision_check(p_handle - 1);
}
void VisualServerScene::SpatialPartitioningScene_BVH::update() {
_bvh.update();
}
void VisualServerScene::SpatialPartitioningScene_BVH::update_collisions() {
_bvh.update_collisions();
}
void VisualServerScene::SpatialPartitioningScene_BVH::set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
_bvh.set_pairable(p_handle - 1, p_pairable, p_pairable_type, p_pairable_mask);
}
int VisualServerScene::SpatialPartitioningScene_BVH::cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask) {
return _bvh.cull_convex(p_convex, p_result_array, p_result_max, p_mask);
}
int VisualServerScene::SpatialPartitioningScene_BVH::cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
return _bvh.cull_aabb(p_aabb, p_result_array, p_result_max, p_subindex_array, p_mask);
}
int VisualServerScene::SpatialPartitioningScene_BVH::cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
return _bvh.cull_segment(p_from, p_to, p_result_array, p_result_max, p_subindex_array, p_mask);
}
void VisualServerScene::SpatialPartitioningScene_BVH::set_pair_callback(PairCallback p_callback, void *p_userdata) {
_bvh.set_pair_callback(p_callback, p_userdata);
}
void VisualServerScene::SpatialPartitioningScene_BVH::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
_bvh.set_unpair_callback(p_callback, p_userdata);
}
///////////////////////
VisualServerScene::SpatialPartitionID VisualServerScene::SpatialPartitioningScene_Octree::create(Instance *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
return _octree.create(p_userdata, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask);
}
void VisualServerScene::SpatialPartitioningScene_Octree::erase(SpatialPartitionID p_handle) {
_octree.erase(p_handle);
}
void VisualServerScene::SpatialPartitioningScene_Octree::move(SpatialPartitionID p_handle, const AABB &p_aabb) {
_octree.move(p_handle, p_aabb);
}
void VisualServerScene::SpatialPartitioningScene_Octree::set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
_octree.set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask);
}
int VisualServerScene::SpatialPartitioningScene_Octree::cull_convex(const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask) {
return _octree.cull_convex(p_convex, p_result_array, p_result_max, p_mask);
}
int VisualServerScene::SpatialPartitioningScene_Octree::cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
return _octree.cull_aabb(p_aabb, p_result_array, p_result_max, p_subindex_array, p_mask);
}
int VisualServerScene::SpatialPartitioningScene_Octree::cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
return _octree.cull_segment(p_from, p_to, p_result_array, p_result_max, p_subindex_array, p_mask);
}
void VisualServerScene::SpatialPartitioningScene_Octree::set_pair_callback(PairCallback p_callback, void *p_userdata) {
_octree.set_pair_callback(p_callback, p_userdata);
}
void VisualServerScene::SpatialPartitioningScene_Octree::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
_octree.set_unpair_callback(p_callback, p_userdata);
}
void VisualServerScene::SpatialPartitioningScene_Octree::set_balance(float p_balance) {
_octree.set_balance(p_balance);
}
/* SCENARIO API */
VisualServerScene::Scenario::Scenario() {
debug = VS::SCENARIO_DEBUG_DISABLED;
bool use_bvh_or_octree = GLOBAL_GET("rendering/quality/spatial_partitioning/use_bvh");
if (use_bvh_or_octree) {
sps = memnew(SpatialPartitioningScene_BVH);
} else {
sps = memnew(SpatialPartitioningScene_Octree);
}
}
void *VisualServerScene::_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int) {
//VisualServerScene *self = (VisualServerScene*)p_self;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == VS::INSTANCE_LIGHT && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceLightData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->lighting.push_back(B);
List<InstanceLightData::PairInfo>::Element *E = light->geometries.push_back(pinfo);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
geom->lighting_dirty = true;
return E; //this element should make freeing faster
} else if (B->base_type == VS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceReflectionProbeData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->reflection_probes.push_back(B);
List<InstanceReflectionProbeData::PairInfo>::Element *E = reflection_probe->geometries.push_back(pinfo);
geom->reflection_dirty = true;
return E; //this element should make freeing faster
} else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceLightmapCaptureData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->lightmap_captures.push_back(B);
List<InstanceLightmapCaptureData::PairInfo>::Element *E = lightmap_capture->geometries.push_back(pinfo);
((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
return E; //this element should make freeing faster
} else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
InstanceGIProbeData::PairInfo pinfo;
pinfo.geometry = A;
pinfo.L = geom->gi_probes.push_back(B);
List<InstanceGIProbeData::PairInfo>::Element *E = gi_probe->geometries.push_back(pinfo);
geom->gi_probes_dirty = true;
return E; //this element should make freeing faster
} else if (B->base_type == VS::INSTANCE_GI_PROBE && A->base_type == VS::INSTANCE_LIGHT) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
return gi_probe->lights.insert(A);
}
return nullptr;
}
void VisualServerScene::_instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *udata) {
//VisualServerScene *self = (VisualServerScene*)p_self;
Instance *A = p_A;
Instance *B = p_B;
//instance indices are designed so greater always contains lesser
if (A->base_type > B->base_type) {
SWAP(A, B); //lesser always first
}
if (B->base_type == VS::INSTANCE_LIGHT && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceLightData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightData::PairInfo>::Element *>(udata);
geom->lighting.erase(E->get().L);
light->geometries.erase(E);
if (geom->can_cast_shadows) {
light->shadow_dirty = true;
}
geom->lighting_dirty = true;
} else if (B->base_type == VS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceReflectionProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceReflectionProbeData::PairInfo>::Element *>(udata);
geom->reflection_probes.erase(E->get().L);
reflection_probe->geometries.erase(E);
geom->reflection_dirty = true;
} else if (B->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceLightmapCaptureData::PairInfo>::Element *E = reinterpret_cast<List<InstanceLightmapCaptureData::PairInfo>::Element *>(udata);
geom->lightmap_captures.erase(E->get().L);
lightmap_capture->geometries.erase(E);
((VisualServerScene *)p_self)->_instance_queue_update(A, false, false); //need to update capture
} else if (B->base_type == VS::INSTANCE_GI_PROBE && ((1 << A->base_type) & VS::INSTANCE_GEOMETRY_MASK)) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
List<InstanceGIProbeData::PairInfo>::Element *E = reinterpret_cast<List<InstanceGIProbeData::PairInfo>::Element *>(udata);
geom->gi_probes.erase(E->get().L);
gi_probe->geometries.erase(E);
geom->gi_probes_dirty = true;
} else if (B->base_type == VS::INSTANCE_GI_PROBE && A->base_type == VS::INSTANCE_LIGHT) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(B->base_data);
Set<Instance *>::Element *E = reinterpret_cast<Set<Instance *>::Element *>(udata);
gi_probe->lights.erase(E);
}
}
RID VisualServerScene::scenario_create() {
Scenario *scenario = memnew(Scenario);
ERR_FAIL_COND_V(!scenario, RID());
RID scenario_rid = scenario_owner.make_rid(scenario);
scenario->self = scenario_rid;
scenario->sps->set_balance(GLOBAL_GET("rendering/quality/spatial_partitioning/render_tree_balance"));
scenario->sps->set_pair_callback(_instance_pair, this);
scenario->sps->set_unpair_callback(_instance_unpair, this);
scenario->reflection_probe_shadow_atlas = VSG::scene_render->shadow_atlas_create();
VSG::scene_render->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
VSG::scene_render->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);
scenario->reflection_atlas = VSG::scene_render->reflection_atlas_create();
return scenario_rid;
}
void VisualServerScene::scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->debug = p_debug_mode;
}
void VisualServerScene::scenario_set_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->environment = p_environment;
}
void VisualServerScene::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->fallback_environment = p_environment;
}
void VisualServerScene::scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
VSG::scene_render->reflection_atlas_set_size(scenario->reflection_atlas, p_size);
VSG::scene_render->reflection_atlas_set_subdivision(scenario->reflection_atlas, p_subdiv);
}
/* INSTANCING API */
void VisualServerScene::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials) {
if (p_update_aabb) {
p_instance->update_aabb = true;
}
if (p_update_materials) {
p_instance->update_materials = true;
}
if (p_instance->update_item.in_list()) {
return;
}
_instance_update_list.add(&p_instance->update_item);
}
RID VisualServerScene::instance_create() {
Instance *instance = memnew(Instance);
ERR_FAIL_COND_V(!instance, RID());
RID instance_rid = instance_owner.make_rid(instance);
instance->self = instance_rid;
return instance_rid;
}
void VisualServerScene::instance_set_base(RID p_instance, RID p_base) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
Scenario *scenario = instance->scenario;
if (instance->base_type != VS::INSTANCE_NONE) {
//free anything related to that base
VSG::storage->instance_remove_dependency(instance->base, instance);
if (instance->base_type == VS::INSTANCE_GI_PROBE) {
//if gi probe is baking, wait until done baking, else race condition may happen when removing it
//from octree
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
//make sure probes are done baking
while (!probe_bake_list.empty()) {
OS::get_singleton()->delay_usec(1);
}
//make sure this one is done baking
while (gi_probe->dynamic.updating_stage == GI_UPDATE_STAGE_LIGHTING) {
//wait until bake is done if it's baking
OS::get_singleton()->delay_usec(1);
}
}
if (scenario && instance->spatial_partition_id) {
scenario->sps->erase(instance->spatial_partition_id);
instance->spatial_partition_id = 0;
}
switch (instance->base_type) {
case VS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (instance->scenario && light->D) {
instance->scenario->directional_lights.erase(light->D);
light->D = nullptr;
}
VSG::scene_render->free(light->instance);
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
VSG::scene_render->free(reflection_probe->instance);
if (reflection_probe->update_list.in_list()) {
reflection_probe_render_list.remove(&reflection_probe->update_list);
}
} break;
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(instance->base_data);
//erase dependencies, since no longer a lightmap
while (lightmap_capture->users.front()) {
instance_set_use_lightmap(lightmap_capture->users.front()->get()->self, RID(), RID(), -1, Rect2(0, 0, 1, 1));
}
} break;
case VS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
if (gi_probe->dynamic.probe_data.is_valid()) {
VSG::storage->free(gi_probe->dynamic.probe_data);
}
if (instance->lightmap_capture) {
Instance *capture = (Instance *)instance->lightmap_capture;
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(capture->base_data);
lightmap_capture->users.erase(instance);
instance->lightmap_capture = nullptr;
instance->lightmap = RID();
}
VSG::scene_render->free(gi_probe->probe_instance);
} break;
default: {
}
}
if (instance->base_data) {
memdelete(instance->base_data);
instance->base_data = nullptr;
}
instance->blend_values = PoolRealArray();
for (int i = 0; i < instance->materials.size(); i++) {
if (instance->materials[i].is_valid()) {
VSG::storage->material_remove_instance_owner(instance->materials[i], instance);
}
}
instance->materials.clear();
}
instance->base_type = VS::INSTANCE_NONE;
instance->base = RID();
if (p_base.is_valid()) {
instance->base_type = VSG::storage->get_base_type(p_base);
ERR_FAIL_COND(instance->base_type == VS::INSTANCE_NONE);
switch (instance->base_type) {
case VS::INSTANCE_LIGHT: {
InstanceLightData *light = memnew(InstanceLightData);
if (scenario && VSG::storage->light_get_type(p_base) == VS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
light->instance = VSG::scene_render->light_instance_create(p_base);
instance->base_data = light;
} break;
case VS::INSTANCE_MESH:
case VS::INSTANCE_MULTIMESH:
case VS::INSTANCE_IMMEDIATE:
case VS::INSTANCE_PARTICLES: {
InstanceGeometryData *geom = memnew(InstanceGeometryData);
instance->base_data = geom;
if (instance->base_type == VS::INSTANCE_MESH) {
instance->blend_values.resize(VSG::storage->mesh_get_blend_shape_count(p_base));
}
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
reflection_probe->owner = instance;
instance->base_data = reflection_probe;
reflection_probe->instance = VSG::scene_render->reflection_probe_instance_create(p_base);
} break;
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
InstanceLightmapCaptureData *lightmap_capture = memnew(InstanceLightmapCaptureData);
instance->base_data = lightmap_capture;
//lightmap_capture->instance = VSG::scene_render->lightmap_capture_instance_create(p_base);
} break;
case VS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = memnew(InstanceGIProbeData);
instance->base_data = gi_probe;
gi_probe->owner = instance;
if (scenario && !gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
gi_probe->probe_instance = VSG::scene_render->gi_probe_instance_create();
} break;
default: {
}
}
VSG::storage->instance_add_dependency(p_base, instance);
instance->base = p_base;
if (scenario) {
_instance_queue_update(instance, true, true);
}
}
}
void VisualServerScene::instance_set_scenario(RID p_instance, RID p_scenario) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->scenario) {
instance->scenario->instances.remove(&instance->scenario_item);
if (instance->spatial_partition_id) {
instance->scenario->sps->erase(instance->spatial_partition_id);
instance->spatial_partition_id = 0;
}
// handle occlusion changes
if (instance->occlusion_handle) {
_instance_destroy_occlusion_rep(instance);
}
switch (instance->base_type) {
case VS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (light->D) {
instance->scenario->directional_lights.erase(light->D);
light->D = nullptr;
}
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
VSG::scene_render->reflection_probe_release_atlas_index(reflection_probe->instance);
} break;
case VS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
if (gi_probe->update_element.in_list()) {
gi_probe_update_list.remove(&gi_probe->update_element);
}
} break;
default: {
}
}
instance->scenario = nullptr;
}
if (p_scenario.is_valid()) {
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND(!scenario);
instance->scenario = scenario;
scenario->instances.add(&instance->scenario_item);
switch (instance->base_type) {
case VS::INSTANCE_LIGHT: {
InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
if (VSG::storage->light_get_type(instance->base) == VS::LIGHT_DIRECTIONAL) {
light->D = scenario->directional_lights.push_back(instance);
}
} break;
case VS::INSTANCE_GI_PROBE: {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(instance->base_data);
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
} break;
default: {
}
}
// handle occlusion changes if necessary
_instance_create_occlusion_rep(instance);
_instance_queue_update(instance, true, true);
}
}
void VisualServerScene::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->layer_mask = p_mask;
}
void VisualServerScene::instance_set_transform(RID p_instance, const Transform &p_transform) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->transform == p_transform) {
return; //must be checked to avoid worst evil
}
#ifdef DEBUG_ENABLED
for (int i = 0; i < 4; i++) {
const Vector3 &v = i < 3 ? p_transform.basis.elements[i] : p_transform.origin;
ERR_FAIL_COND(Math::is_inf(v.x));
ERR_FAIL_COND(Math::is_nan(v.x));
ERR_FAIL_COND(Math::is_inf(v.y));
ERR_FAIL_COND(Math::is_nan(v.y));
ERR_FAIL_COND(Math::is_inf(v.z));
ERR_FAIL_COND(Math::is_nan(v.z));
}
#endif
instance->transform = p_transform;
_instance_queue_update(instance, true);
}
void VisualServerScene::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->object_id = p_id;
}
void VisualServerScene::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->update_item.in_list()) {
_update_dirty_instance(instance);
}
ERR_FAIL_INDEX(p_shape, instance->blend_values.size());
instance->blend_values.write().ptr()[p_shape] = p_weight;
VSG::storage->mesh_set_blend_shape_values(instance->base, instance->blend_values);
}
void VisualServerScene::instance_set_surface_material(RID p_instance, int p_surface, RID p_material) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->base_type == VS::INSTANCE_MESH) {
//may not have been updated yet
instance->materials.resize(VSG::storage->mesh_get_surface_count(instance->base));
}
ERR_FAIL_INDEX(p_surface, instance->materials.size());
if (instance->materials[p_surface].is_valid()) {
VSG::storage->material_remove_instance_owner(instance->materials[p_surface], instance);
}
instance->materials.write[p_surface] = p_material;
instance->base_changed(false, true);
if (instance->materials[p_surface].is_valid()) {
VSG::storage->material_add_instance_owner(instance->materials[p_surface], instance);
}
}
void VisualServerScene::instance_set_visible(RID p_instance, bool p_visible) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->visible == p_visible) {
return;
}
instance->visible = p_visible;
// give the opportunity for the spatial partitioning scene to use a special implementation of visibility
// for efficiency (supported in BVH but not octree)
// slightly bug prone optimization here - we want to avoid doing a collision check twice
// once when activating, and once when calling set_pairable. We do this by deferring the collision check.
// However, in some cases (notably meshes), set_pairable never gets called. So we want to catch this case
// and force a collision check (see later in this function).
// This is only done in two stages to maintain compatibility with the octree.
if (instance->spatial_partition_id && instance->scenario) {
if (p_visible) {
instance->scenario->sps->activate(instance->spatial_partition_id, instance->transformed_aabb);
} else {
instance->scenario->sps->deactivate(instance->spatial_partition_id);
}
}
// when showing or hiding geometry, lights must be kept up to date to show / hide shadows
if ((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
if (geom->can_cast_shadows) {
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
}
}
switch (instance->base_type) {
case VS::INSTANCE_LIGHT: {
if (VSG::storage->light_get_type(instance->base) != VS::LIGHT_DIRECTIONAL && instance->spatial_partition_id && instance->scenario) {
instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_LIGHT, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case VS::INSTANCE_REFLECTION_PROBE: {
if (instance->spatial_partition_id && instance->scenario) {
instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_REFLECTION_PROBE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case VS::INSTANCE_LIGHTMAP_CAPTURE: {
if (instance->spatial_partition_id && instance->scenario) {
instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_LIGHTMAP_CAPTURE, p_visible ? VS::INSTANCE_GEOMETRY_MASK : 0);
}
} break;
case VS::INSTANCE_GI_PROBE: {
if (instance->spatial_partition_id && instance->scenario) {
instance->scenario->sps->set_pairable(instance->spatial_partition_id, p_visible, 1 << VS::INSTANCE_GI_PROBE, p_visible ? (VS::INSTANCE_GEOMETRY_MASK | (1 << VS::INSTANCE_LIGHT)) : 0);
}
} break;
default: {
// if we haven't called set_pairable, we STILL need to do a collision check
// for activated items because we deferred it earlier in the call to activate.
if (instance->spatial_partition_id && instance->scenario && p_visible) {
instance->scenario->sps->force_collision_check(instance->spatial_partition_id);
}
}
}
}
inline bool is_geometry_instance(VisualServer::InstanceType p_type) {
return p_type == VS::INSTANCE_MESH || p_type == VS::INSTANCE_MULTIMESH || p_type == VS::INSTANCE_PARTICLES || p_type == VS::INSTANCE_IMMEDIATE;
}
void VisualServerScene::instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap, int p_lightmap_slice, const Rect2 &p_lightmap_uv_rect) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->lightmap = RID();
instance->lightmap_slice = -1;
instance->lightmap_uv_rect = Rect2(0, 0, 1, 1);
instance->baked_light = false;
if (instance->lightmap_capture) {
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
lightmap_capture->users.erase(instance);
instance->lightmap_capture = nullptr;
}
if (p_lightmap_instance.is_valid()) {
Instance *lightmap_instance = instance_owner.get(p_lightmap_instance);
ERR_FAIL_COND(!lightmap_instance);
ERR_FAIL_COND(lightmap_instance->base_type != VS::INSTANCE_LIGHTMAP_CAPTURE);
instance->lightmap_capture = lightmap_instance;
InstanceLightmapCaptureData *lightmap_capture = static_cast<InstanceLightmapCaptureData *>(((Instance *)instance->lightmap_capture)->base_data);
lightmap_capture->users.insert(instance);
instance->lightmap = p_lightmap;
instance->lightmap_slice = p_lightmap_slice;
instance->lightmap_uv_rect = p_lightmap_uv_rect;
instance->baked_light = true;
}
}
void VisualServerScene::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
ERR_FAIL_COND(!is_geometry_instance(instance->base_type));
if (p_aabb != AABB()) {
// Set custom AABB
if (instance->custom_aabb == nullptr) {
instance->custom_aabb = memnew(AABB);
}
*instance->custom_aabb = p_aabb;
} else {
// Clear custom AABB
if (instance->custom_aabb != nullptr) {
memdelete(instance->custom_aabb);
instance->custom_aabb = nullptr;
}
}
if (instance->scenario) {
_instance_queue_update(instance, true, false);
}
}
void VisualServerScene::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->skeleton == p_skeleton) {
return;
}
if (instance->skeleton.is_valid()) {
VSG::storage->instance_remove_skeleton(instance->skeleton, instance);
}
instance->skeleton = p_skeleton;
if (instance->skeleton.is_valid()) {
VSG::storage->instance_add_skeleton(instance->skeleton, instance);
}
_instance_queue_update(instance, true);
}
void VisualServerScene::instance_set_exterior(RID p_instance, bool p_enabled) {
}
void VisualServerScene::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->extra_margin = p_margin;
_instance_queue_update(instance, true, false);
}
// Portals
void VisualServerScene::instance_set_portal_mode(RID p_instance, VisualServer::InstancePortalMode p_mode) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
// no change?
if (instance->portal_mode == p_mode) {
return;
}
// should this happen?
if (!instance->scenario) {
instance->portal_mode = p_mode;
return;
}
// destroy previous occlusion instance?
_instance_destroy_occlusion_rep(instance);
instance->portal_mode = p_mode;
_instance_create_occlusion_rep(instance);
}
void VisualServerScene::_instance_create_occlusion_rep(Instance *p_instance) {
ERR_FAIL_COND(!p_instance);
ERR_FAIL_COND(!p_instance->scenario);
switch (p_instance->portal_mode) {
default: {
p_instance->occlusion_handle = 0;
} break;
case VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_ROAMING: {
p_instance->occlusion_handle = p_instance->scenario->_portal_renderer.instance_moving_create(p_instance, p_instance->self, false, p_instance->transformed_aabb);
} break;
case VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_GLOBAL: {
p_instance->occlusion_handle = p_instance->scenario->_portal_renderer.instance_moving_create(p_instance, p_instance->self, true, p_instance->transformed_aabb);
} break;
}
}
void VisualServerScene::_instance_destroy_occlusion_rep(Instance *p_instance) {
ERR_FAIL_COND(!p_instance);
ERR_FAIL_COND(!p_instance->scenario);
// not an error, can occur
if (!p_instance->occlusion_handle) {
return;
}
p_instance->scenario->_portal_renderer.instance_moving_destroy(p_instance->occlusion_handle);
// unset
p_instance->occlusion_handle = 0;
}
void *VisualServerScene::_instance_get_from_rid(RID p_instance) {
Instance *instance = instance_owner.get(p_instance);
return instance;
}
bool VisualServerScene::_instance_get_transformed_aabb(RID p_instance, AABB &r_aabb) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_NULL_V(instance, false);
r_aabb = instance->transformed_aabb;
return true;
}
// the portal has to be associated with a scenario, this is assumed to be
// the same scenario as the portal node
RID VisualServerScene::portal_create() {
Portal *portal = memnew(Portal);
ERR_FAIL_COND_V(!portal, RID());
RID portal_rid = portal_owner.make_rid(portal);
return portal_rid;
}
// should not be called multiple times, different scenarios etc, but just in case, we will support this
void VisualServerScene::portal_set_scenario(RID p_portal, RID p_scenario) {
Portal *portal = portal_owner.getornull(p_portal);
ERR_FAIL_COND(!portal);
Scenario *scenario = scenario_owner.getornull(p_scenario);
// noop?
if (portal->scenario == scenario) {
return;
}
// if the portal is in a scenario already, remove it
if (portal->scenario) {
portal->scenario->_portal_renderer.portal_destroy(portal->scenario_portal_id);
portal->scenario = nullptr;
portal->scenario_portal_id = 0;
}
// create when entering the world
if (scenario) {
portal->scenario = scenario;
// defer the actual creation to here
portal->scenario_portal_id = scenario->_portal_renderer.portal_create();
}
}
void VisualServerScene::portal_set_geometry(RID p_portal, const Vector<Vector3> &p_points, real_t p_margin) {
Portal *portal = portal_owner.getornull(p_portal);
ERR_FAIL_COND(!portal);
ERR_FAIL_COND(!portal->scenario);
portal->scenario->_portal_renderer.portal_set_geometry(portal->scenario_portal_id, p_points, p_margin);
}
void VisualServerScene::portal_link(RID p_portal, RID p_room_from, RID p_room_to, bool p_two_way) {
Portal *portal = portal_owner.getornull(p_portal);
ERR_FAIL_COND(!portal);
ERR_FAIL_COND(!portal->scenario);
Room *room_from = room_owner.getornull(p_room_from);
ERR_FAIL_COND(!room_from);
Room *room_to = room_owner.getornull(p_room_to);
ERR_FAIL_COND(!room_to);
portal->scenario->_portal_renderer.portal_link(portal->scenario_portal_id, room_from->scenario_room_id, room_to->scenario_room_id, p_two_way);
}
void VisualServerScene::portal_set_active(RID p_portal, bool p_active) {
Portal *portal = portal_owner.getornull(p_portal);
ERR_FAIL_COND(!portal);
ERR_FAIL_COND(!portal->scenario);
portal->scenario->_portal_renderer.portal_set_active(portal->scenario_portal_id, p_active);
}
RID VisualServerScene::ghost_create() {
Ghost *ci = memnew(Ghost);
ERR_FAIL_COND_V(!ci, RID());
RID ci_rid = ghost_owner.make_rid(ci);
return ci_rid;
}
void VisualServerScene::ghost_set_scenario(RID p_ghost, RID p_scenario, ObjectID p_id, const AABB &p_aabb) {
Ghost *ci = ghost_owner.getornull(p_ghost);
ERR_FAIL_COND(!ci);
ci->aabb = p_aabb;
ci->object_id = p_id;
Scenario *scenario = scenario_owner.getornull(p_scenario);
// noop?
if (ci->scenario == scenario) {
return;
}
// if the portal is in a scenario already, remove it
if (ci->scenario) {
_ghost_destroy_occlusion_rep(ci);
ci->scenario = nullptr;
}
// create when entering the world
if (scenario) {
ci->scenario = scenario;
// defer the actual creation to here
_ghost_create_occlusion_rep(ci);
}
}
void VisualServerScene::ghost_update(RID p_ghost, const AABB &p_aabb) {
Ghost *ci = ghost_owner.getornull(p_ghost);
ERR_FAIL_COND(!ci);
ERR_FAIL_COND(!ci->scenario);
ci->aabb = p_aabb;
if (ci->rghost_handle) {
ci->scenario->_portal_renderer.rghost_update(ci->rghost_handle, p_aabb);
}
}
void VisualServerScene::_ghost_create_occlusion_rep(Ghost *p_ghost) {
ERR_FAIL_COND(!p_ghost);
ERR_FAIL_COND(!p_ghost->scenario);
if (!p_ghost->rghost_handle) {
p_ghost->rghost_handle = p_ghost->scenario->_portal_renderer.rghost_create(p_ghost->object_id, p_ghost->aabb);
}
}
void VisualServerScene::_ghost_destroy_occlusion_rep(Ghost *p_ghost) {
ERR_FAIL_COND(!p_ghost);
ERR_FAIL_COND(!p_ghost->scenario);
// not an error, can occur
if (!p_ghost->rghost_handle) {
return;
}
p_ghost->scenario->_portal_renderer.rghost_destroy(p_ghost->rghost_handle);
p_ghost->rghost_handle = 0;
}
RID VisualServerScene::roomgroup_create() {
RoomGroup *rg = memnew(RoomGroup);
ERR_FAIL_COND_V(!rg, RID());
RID roomgroup_rid = roomgroup_owner.make_rid(rg);
return roomgroup_rid;
}
void VisualServerScene::roomgroup_prepare(RID p_roomgroup, ObjectID p_roomgroup_object_id) {
RoomGroup *roomgroup = roomgroup_owner.getornull(p_roomgroup);
ERR_FAIL_COND(!roomgroup);
ERR_FAIL_COND(!roomgroup->scenario);
roomgroup->scenario->_portal_renderer.roomgroup_prepare(roomgroup->scenario_roomgroup_id, p_roomgroup_object_id);
}
void VisualServerScene::roomgroup_set_scenario(RID p_roomgroup, RID p_scenario) {
RoomGroup *rg = roomgroup_owner.getornull(p_roomgroup);
ERR_FAIL_COND(!rg);
Scenario *scenario = scenario_owner.getornull(p_scenario);
// noop?
if (rg->scenario == scenario) {
return;
}
// if the portal is in a scenario already, remove it
if (rg->scenario) {
rg->scenario->_portal_renderer.roomgroup_destroy(rg->scenario_roomgroup_id);
rg->scenario = nullptr;
rg->scenario_roomgroup_id = 0;
}
// create when entering the world
if (scenario) {
rg->scenario = scenario;
// defer the actual creation to here
rg->scenario_roomgroup_id = scenario->_portal_renderer.roomgroup_create();
}
}
void VisualServerScene::roomgroup_add_room(RID p_roomgroup, RID p_room) {
RoomGroup *roomgroup = roomgroup_owner.getornull(p_roomgroup);
ERR_FAIL_COND(!roomgroup);
ERR_FAIL_COND(!roomgroup->scenario);
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(!room->scenario);
ERR_FAIL_COND(roomgroup->scenario != room->scenario);
roomgroup->scenario->_portal_renderer.roomgroup_add_room(roomgroup->scenario_roomgroup_id, room->scenario_room_id);
}
// Occluders
RID VisualServerScene::occluder_create() {
Occluder *ro = memnew(Occluder);
ERR_FAIL_COND_V(!ro, RID());
RID occluder_rid = occluder_owner.make_rid(ro);
return occluder_rid;
}
void VisualServerScene::occluder_set_scenario(RID p_occluder, RID p_scenario, VisualServer::OccluderType p_type) {
Occluder *ro = occluder_owner.getornull(p_occluder);
ERR_FAIL_COND(!ro);
Scenario *scenario = scenario_owner.getornull(p_scenario);
// noop?
if (ro->scenario == scenario) {
return;
}
// if the portal is in a scenario already, remove it
if (ro->scenario) {
ro->scenario->_portal_renderer.occluder_destroy(ro->scenario_occluder_id);
ro->scenario = nullptr;
ro->scenario_occluder_id = 0;
}
// create when entering the world
if (scenario) {
ro->scenario = scenario;
// defer the actual creation to here
ro->scenario_occluder_id = scenario->_portal_renderer.occluder_create((VSOccluder::Type)p_type);
}
}
void VisualServerScene::occluder_set_active(RID p_occluder, bool p_active) {
Occluder *ro = occluder_owner.getornull(p_occluder);
ERR_FAIL_COND(!ro);
ERR_FAIL_COND(!ro->scenario);
ro->scenario->_portal_renderer.occluder_set_active(ro->scenario_occluder_id, p_active);
}
void VisualServerScene::occluder_set_transform(RID p_occluder, const Transform &p_xform) {
Occluder *ro = occluder_owner.getornull(p_occluder);
ERR_FAIL_COND(!ro);
ERR_FAIL_COND(!ro->scenario);
ro->scenario->_portal_renderer.occluder_set_transform(ro->scenario_occluder_id, p_xform);
}
void VisualServerScene::occluder_spheres_update(RID p_occluder, const Vector<Plane> &p_spheres) {
Occluder *ro = occluder_owner.getornull(p_occluder);
ERR_FAIL_COND(!ro);
ERR_FAIL_COND(!ro->scenario);
ro->scenario->_portal_renderer.occluder_update_spheres(ro->scenario_occluder_id, p_spheres);
}
void VisualServerScene::set_use_occlusion_culling(bool p_enable) {
// this is not scenario specific, and is global
// (mainly for debugging)
PortalRenderer::use_occlusion_culling = p_enable;
}
// Rooms
void VisualServerScene::callbacks_register(VisualServerCallbacks *p_callbacks) {
_visual_server_callbacks = p_callbacks;
}
// the room has to be associated with a scenario, this is assumed to be
// the same scenario as the room node
RID VisualServerScene::room_create() {
Room *room = memnew(Room);
ERR_FAIL_COND_V(!room, RID());
RID room_rid = room_owner.make_rid(room);
return room_rid;
}
// should not be called multiple times, different scenarios etc, but just in case, we will support this
void VisualServerScene::room_set_scenario(RID p_room, RID p_scenario) {
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
Scenario *scenario = scenario_owner.getornull(p_scenario);
// no change?
if (room->scenario == scenario) {
return;
}
// if the room has an existing scenario, remove from it
if (room->scenario) {
room->scenario->_portal_renderer.room_destroy(room->scenario_room_id);
room->scenario = nullptr;
room->scenario_room_id = 0;
}
// create when entering the world
if (scenario) {
room->scenario = scenario;
// defer the actual creation to here
room->scenario_room_id = scenario->_portal_renderer.room_create();
}
}
void VisualServerScene::room_add_ghost(RID p_room, ObjectID p_object_id, const AABB &p_aabb) {
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(!room->scenario);
room->scenario->_portal_renderer.room_add_ghost(room->scenario_room_id, p_object_id, p_aabb);
}
void VisualServerScene::room_add_instance(RID p_room, RID p_instance, const AABB &p_aabb, const Vector<Vector3> &p_object_pts) {
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(!room->scenario);
Instance *instance = instance_owner.getornull(p_instance);
ERR_FAIL_COND(!instance);
AABB bb = p_aabb;
// the aabb passed from the client takes no account of the extra cull margin,
// so we need to add this manually.
// It is assumed it is in world space.
if (instance->extra_margin != 0.0) {
bb.grow_by(instance->extra_margin);
}
bool dynamic = false;
// don't add if portal mode is not static or dynamic
switch (instance->portal_mode) {
default: {
return; // this should be taken care of by the calling function, but just in case
} break;
case VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_DYNAMIC: {
dynamic = true;
} break;
case VisualServer::InstancePortalMode::INSTANCE_PORTAL_MODE_STATIC: {
dynamic = false;
} break;
}
instance->occlusion_handle = room->scenario->_portal_renderer.room_add_instance(room->scenario_room_id, p_instance, bb, dynamic, p_object_pts);
}
void VisualServerScene::room_prepare(RID p_room, int32_t p_priority) {
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(!room->scenario);
room->scenario->_portal_renderer.room_prepare(room->scenario_room_id, p_priority);
}
void VisualServerScene::room_set_bound(RID p_room, ObjectID p_room_object_id, const Vector<Plane> &p_convex, const AABB &p_aabb, const Vector<Vector3> &p_verts) {
Room *room = room_owner.getornull(p_room);
ERR_FAIL_COND(!room);
ERR_FAIL_COND(!room->scenario);
room->scenario->_portal_renderer.room_set_bound(room->scenario_room_id, p_room_object_id, p_convex, p_aabb, p_verts);
}
void VisualServerScene::rooms_unload(RID p_scenario, String p_reason) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_unload(p_reason);
}
void VisualServerScene::rooms_and_portals_clear(RID p_scenario) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_and_portals_clear();
}
void VisualServerScene::rooms_finalize(RID p_scenario, bool p_generate_pvs, bool p_cull_using_pvs, bool p_use_secondary_pvs, bool p_use_signals, String p_pvs_filename, bool p_use_simple_pvs, bool p_log_pvs_generation) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_finalize(p_generate_pvs, p_cull_using_pvs, p_use_secondary_pvs, p_use_signals, p_pvs_filename, p_use_simple_pvs, p_log_pvs_generation);
}
void VisualServerScene::rooms_override_camera(RID p_scenario, bool p_override, const Vector3 &p_point, const Vector<Plane> *p_convex) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_override_camera(p_override, p_point, p_convex);
}
void VisualServerScene::rooms_set_active(RID p_scenario, bool p_active) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_set_active(p_active);
}
void VisualServerScene::rooms_set_params(RID p_scenario, int p_portal_depth_limit) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_set_params(p_portal_depth_limit);
}
void VisualServerScene::rooms_set_debug_feature(RID p_scenario, VisualServer::RoomsDebugFeature p_feature, bool p_active) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
switch (p_feature) {
default: {
} break;
case VisualServer::ROOMS_DEBUG_SPRAWL: {
scenario->_portal_renderer.set_debug_sprawl(p_active);
} break;
}
}
void VisualServerScene::rooms_update_gameplay_monitor(RID p_scenario, const Vector<Vector3> &p_camera_positions) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND(!scenario);
scenario->_portal_renderer.rooms_update_gameplay_monitor(p_camera_positions);
}
bool VisualServerScene::rooms_is_loaded(RID p_scenario) const {
Scenario *scenario = scenario_owner.getornull(p_scenario);
ERR_FAIL_COND_V(!scenario, false);
return scenario->_portal_renderer.rooms_is_loaded();
}
Vector<ObjectID> VisualServerScene::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->sps->cull_aabb(p_aabb, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
if (instance->object_id == 0) {
continue;
}
instances.push_back(instance->object_id);
}
return instances;
}
Vector<ObjectID> VisualServerScene::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->sps->cull_segment(p_from, p_from + p_to * 10000, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
if (instance->object_id == 0) {
continue;
}
instances.push_back(instance->object_id);
}
return instances;
}
Vector<ObjectID> VisualServerScene::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
Vector<ObjectID> instances;
Scenario *scenario = scenario_owner.get(p_scenario);
ERR_FAIL_COND_V(!scenario, instances);
const_cast<VisualServerScene *>(this)->update_dirty_instances(); // check dirty instances before culling
int culled = 0;
Instance *cull[1024];
culled = scenario->sps->cull_convex(p_convex, cull, 1024);
for (int i = 0; i < culled; i++) {
Instance *instance = cull[i];
ERR_CONTINUE(!instance);
if (instance->object_id == 0) {
continue;
}
instances.push_back(instance->object_id);
}
return instances;
}
// thin wrapper to allow rooms / portals to take over culling if active
int VisualServerScene::_cull_convex_from_point(Scenario *p_scenario, const Vector3 &p_point, const Vector<Plane> &p_convex, Instance **p_result_array, int p_result_max, int32_t &r_previous_room_id_hint, uint32_t p_mask) {
int res = -1;
if (p_scenario->_portal_renderer.is_active()) {
// Note that the portal renderer ASSUMES that the planes exactly match the convention in
// CameraMatrix of enum Planes (6 planes, in order, near, far etc)
// If this is not the case, it should not be used.
res = p_scenario->_portal_renderer.cull_convex(p_point, p_convex, (VSInstance **)p_result_array, p_result_max, p_mask, r_previous_room_id_hint);
}
// fallback to BVH / octree if portals not active
if (res == -1) {
res = p_scenario->sps->cull_convex(p_convex, p_result_array, p_result_max, p_mask);
// Opportunity for occlusion culling on the main scene. This will be a noop if no occluders.
res = p_scenario->_portal_renderer.occlusion_cull(p_point, p_convex, (VSInstance **)p_result_array, res);
}
return res;
}
void VisualServerScene::_rooms_instance_update(Instance *p_instance, const AABB &p_aabb) {
// magic number for instances in the room / portal system, but not requiring an update
// (due to being a STATIC or DYNAMIC object within a room)
// Must match the value in PortalRenderer in VisualServer
const uint32_t OCCLUSION_HANDLE_ROOM_BIT = 1 << 31;
// if the instance is a moving object in the room / portal system, update it
// Note that if rooms and portals is not in use, occlusion_handle should be zero in all cases unless the portal_mode
// has been set to global or roaming. (which is unlikely as the default is static).
// The exception is editor user interface elements.
// These are always set to global and will always keep their aabb up to date in the portal renderer unnecessarily.
// There is no easy way around this, but it should be very cheap, and have no impact outside the editor.
if (p_instance->occlusion_handle && (p_instance->occlusion_handle != OCCLUSION_HANDLE_ROOM_BIT)) {
p_instance->scenario->_portal_renderer.instance_moving_update(p_instance->occlusion_handle, p_aabb);
}
}
void VisualServerScene::instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
switch (p_flags) {
case VS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
instance->baked_light = p_enabled;
} break;
case VS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
instance->redraw_if_visible = p_enabled;
} break;
default: {
}
}
}
void VisualServerScene::instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
instance->cast_shadows = p_shadow_casting_setting;
instance->base_changed(false, true); // to actually compute if shadows are visible or not
}
void VisualServerScene::instance_geometry_set_material_override(RID p_instance, RID p_material) {
Instance *instance = instance_owner.get(p_instance);
ERR_FAIL_COND(!instance);
if (instance->material_override.is_valid()) {
VSG::storage->material_remove_instance_owner(instance->material_override, instance);
}
instance->material_override = p_material;
instance->base_changed(false, true);
if (instance->material_override.is_valid()) {
VSG::storage->material_add_instance_owner(instance->material_override, instance);
}
}
void VisualServerScene::instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin) {
}
void VisualServerScene::instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance) {
}
void VisualServerScene::_update_instance(Instance *p_instance) {
p_instance->version++;
if (p_instance->base_type == VS::INSTANCE_LIGHT) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
VSG::scene_render->light_instance_set_transform(light->instance, p_instance->transform);
light->shadow_dirty = true;
}
if (p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
VSG::scene_render->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);
reflection_probe->reflection_dirty = true;
}
if (p_instance->base_type == VS::INSTANCE_PARTICLES) {
VSG::storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
}
if (p_instance->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE) {
InstanceLightmapCaptureData *capture = static_cast<InstanceLightmapCaptureData *>(p_instance->base_data);
for (List<InstanceLightmapCaptureData::PairInfo>::Element *E = capture->geometries.front(); E; E = E->next()) {
_instance_queue_update(E->get().geometry, false, true);
}
}
if (p_instance->aabb.has_no_surface()) {
return;
}
if ((1 << p_instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
//make sure lights are updated if it casts shadow
if (geom->can_cast_shadows) {
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
}
if (!p_instance->lightmap_capture && geom->lightmap_captures.size()) {
//affected by lightmap captures, must update capture info!
_update_instance_lightmap_captures(p_instance);
} else {
if (!p_instance->lightmap_capture_data.empty()) {
p_instance->lightmap_capture_data.resize(0); //not in use, clear capture data
}
}
}
p_instance->mirror = p_instance->transform.basis.determinant() < 0.0;
AABB new_aabb;
new_aabb = p_instance->transform.xform(p_instance->aabb);
p_instance->transformed_aabb = new_aabb;
if (!p_instance->scenario) {
return;
}
if (p_instance->spatial_partition_id == 0) {
uint32_t base_type = 1 << p_instance->base_type;
uint32_t pairable_mask = 0;
bool pairable = false;
if (p_instance->base_type == VS::INSTANCE_LIGHT || p_instance->base_type == VS::INSTANCE_REFLECTION_PROBE || p_instance->base_type == VS::INSTANCE_LIGHTMAP_CAPTURE) {
pairable_mask = p_instance->visible ? VS::INSTANCE_GEOMETRY_MASK : 0;
pairable = true;
}
if (p_instance->base_type == VS::INSTANCE_GI_PROBE) {
//lights and geometries
pairable_mask = p_instance->visible ? VS::INSTANCE_GEOMETRY_MASK | (1 << VS::INSTANCE_LIGHT) : 0;
pairable = true;
}
// not inside octree
p_instance->spatial_partition_id = p_instance->scenario->sps->create(p_instance, new_aabb, 0, pairable, base_type, pairable_mask);
} else {
/*
if (new_aabb==p_instance->data.transformed_aabb)
return;
*/
p_instance->scenario->sps->move(p_instance->spatial_partition_id, new_aabb);
}
// keep rooms and portals instance up to date if present
_rooms_instance_update(p_instance, new_aabb);
}
void VisualServerScene::_update_instance_aabb(Instance *p_instance) {
AABB new_aabb;
ERR_FAIL_COND(p_instance->base_type != VS::INSTANCE_NONE && !p_instance->base.is_valid());
switch (p_instance->base_type) {
case VisualServer::INSTANCE_NONE: {
// do nothing
} break;
case VisualServer::INSTANCE_MESH: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = VSG::storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
}
} break;
case VisualServer::INSTANCE_MULTIMESH: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = VSG::storage->multimesh_get_aabb(p_instance->base);
}
} break;
case VisualServer::INSTANCE_IMMEDIATE: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = VSG::storage->immediate_get_aabb(p_instance->base);
}
} break;
case VisualServer::INSTANCE_PARTICLES: {
if (p_instance->custom_aabb) {
new_aabb = *p_instance->custom_aabb;
} else {
new_aabb = VSG::storage->particles_get_aabb(p_instance->base);
}
} break;
case VisualServer::INSTANCE_LIGHT: {
new_aabb = VSG::storage->light_get_aabb(p_instance->base);
} break;
case VisualServer::INSTANCE_REFLECTION_PROBE: {
new_aabb = VSG::storage->reflection_probe_get_aabb(p_instance->base);
} break;
case VisualServer::INSTANCE_GI_PROBE: {
new_aabb = VSG::storage->gi_probe_get_bounds(p_instance->base);
} break;
case VisualServer::INSTANCE_LIGHTMAP_CAPTURE: {
new_aabb = VSG::storage->lightmap_capture_get_bounds(p_instance->base);
} break;
default: {
}
}
// <Zylann> This is why I didn't re-use Instance::aabb to implement custom AABBs
if (p_instance->extra_margin) {
new_aabb.grow_by(p_instance->extra_margin);
}
p_instance->aabb = new_aabb;
}
_FORCE_INLINE_ static void _light_capture_sample_octree(const RasterizerStorage::LightmapCaptureOctree *p_octree, int p_cell_subdiv, const Vector3 &p_pos, const Vector3 &p_dir, float p_level, Vector3 &r_color, float &r_alpha) {
static const Vector3 aniso_normal[6] = {
Vector3(-1, 0, 0),
Vector3(1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, 1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, 1)
};
int size = 1 << (p_cell_subdiv - 1);
int clamp_v = size - 1;
//first of all, clamp
Vector3 pos;
pos.x = CLAMP(p_pos.x, 0, clamp_v);
pos.y = CLAMP(p_pos.y, 0, clamp_v);
pos.z = CLAMP(p_pos.z, 0, clamp_v);
float level = (p_cell_subdiv - 1) - p_level;
int target_level;
float level_filter;
if (level <= 0.0) {
level_filter = 0;
target_level = 0;
} else {
target_level = Math::ceil(level);
level_filter = target_level - level;
}
Vector3 color[2][8];
float alpha[2][8];
memset(alpha, 0, sizeof(float) * 2 * 8);
//find cell at given level first
for (int c = 0; c < 2; c++) {
int current_level = MAX(0, target_level - c);
int level_cell_size = (1 << (p_cell_subdiv - 1)) >> current_level;
for (int n = 0; n < 8; n++) {
int x = int(pos.x);
int y = int(pos.y);
int z = int(pos.z);
if (n & 1) {
x += level_cell_size;
}
if (n & 2) {
y += level_cell_size;
}
if (n & 4) {
z += level_cell_size;
}
int ofs_x = 0;
int ofs_y = 0;
int ofs_z = 0;
x = CLAMP(x, 0, clamp_v);
y = CLAMP(y, 0, clamp_v);
z = CLAMP(z, 0, clamp_v);
int half = size / 2;
uint32_t cell = 0;
for (int i = 0; i < current_level; i++) {
const RasterizerStorage::LightmapCaptureOctree *bc = &p_octree[cell];
int child = 0;
if (x >= ofs_x + half) {
child |= 1;
ofs_x += half;
}
if (y >= ofs_y + half) {
child |= 2;
ofs_y += half;
}
if (z >= ofs_z + half) {
child |= 4;
ofs_z += half;
}
cell = bc->children[child];
if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) {
break;
}
half >>= 1;
}
if (cell == RasterizerStorage::LightmapCaptureOctree::CHILD_EMPTY) {
alpha[c][n] = 0;
} else {
alpha[c][n] = p_octree[cell].alpha;
for (int i = 0; i < 6; i++) {
//anisotropic read light
float amount = p_dir.dot(aniso_normal[i]);
if (amount < 0) {
amount = 0;
}
color[c][n].x += p_octree[cell].light[i][0] / 1024.0 * amount;
color[c][n].y += p_octree[cell].light[i][1] / 1024.0 * amount;
color[c][n].z += p_octree[cell].light[i][2] / 1024.0 * amount;
}
}
//print_line("\tlev " + itos(c) + " - " + itos(n) + " alpha: " + rtos(cells[test_cell].alpha) + " col: " + color[c][n]);
}
}
float target_level_size = size >> target_level;
Vector3 pos_fract[2];
pos_fract[0].x = Math::fmod(pos.x, target_level_size) / target_level_size;
pos_fract[0].y = Math::fmod(pos.y, target_level_size) / target_level_size;
pos_fract[0].z = Math::fmod(pos.z, target_level_size) / target_level_size;
target_level_size = size >> MAX(0, target_level - 1);
pos_fract[1].x = Math::fmod(pos.x, target_level_size) / target_level_size;
pos_fract[1].y = Math::fmod(pos.y, target_level_size) / target_level_size;
pos_fract[1].z = Math::fmod(pos.z, target_level_size) / target_level_size;
float alpha_interp[2];
Vector3 color_interp[2];
for (int i = 0; i < 2; i++) {
Vector3 color_x00 = color[i][0].linear_interpolate(color[i][1], pos_fract[i].x);
Vector3 color_xy0 = color[i][2].linear_interpolate(color[i][3], pos_fract[i].x);
Vector3 blend_z0 = color_x00.linear_interpolate(color_xy0, pos_fract[i].y);
Vector3 color_x0z = color[i][4].linear_interpolate(color[i][5], pos_fract[i].x);
Vector3 color_xyz = color[i][6].linear_interpolate(color[i][7], pos_fract[i].x);
Vector3 blend_z1 = color_x0z.linear_interpolate(color_xyz, pos_fract[i].y);
color_interp[i] = blend_z0.linear_interpolate(blend_z1, pos_fract[i].z);
float alpha_x00 = Math::lerp(alpha[i][0], alpha[i][1], pos_fract[i].x);
float alpha_xy0 = Math::lerp(alpha[i][2], alpha[i][3], pos_fract[i].x);
float alpha_z0 = Math::lerp(alpha_x00, alpha_xy0, pos_fract[i].y);
float alpha_x0z = Math::lerp(alpha[i][4], alpha[i][5], pos_fract[i].x);
float alpha_xyz = Math::lerp(alpha[i][6], alpha[i][7], pos_fract[i].x);
float alpha_z1 = Math::lerp(alpha_x0z, alpha_xyz, pos_fract[i].y);
alpha_interp[i] = Math::lerp(alpha_z0, alpha_z1, pos_fract[i].z);
}
r_color = color_interp[0].linear_interpolate(color_interp[1], level_filter);
r_alpha = Math::lerp(alpha_interp[0], alpha_interp[1], level_filter);
//print_line("pos: " + p_posf + " level " + rtos(p_level) + " down to " + itos(target_level) + "." + rtos(level_filter) + " color " + r_color + " alpha " + rtos(r_alpha));
}
_FORCE_INLINE_ static Color _light_capture_voxel_cone_trace(const RasterizerStorage::LightmapCaptureOctree *p_octree, const Vector3 &p_pos, const Vector3 &p_dir, float p_aperture, int p_cell_subdiv) {
float bias = 0.0; //no need for bias here
float max_distance = (Vector3(1, 1, 1) * (1 << (p_cell_subdiv - 1))).length();
float dist = bias;
float alpha = 0.0;
Vector3 color;
Vector3 scolor;
float salpha;
while (dist < max_distance && alpha < 0.95) {
float diameter = MAX(1.0, 2.0 * p_aperture * dist);
_light_capture_sample_octree(p_octree, p_cell_subdiv, p_pos + dist * p_dir, p_dir, log2(diameter), scolor, salpha);
float a = (1.0 - alpha);
color += scolor * a;
alpha += a * salpha;
dist += diameter * 0.5;
}
return Color(color.x, color.y, color.z, alpha);
}
void VisualServerScene::_update_instance_lightmap_captures(Instance *p_instance) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
static const Vector3 cone_traces[12] = {
Vector3(0, 0, 1),
Vector3(0.866025, 0, 0.5),
Vector3(0.267617, 0.823639, 0.5),
Vector3(-0.700629, 0.509037, 0.5),
Vector3(-0.700629, -0.509037, 0.5),
Vector3(0.267617, -0.823639, 0.5),
Vector3(0, 0, -1),
Vector3(0.866025, 0, -0.5),
Vector3(0.267617, 0.823639, -0.5),
Vector3(-0.700629, 0.509037, -0.5),
Vector3(-0.700629, -0.509037, -0.5),
Vector3(0.267617, -0.823639, -0.5)
};
float cone_aperture = 0.577; // tan(angle) 60 degrees
if (p_instance->lightmap_capture_data.empty()) {
p_instance->lightmap_capture_data.resize(12);
}
//print_line("update captures for pos: " + p_instance->transform.origin);
for (int i = 0; i < 12; i++) {
new (&p_instance->lightmap_capture_data.ptrw()[i]) Color;
}
bool interior = true;
//this could use some sort of blending..
for (List<Instance *>::Element *E = geom->lightmap_captures.front(); E; E = E->next()) {
const PoolVector<RasterizerStorage::LightmapCaptureOctree> *octree = VSG::storage->lightmap_capture_get_octree_ptr(E->get()->base);
//print_line("octree size: " + itos(octree->size()));
if (octree->size() == 0) {
continue;
}
Transform to_cell_xform = VSG::storage->lightmap_capture_get_octree_cell_transform(E->get()->base);
int cell_subdiv = VSG::storage->lightmap_capture_get_octree_cell_subdiv(E->get()->base);
to_cell_xform = to_cell_xform * E->get()->transform.affine_inverse();
PoolVector<RasterizerStorage::LightmapCaptureOctree>::Read octree_r = octree->read();
Vector3 pos = to_cell_xform.xform(p_instance->transform.origin);
const float capture_energy = VSG::storage->lightmap_capture_get_energy(E->get()->base);
interior = interior && VSG::storage->lightmap_capture_is_interior(E->get()->base);
for (int i = 0; i < 12; i++) {
Vector3 dir = to_cell_xform.basis.xform(cone_traces[i]).normalized();
Color capture = _light_capture_voxel_cone_trace(octree_r.ptr(), pos, dir, cone_aperture, cell_subdiv);
capture.r *= capture_energy;
capture.g *= capture_energy;
capture.b *= capture_energy;
p_instance->lightmap_capture_data.write[i] += capture;
}
}
p_instance->lightmap_capture_data.write[0].a = interior ? 0.0f : 1.0f;
}
bool VisualServerScene::_light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario) {
InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);
Transform light_transform = p_instance->transform;
light_transform.orthonormalize(); //scale does not count on lights
bool animated_material_found = false;
switch (VSG::storage->light_get_type(p_instance->base)) {
case VS::LIGHT_DIRECTIONAL: {
float max_distance = p_cam_projection.get_z_far();
float shadow_max = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
max_distance = MIN(shadow_max, max_distance);
}
max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
float min_distance = MIN(p_cam_projection.get_z_near(), max_distance);
VS::LightDirectionalShadowDepthRangeMode depth_range_mode = VSG::storage->light_directional_get_shadow_depth_range_mode(p_instance->base);
if (depth_range_mode == VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_OPTIMIZED) {
//optimize min/max
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK);
Plane base(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2));
//check distance max and min
bool found_items = false;
float z_max = -1e20;
float z_min = 1e20;
for (int i = 0; i < cull_count; i++) {
Instance *instance = instance_shadow_cull_result[i];
if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
continue;
}
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
float max, min;
instance->transformed_aabb.project_range_in_plane(base, min, max);
if (max > z_max) {
z_max = max;
}
if (min < z_min) {
z_min = min;
}
found_items = true;
}
if (found_items) {
min_distance = MAX(min_distance, z_min);
max_distance = MIN(max_distance, z_max);
}
}
float range = max_distance - min_distance;
int splits = 0;
switch (VSG::storage->light_directional_get_shadow_mode(p_instance->base)) {
case VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
splits = 1;
break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
splits = 2;
break;
case VS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
splits = 4;
break;
}
float distances[5];
distances[0] = min_distance;
for (int i = 0; i < splits; i++) {
distances[i + 1] = min_distance + VSG::storage->light_get_param(p_instance->base, VS::LightParam(VS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
};
distances[splits] = max_distance;
float texture_size = VSG::scene_render->get_directional_light_shadow_size(light->instance);
bool overlap = VSG::storage->light_directional_get_blend_splits(p_instance->base);
float first_radius = 0.0;
for (int i = 0; i < splits; i++) {
// setup a camera matrix for that range!
CameraMatrix camera_matrix;
float aspect = p_cam_projection.get_aspect();
if (p_cam_orthogonal) {
Vector2 vp_he = p_cam_projection.get_viewport_half_extents();
camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
} else {
float fov = p_cam_projection.get_fov();
camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
}
//obtain the frustum endpoints
Vector3 endpoints[8]; // frustum plane endpoints
bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
ERR_CONTINUE(!res);
// obtain the light frustm ranges (given endpoints)
Transform transform = light_transform; //discard scale and stabilize light
Vector3 x_vec = transform.basis.get_axis(Vector3::AXIS_X).normalized();
Vector3 y_vec = transform.basis.get_axis(Vector3::AXIS_Y).normalized();
Vector3 z_vec = transform.basis.get_axis(Vector3::AXIS_Z).normalized();
//z_vec points agsint the camera, like in default opengl
float x_min = 0.f, x_max = 0.f;
float y_min = 0.f, y_max = 0.f;
float z_min = 0.f, z_max = 0.f;
// FIXME: z_max_cam is defined, computed, but not used below when setting up
// ortho_camera. Commented out for now to fix warnings but should be investigated.
float x_min_cam = 0.f, x_max_cam = 0.f;
float y_min_cam = 0.f, y_max_cam = 0.f;
float z_min_cam = 0.f;
//float z_max_cam = 0.f;
float bias_scale = 1.0;
//used for culling
for (int j = 0; j < 8; j++) {
float d_x = x_vec.dot(endpoints[j]);
float d_y = y_vec.dot(endpoints[j]);
float d_z = z_vec.dot(endpoints[j]);
if (j == 0 || d_x < x_min) {
x_min = d_x;
}
if (j == 0 || d_x > x_max) {
x_max = d_x;
}
if (j == 0 || d_y < y_min) {
y_min = d_y;
}
if (j == 0 || d_y > y_max) {
y_max = d_y;
}
if (j == 0 || d_z < z_min) {
z_min = d_z;
}
if (j == 0 || d_z > z_max) {
z_max = d_z;
}
}
{
//camera viewport stuff
Vector3 center;
for (int j = 0; j < 8; j++) {
center += endpoints[j];
}
center /= 8.0;
//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;
float radius = 0;
for (int j = 0; j < 8; j++) {
float d = center.distance_to(endpoints[j]);
if (d > radius) {
radius = d;
}
}
radius *= texture_size / (texture_size - 2.0); //add a texel by each side
if (i == 0) {
first_radius = radius;
} else {
bias_scale = radius / first_radius;
}
x_max_cam = x_vec.dot(center) + radius;
x_min_cam = x_vec.dot(center) - radius;
y_max_cam = y_vec.dot(center) + radius;
y_min_cam = y_vec.dot(center) - radius;
//z_max_cam = z_vec.dot(center) + radius;
z_min_cam = z_vec.dot(center) - radius;
if (depth_range_mode == VS::LIGHT_DIRECTIONAL_SHADOW_DEPTH_RANGE_STABLE) {
//this trick here is what stabilizes the shadow (make potential jaggies to not move)
//at the cost of some wasted resolution. Still the quality increase is very well worth it
float unit = radius * 2.0 / texture_size;
x_max_cam = Math::stepify(x_max_cam, unit);
x_min_cam = Math::stepify(x_min_cam, unit);
y_max_cam = Math::stepify(y_max_cam, unit);
y_min_cam = Math::stepify(y_min_cam, unit);
}
}
//now that we now all ranges, we can proceed to make the light frustum planes, for culling octree
Vector<Plane> light_frustum_planes;
light_frustum_planes.resize(6);
//right/left
light_frustum_planes.write[0] = Plane(x_vec, x_max);
light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
//top/bottom
light_frustum_planes.write[2] = Plane(y_vec, y_max);
light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
//near/far
light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed
int cull_count = p_scenario->sps->cull_convex(light_frustum_planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK);
// a pre pass will need to be needed to determine the actual z-near to be used
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
for (int j = 0; j < cull_count; j++) {
float min, max;
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
continue;
}
instance->transformed_aabb.project_range_in_plane(Plane(z_vec, 0), min, max);
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
if (max > z_max) {
z_max = max;
}
}
{
CameraMatrix ortho_camera;
real_t half_x = (x_max_cam - x_min_cam) * 0.5;
real_t half_y = (y_max_cam - y_min_cam) * 0.5;
ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));
Transform ortho_transform;
ortho_transform.basis = transform.basis;
ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;
VSG::scene_render->light_instance_set_shadow_transform(light->instance, ortho_camera, ortho_transform, 0, distances[i + 1], i, bias_scale);
}
VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
} break;
case VS::LIGHT_OMNI: {
VS::LightOmniShadowMode shadow_mode = VSG::storage->light_omni_get_shadow_mode(p_instance->base);
if (shadow_mode == VS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !VSG::scene_render->light_instances_can_render_shadow_cube()) {
for (int i = 0; i < 2; i++) {
//using this one ensures that raster deferred will have it
float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE);
float z = i == 0 ? -1 : 1;
Vector<Plane> planes;
planes.resize(6);
planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0));
int cull_count = p_scenario->sps->cull_convex(planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, VS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(light_transform.origin, light_transform.basis.get_axis(2) * z);
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
VSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, i);
VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
} else { //shadow cube
float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE);
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, radius);
for (int i = 0; i < 6; i++) {
//using this one ensures that raster deferred will have it
static const Vector3 view_normals[6] = {
Vector3(-1, 0, 0),
Vector3(+1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, +1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1)
};
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Transform xform = light_transform * Transform().looking_at(view_normals[i], view_up[i]);
Vector<Plane> planes = cm.get_projection_planes(xform);
int cull_count = _cull_convex_from_point(p_scenario, light_transform.origin, planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, light->previous_room_id_hint, VS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(xform.origin, -xform.basis.get_axis(2));
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
VSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i);
VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, i, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
}
//restore the regular DP matrix
VSG::scene_render->light_instance_set_shadow_transform(light->instance, CameraMatrix(), light_transform, radius, 0, 0);
}
} break;
case VS::LIGHT_SPOT: {
float radius = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_RANGE);
float angle = VSG::storage->light_get_param(p_instance->base, VS::LIGHT_PARAM_SPOT_ANGLE);
CameraMatrix cm;
cm.set_perspective(angle * 2.0, 1.0, 0.01, radius);
Vector<Plane> planes = cm.get_projection_planes(light_transform);
int cull_count = _cull_convex_from_point(p_scenario, light_transform.origin, planes, instance_shadow_cull_result, MAX_INSTANCE_CULL, light->previous_room_id_hint, VS::INSTANCE_GEOMETRY_MASK);
Plane near_plane(light_transform.origin, -light_transform.basis.get_axis(2));
for (int j = 0; j < cull_count; j++) {
Instance *instance = instance_shadow_cull_result[j];
if (!instance->visible || !((1 << instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows) {
cull_count--;
SWAP(instance_shadow_cull_result[j], instance_shadow_cull_result[cull_count]);
j--;
} else {
if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
animated_material_found = true;
}
instance->depth = near_plane.distance_to(instance->transform.origin);
instance->depth_layer = 0;
}
}
VSG::scene_render->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0);
VSG::scene_render->render_shadow(light->instance, p_shadow_atlas, 0, (RasterizerScene::InstanceBase **)instance_shadow_cull_result, cull_count);
} break;
}
return animated_material_found;
}
void VisualServerScene::render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
// render to mono camera
#ifndef _3D_DISABLED
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* STEP 1 - SETUP CAMERA */
CameraMatrix camera_matrix;
bool ortho = false;
switch (camera->type) {
case Camera::ORTHOGONAL: {
camera_matrix.set_orthogonal(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = true;
} break;
case Camera::PERSPECTIVE: {
camera_matrix.set_perspective(
camera->fov,
p_viewport_size.width / (float)p_viewport_size.height,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
case Camera::FRUSTUM: {
camera_matrix.set_frustum(
camera->size,
p_viewport_size.width / (float)p_viewport_size.height,
camera->offset,
camera->znear,
camera->zfar,
camera->vaspect);
ortho = false;
} break;
}
_prepare_scene(camera->transform, camera_matrix, ortho, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), camera->previous_room_id_hint);
_render_scene(camera->transform, camera_matrix, 0, ortho, camera->env, p_scenario, p_shadow_atlas, RID(), -1);
#endif
}
void VisualServerScene::render_camera(Ref<ARVRInterface> &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas) {
// render for AR/VR interface
Camera *camera = camera_owner.getornull(p_camera);
ERR_FAIL_COND(!camera);
/* SETUP CAMERA, we are ignoring type and FOV here */
float aspect = p_viewport_size.width / (float)p_viewport_size.height;
CameraMatrix camera_matrix = p_interface->get_projection_for_eye(p_eye, aspect, camera->znear, camera->zfar);
// We also ignore our camera position, it will have been positioned with a slightly old tracking position.
// Instead we take our origin point and have our ar/vr interface add fresh tracking data! Whoohoo!
Transform world_origin = ARVRServer::get_singleton()->get_world_origin();
Transform cam_transform = p_interface->get_transform_for_eye(p_eye, world_origin);
// For stereo render we only prepare for our left eye and then reuse the outcome for our right eye
if (p_eye == ARVRInterface::EYE_LEFT) {
///@TODO possibly move responsibility for this into our ARVRServer or ARVRInterface?
// Center our transform, we assume basis is equal.
Transform mono_transform = cam_transform;
Transform right_transform = p_interface->get_transform_for_eye(ARVRInterface::EYE_RIGHT, world_origin);
mono_transform.origin += right_transform.origin;
mono_transform.origin *= 0.5;
// We need to combine our projection frustums for culling.
// Ideally we should use our clipping planes for this and combine them,
// however our shadow map logic uses our projection matrix.
// Note: as our left and right frustums should be mirrored, we don't need our right projection matrix.
// - get some base values we need
float eye_dist = (mono_transform.origin - cam_transform.origin).length();
float z_near = camera_matrix.get_z_near(); // get our near plane
float z_far = camera_matrix.get_z_far(); // get our far plane
float width = (2.0 * z_near) / camera_matrix.matrix[0][0];
float x_shift = width * camera_matrix.matrix[2][0];
float height = (2.0 * z_near) / camera_matrix.matrix[1][1];
float y_shift = height * camera_matrix.matrix[2][1];
// printf("Eye_dist = %f, Near = %f, Far = %f, Width = %f, Shift = %f\n", eye_dist, z_near, z_far, width, x_shift);
// - calculate our near plane size (horizontal only, right_near is mirrored)
float left_near = -eye_dist - ((width - x_shift) * 0.5);
// - calculate our far plane size (horizontal only, right_far is mirrored)
float left_far = -eye_dist - (z_far * (width - x_shift) * 0.5 / z_near);
float left_far_right_eye = eye_dist - (z_far * (width + x_shift) * 0.5 / z_near);
if (left_far > left_far_right_eye) {
// on displays smaller then double our iod, the right eye far frustrum can overtake the left eyes.
left_far = left_far_right_eye;
}
// - figure out required z-shift
float slope = (left_far - left_near) / (z_far - z_near);
float z_shift = (left_near / slope) - z_near;
// - figure out new vertical near plane size (this will be slightly oversized thanks to our z-shift)
float top_near = (height - y_shift) * 0.5;
top_near += (top_near / z_near) * z_shift;
float bottom_near = -(height + y_shift) * 0.5;
bottom_near += (bottom_near / z_near) * z_shift;
// printf("Left_near = %f, Left_far = %f, Top_near = %f, Bottom_near = %f, Z_shift = %f\n", left_near, left_far, top_near, bottom_near, z_shift);
// - generate our frustum
CameraMatrix combined_matrix;
combined_matrix.set_frustum(left_near, -left_near, bottom_near, top_near, z_near + z_shift, z_far + z_shift);
// and finally move our camera back
Transform apply_z_shift;
apply_z_shift.origin = Vector3(0.0, 0.0, z_shift); // z negative is forward so this moves it backwards
mono_transform *= apply_z_shift;
// now prepare our scene with our adjusted transform projection matrix
_prepare_scene(mono_transform, combined_matrix, false, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), camera->previous_room_id_hint);
} else if (p_eye == ARVRInterface::EYE_MONO) {
// For mono render, prepare as per usual
_prepare_scene(cam_transform, camera_matrix, false, camera->env, camera->visible_layers, p_scenario, p_shadow_atlas, RID(), camera->previous_room_id_hint);
}
// And render our scene...
_render_scene(cam_transform, camera_matrix, p_eye, false, camera->env, p_scenario, p_shadow_atlas, RID(), -1);
};
void VisualServerScene::_prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int32_t &r_previous_room_id_hint) {
// Note, in stereo rendering:
// - p_cam_transform will be a transform in the middle of our two eyes
// - p_cam_projection is a wider frustrum that encompasses both eyes
Scenario *scenario = scenario_owner.getornull(p_scenario);
render_pass++;
uint32_t camera_layer_mask = p_visible_layers;
VSG::scene_render->set_scene_pass(render_pass);
//rasterizer->set_camera(camera->transform, camera_matrix,ortho);
Vector<Plane> planes = p_cam_projection.get_projection_planes(p_cam_transform);
Plane near_plane(p_cam_transform.origin, -p_cam_transform.basis.get_axis(2).normalized());
float z_far = p_cam_projection.get_z_far();
/* STEP 2 - CULL */
instance_cull_count = _cull_convex_from_point(scenario, p_cam_transform.origin, planes, instance_cull_result, MAX_INSTANCE_CULL, r_previous_room_id_hint);
light_cull_count = 0;
reflection_probe_cull_count = 0;
//light_samplers_culled=0;
/*
print_line("OT: "+rtos( (OS::get_singleton()->get_ticks_usec()-t)/1000.0));
print_line("OTO: "+itos(p_scenario->octree.get_octant_count()));
print_line("OTE: "+itos(p_scenario->octree.get_elem_count()));
print_line("OTP: "+itos(p_scenario->octree.get_pair_count()));
*/
/* STEP 3 - PROCESS PORTALS, VALIDATE ROOMS */
//removed, will replace with culling
/* STEP 4 - REMOVE FURTHER CULLED OBJECTS, ADD LIGHTS */
for (int i = 0; i < instance_cull_count; i++) {
Instance *ins = instance_cull_result[i];
bool keep = false;
if ((camera_layer_mask & ins->layer_mask) == 0) {
//failure
} else if (ins->base_type == VS::INSTANCE_LIGHT && ins->visible) {
if (light_cull_count < MAX_LIGHTS_CULLED) {
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
if (!light->geometries.empty()) {
//do not add this light if no geometry is affected by it..
light_cull_result[light_cull_count] = ins;
light_instance_cull_result[light_cull_count] = light->instance;
if (p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(ins->base)) {
VSG::scene_render->light_instance_mark_visible(light->instance); //mark it visible for shadow allocation later
}
light_cull_count++;
}
}
} else if (ins->base_type == VS::INSTANCE_REFLECTION_PROBE && ins->visible) {
if (reflection_probe_cull_count < MAX_REFLECTION_PROBES_CULLED) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(ins->base_data);
if (p_reflection_probe != reflection_probe->instance) {
//avoid entering The Matrix
if (!reflection_probe->geometries.empty()) {
//do not add this light if no geometry is affected by it..
if (reflection_probe->reflection_dirty || VSG::scene_render->reflection_probe_instance_needs_redraw(reflection_probe->instance)) {
if (!reflection_probe->update_list.in_list()) {
reflection_probe->render_step = 0;
reflection_probe_render_list.add_last(&reflection_probe->update_list);
}
reflection_probe->reflection_dirty = false;
}
if (VSG::scene_render->reflection_probe_instance_has_reflection(reflection_probe->instance)) {
reflection_probe_instance_cull_result[reflection_probe_cull_count] = reflection_probe->instance;
reflection_probe_cull_count++;
}
}
}
}
} else if (ins->base_type == VS::INSTANCE_GI_PROBE && ins->visible) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(ins->base_data);
if (!gi_probe->update_element.in_list()) {
gi_probe_update_list.add(&gi_probe->update_element);
}
} else if (((1 << ins->base_type) & VS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
keep = true;
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(ins->base_data);
if (ins->redraw_if_visible) {
VisualServerRaster::redraw_request();
}
if (ins->base_type == VS::INSTANCE_PARTICLES) {
//particles visible? process them
if (VSG::storage->particles_is_inactive(ins->base)) {
//but if nothing is going on, don't do it.
keep = false;
} else {
VSG::storage->particles_request_process(ins->base);
//particles visible? request redraw
VisualServerRaster::redraw_request();
}
}
if (geom->lighting_dirty) {
int l = 0;
//only called when lights AABB enter/exit this geometry
ins->light_instances.resize(geom->lighting.size());
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
ins->light_instances.write[l++] = light->instance;
}
geom->lighting_dirty = false;
}
if (geom->reflection_dirty) {
int l = 0;
//only called when reflection probe AABB enter/exit this geometry
ins->reflection_probe_instances.resize(geom->reflection_probes.size());
for (List<Instance *>::Element *E = geom->reflection_probes.front(); E; E = E->next()) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->get()->base_data);
ins->reflection_probe_instances.write[l++] = reflection_probe->instance;
}
geom->reflection_dirty = false;
}
if (geom->gi_probes_dirty) {
int l = 0;
//only called when reflection probe AABB enter/exit this geometry
ins->gi_probe_instances.resize(geom->gi_probes.size());
for (List<Instance *>::Element *E = geom->gi_probes.front(); E; E = E->next()) {
InstanceGIProbeData *gi_probe = static_cast<InstanceGIProbeData *>(E->get()->base_data);
ins->gi_probe_instances.write[l++] = gi_probe->probe_instance;
}
geom->gi_probes_dirty = false;
}
}
if (!keep) {
// remove, no reason to keep
instance_cull_count--;
SWAP(instance_cull_result[i], instance_cull_result[instance_cull_count]);
i--;
ins->last_render_pass = 0; // make invalid
} else {
ins->last_render_pass = render_pass;
}
}
/* STEP 5 - PROCESS LIGHTS */
RID *directional_light_ptr = &light_instance_cull_result[light_cull_count];
directional_light_count = 0;
// directional lights
{
Instance **lights_with_shadow = (Instance **)alloca(sizeof(Instance *) * scenario->directional_lights.size());
int directional_shadow_count = 0;
for (List<Instance *>::Element *E = scenario->directional_lights.front(); E; E = E->next()) {
if (light_cull_count + directional_light_count >= MAX_LIGHTS_CULLED) {
break;
}
if (!E->get()->visible) {
continue;
}
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
//check shadow..
if (light) {
if (p_shadow_atlas.is_valid() && VSG::storage->light_has_shadow(E->get()->base)) {
lights_with_shadow[directional_shadow_count++] = E->get();
}
//add to list
directional_light_ptr[directional_light_count++] = light->instance;
}
}
VSG::scene_render->set_directional_shadow_count(directional_shadow_count);
for (int i = 0; i < directional_shadow_count; i++) {
_light_instance_update_shadow(lights_with_shadow[i], p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario);
}
}
{ //setup shadow maps
//SortArray<Instance*,_InstanceLightsort> sorter;
//sorter.sort(light_cull_result,light_cull_count);
for (int i = 0; i < light_cull_count; i++) {
Instance *ins = light_cull_result[i];
if (!p_shadow_atlas.is_valid() || !VSG::storage->light_has_shadow(ins->base)) {
continue;
}
InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);
float coverage = 0.f;
{ //compute coverage
Transform cam_xf = p_cam_transform;
float zn = p_cam_projection.get_z_near();
Plane p(cam_xf.origin + cam_xf.basis.get_axis(2) * -zn, -cam_xf.basis.get_axis(2)); //camera near plane
// near plane half width and height
Vector2 vp_half_extents = p_cam_projection.get_viewport_half_extents();
switch (VSG::storage->light_get_type(ins->base)) {
case VS::LIGHT_OMNI: {
float radius = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_RANGE);
//get two points parallel to near plane
Vector3 points[2] = {
ins->transform.origin,
ins->transform.origin + cam_xf.basis.get_axis(0) * radius
};
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
case VS::LIGHT_SPOT: {
float radius = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_RANGE);
float angle = VSG::storage->light_get_param(ins->base, VS::LIGHT_PARAM_SPOT_ANGLE);
float w = radius * Math::sin(Math::deg2rad(angle));
float d = radius * Math::cos(Math::deg2rad(angle));
Vector3 base = ins->transform.origin - ins->transform.basis.get_axis(2).normalized() * d;
Vector3 points[2] = {
base,
base + cam_xf.basis.get_axis(0) * w
};
if (!p_cam_orthogonal) {
//if using perspetive, map them to near plane
for (int j = 0; j < 2; j++) {
if (p.distance_to(points[j]) < 0) {
points[j].z = -zn; //small hack to keep size constant when hitting the screen
}
p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
}
}
float screen_diameter = points[0].distance_to(points[1]) * 2;
coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
} break;
default: {
ERR_PRINT("Invalid Light Type");
}
}
}
if (light->shadow_dirty) {
light->last_version++;
light->shadow_dirty = false;
}
bool redraw = VSG::scene_render->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);
if (redraw) {
//must redraw!
light->shadow_dirty = _light_instance_update_shadow(ins, p_cam_transform, p_cam_projection, p_cam_orthogonal, p_shadow_atlas, scenario);
}
}
}
// Calculate instance->depth from the camera, after shadow calculation has stopped overwriting instance->depth
for (int i = 0; i < instance_cull_count; i++) {
Instance *ins = instance_cull_result[i];
if (((1 << ins->base_type) & VS::INSTANCE_GEOMETRY_MASK) && ins->visible && ins->cast_shadows != VS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
Vector3 aabb_center = ins->transformed_aabb.position + (ins->transformed_aabb.size * 0.5);
ins->depth = near_plane.distance_to(aabb_center);
ins->depth_layer = CLAMP(int(ins->depth * 16 / z_far), 0, 15);
}
}
}
void VisualServerScene::_render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, const int p_eye, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
Scenario *scenario = scenario_owner.getornull(p_scenario);
/* ENVIRONMENT */
RID environment;
if (p_force_environment.is_valid()) { //camera has more environment priority
environment = p_force_environment;
} else if (scenario->environment.is_valid()) {
environment = scenario->environment;
} else {
environment = scenario->fallback_environment;
}
/* PROCESS GEOMETRY AND DRAW SCENE */
VSG::scene_render->render_scene(p_cam_transform, p_cam_projection, p_eye, p_cam_orthogonal, (RasterizerScene::InstanceBase **)instance_cull_result, instance_cull_count, light_instance_cull_result, light_cull_count + directional_light_count, reflection_probe_instance_cull_result, reflection_probe_cull_count, environment, p_shadow_atlas, scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass);
}
void VisualServerScene::render_empty_scene(RID p_scenario, RID p_shadow_atlas) {
#ifndef _3D_DISABLED
Scenario *scenario = scenario_owner.getornull(p_scenario);
RID environment;
if (scenario->environment.is_valid()) {
environment = scenario->environment;
} else {
environment = scenario->fallback_environment;
}
VSG::scene_render->render_scene(Transform(), CameraMatrix(), 0, true, nullptr, 0, nullptr, 0, nullptr, 0, environment, p_shadow_atlas, scenario->reflection_atlas, RID(), 0);
#endif
}
bool VisualServerScene::_render_reflection_probe_step(Instance *p_instance, int p_step) {
InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
Scenario *scenario = p_instance->scenario;
ERR_FAIL_COND_V(!scenario, true);
VisualServerRaster::redraw_request(); //update, so it updates in editor
if (p_step == 0) {
if (!VSG::scene_render->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
return true; //sorry, all full :(
}
}
if (p_step >= 0 && p_step < 6) {
static const Vector3 view_normals[6] = {
Vector3(-1, 0, 0),
Vector3(+1, 0, 0),
Vector3(0, -1, 0),
Vector3(0, +1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1)
};
Vector3 extents = VSG::storage->reflection_probe_get_extents(p_instance->base);
Vector3 origin_offset = VSG::storage->reflection_probe_get_origin_offset(p_instance->base);
float max_distance = VSG::storage->reflection_probe_get_origin_max_distance(p_instance->base);
Vector3 edge = view_normals[p_step] * extents;
float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit
max_distance = MAX(max_distance, distance);
//render cubemap side
CameraMatrix cm;
cm.set_perspective(90, 1, 0.01, max_distance);
static const Vector3 view_up[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, -1),
Vector3(0, 0, +1),
Vector3(0, -1, 0),
Vector3(0, -1, 0)
};
Transform local_view;
local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);
Transform xform = p_instance->transform * local_view;
RID shadow_atlas;
if (VSG::storage->reflection_probe_renders_shadows(p_instance->base)) {
shadow_atlas = scenario->reflection_probe_shadow_atlas;
}
_prepare_scene(xform, cm, false, RID(), VSG::storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, reflection_probe->previous_room_id_hint);
_render_scene(xform, cm, 0, false, RID(), p_instance->scenario->self, shadow_atlas, reflection_probe->instance, p_step);
} else {
//do roughness postprocess step until it believes it's done
return VSG::scene_render->reflection_probe_instance_postprocess_step(reflection_probe->instance);
}
return false;
}
void VisualServerScene::_gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector<uint32_t> *prev_cell) {
if ((uint32_t)p_level == p_header->cell_subdiv - 1) {
Vector3 emission;
emission.x = (p_cell[p_idx].emission >> 24) / 255.0;
emission.y = ((p_cell[p_idx].emission >> 16) & 0xFF) / 255.0;
emission.z = ((p_cell[p_idx].emission >> 8) & 0xFF) / 255.0;
float l = (p_cell[p_idx].emission & 0xFF) / 255.0;
l *= 8.0;
emission *= l;
p_local_data[p_idx].energy[0] = uint16_t(emission.x * 1024); //go from 0 to 1024 for light
p_local_data[p_idx].energy[1] = uint16_t(emission.y * 1024); //go from 0 to 1024 for light
p_local_data[p_idx].energy[2] = uint16_t(emission.z * 1024); //go from 0 to 1024 for light
} else {
p_local_data[p_idx].energy[0] = 0;
p_local_data[p_idx].energy[1] = 0;
p_local_data[p_idx].energy[2] = 0;
int half = (1 << (p_header->cell_subdiv - 1)) >> (p_level + 1);
for (int i = 0; i < 8; i++) {
uint32_t child = p_cell[p_idx].children[i];
if (child == 0xFFFFFFFF) {
continue;
}
int x = p_x;
int y = p_y;
int z = p_z;
if (i & 1) {
x += half;
}
if (i & 2) {
y += half;
}
if (i & 4) {
z += half;
}
_gi_probe_fill_local_data(child, p_level + 1, x, y, z, p_cell, p_header, p_local_data, prev_cell);
}
}
//position for each part of the mipmaped texture
p_local_data[p_idx].pos[0] = p_x >> (p_header->cell_subdiv - p_level - 1);
p_local_data[p_idx].pos[1] = p_y >> (p_header->cell_subdiv - p_level - 1);
p_local_data[p_idx].pos[2] = p_z >> (p_header->cell_subdiv - p_level - 1);
prev_cell[p_level].push_back(p_idx);
}
void VisualServerScene::_gi_probe_bake_threads(void *self) {
VisualServerScene *vss = (VisualServerScene *)self;
vss->_gi_probe_bake_thread();
}
void VisualServerScene::_setup_gi_probe(Instance *p_instance) {
InstanceGIProbeData *probe = static_cast<InstanceGIProbeData *>(p_instance->base_data);
if (probe->dynamic.probe_data.is_valid()) {
VSG::storage->free(probe->dynamic.probe_data);
probe->dynamic.probe_data = RID();
}
probe->dynamic.light_data = VSG::storage->gi_probe_get_dynamic_data(p_instance->base);
if (probe->dynamic.light_data.size() == 0) {
return;
}
//using dynamic data
PoolVector<int>::Read r = probe->dynamic.light_data.read();
const GIProbeDataHeader *header = (GIProbeDataHeader *)r.ptr();
probe->dynamic.local_data.resize(header->cell_count);
int cell_count = probe->dynamic.local_data.size();
PoolVector<InstanceGIProbeData::LocalData>::Write ldw = probe->dynamic.local_data.write();
const GIProbeDataCell *cells = (GIProbeDataCell *)&r[16];
probe->dynamic.level_cell_lists.resize(header->cell_subdiv);
_gi_probe_fill_local_data(0, 0, 0, 0, 0, cells, header, ldw.ptr(), probe->dynamic.level_cell_lists.ptrw());
probe->dynamic.compression = RasterizerStorage::GI_PROBE_UNCOMPRESSED;
probe->dynamic.probe_data = VSG::storage->gi_probe_dynamic_data_create(header->width, header->height, header->depth, probe->dynamic.compression);
probe->dynamic.bake_dynamic_range = VSG::storage->gi_probe_get_dynamic_range(p_instance->base);
probe->dynamic.mipmaps_3d.clear();
probe->dynamic.propagate = VSG::storage->gi_probe_get_propagation(p_instance->base);
probe->dynamic.grid_size[0] = header->width;
probe->dynamic.grid_size[1] = header->height;
probe->dynamic.grid_size[2] = header->depth;
int size_limit = 1;
int size_divisor = 1;
if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) {
size_limit = 4;
size_divisor = 4;
}
for (int i = 0; i < (int)header->cell_subdiv; i++) {
int x = header->width >> i;
int y = header->height >> i;
int z = header->depth >> i;
//create and clear mipmap
PoolVector<uint8_t> mipmap;
int size = x * y * z * 4;
size /= size_divisor;
mipmap.resize(size);
PoolVector<uint8_t>::Write w = mipmap.write();
memset(w.ptr(), 0, size);
w.release();
probe->dynamic.mipmaps_3d.push_back(mipmap);
if (x <= size_limit || y <= size_limit || z <= size_limit) {
break;
}
}
probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK;
probe->invalid = false;
probe->dynamic.enabled = true;
Transform cell_to_xform = VSG::storage->gi_probe_get_to_cell_xform(p_instance->base);
AABB bounds = VSG::storage->gi_probe_get_bounds(p_instance->base);
float cell_size = VSG::storage->gi_probe_get_cell_size(p_instance->base);
probe->dynamic.light_to_cell_xform = cell_to_xform * p_instance->transform.affine_inverse();
VSG::scene_render->gi_probe_instance_set_light_data(probe->probe_instance, p_instance->base, probe->dynamic.probe_data);
VSG::scene_render->gi_probe_instance_set_transform_to_data(probe->probe_instance, probe->dynamic.light_to_cell_xform);
VSG::scene_render->gi_probe_instance_set_bounds(probe->probe_instance, bounds.size / cell_size);
probe->base_version = VSG::storage->gi_probe_get_version(p_instance->base);
//if compression is S3TC, fill it up
if (probe->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) {
//create all blocks
Vector<Map<uint32_t, InstanceGIProbeData::CompBlockS3TC>> comp_blocks;
int mipmap_count = probe->dynamic.mipmaps_3d.size();
comp_blocks.resize(mipmap_count);
for (int i = 0; i < cell_count; i++) {
const GIProbeDataCell &c = cells[i];
const InstanceGIProbeData::LocalData &ld = ldw[i];
int level = c.level_alpha >> 16;
int mipmap = header->cell_subdiv - level - 1;
if (mipmap >= mipmap_count) {
continue; //uninteresting
}
int blockx = (ld.pos[0] >> 2);
int blocky = (ld.pos[1] >> 2);
int blockz = (ld.pos[2]); //compression is x/y only
int blockw = (header->width >> mipmap) >> 2;
int blockh = (header->height >> mipmap) >> 2;
//print_line("cell "+itos(i)+" level "+itos(level)+"mipmap: "+itos(mipmap)+" pos: "+Vector3(blockx,blocky,blockz)+" size "+Vector2(blockw,blockh));
uint32_t key = blockz * blockw * blockh + blocky * blockw + blockx;
Map<uint32_t, InstanceGIProbeData::CompBlockS3TC> &cmap = comp_blocks.write[mipmap];
if (!cmap.has(key)) {
InstanceGIProbeData::CompBlockS3TC k;
k.offset = key; //use offset as counter first
k.source_count = 0;
cmap[key] = k;
}
InstanceGIProbeData::CompBlockS3TC &k = cmap[key];
ERR_CONTINUE(k.source_count == 16);
k.sources[k.source_count++] = i;
}
//fix the blocks, precomputing what is needed
probe->dynamic.mipmaps_s3tc.resize(mipmap_count);
for (int i = 0; i < mipmap_count; i++) {
//print_line("S3TC level: " + itos(i) + " blocks: " + itos(comp_blocks[i].size()));
probe->dynamic.mipmaps_s3tc.write[i].resize(comp_blocks[i].size());
PoolVector<InstanceGIProbeData::CompBlockS3TC>::Write w = probe->dynamic.mipmaps_s3tc.write[i].write();
int block_idx = 0;
for (Map<uint32_t, InstanceGIProbeData::CompBlockS3TC>::Element *E = comp_blocks[i].front(); E; E = E->next()) {
InstanceGIProbeData::CompBlockS3TC k = E->get();
//PRECOMPUTE ALPHA
int max_alpha = -100000;
int min_alpha = k.source_count == 16 ? 100000 : 0; //if the block is not completely full, minimum is always 0, (and those blocks will map to 1, which will be zero)
uint8_t alpha_block[4][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } };
for (uint32_t j = 0; j < k.source_count; j++) {
int alpha = (cells[k.sources[j]].level_alpha >> 8) & 0xFF;
if (alpha < min_alpha) {
min_alpha = alpha;
}
if (alpha > max_alpha) {
max_alpha = alpha;
}
//fill up alpha block
alpha_block[ldw[k.sources[j]].pos[0] % 4][ldw[k.sources[j]].pos[1] % 4] = alpha;
}
//use the first mode (8 adjustable levels)
k.alpha[0] = max_alpha;
k.alpha[1] = min_alpha;
uint64_t alpha_bits = 0;
if (max_alpha != min_alpha) {
int idx = 0;
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
//subtract minimum
uint32_t a = uint32_t(alpha_block[x][y]) - min_alpha;
//convert range to 3 bits
a = int((a * 7.0 / (max_alpha - min_alpha)) + 0.5);
a = MIN(a, 7); //just to be sure
a = 7 - a; //because range is inverted in this mode
if (a == 0) {
//do none, remain
} else if (a == 7) {
a = 1;
} else {
a = a + 1;
}
alpha_bits |= uint64_t(a) << (idx * 3);
idx++;
}
}
}
k.alpha[2] = (alpha_bits >> 0) & 0xFF;
k.alpha[3] = (alpha_bits >> 8) & 0xFF;
k.alpha[4] = (alpha_bits >> 16) & 0xFF;
k.alpha[5] = (alpha_bits >> 24) & 0xFF;
k.alpha[6] = (alpha_bits >> 32) & 0xFF;
k.alpha[7] = (alpha_bits >> 40) & 0xFF;
w[block_idx++] = k;
}
}
}
}
void VisualServerScene::_gi_probe_bake_thread() {
while (true) {
probe_bake_sem.wait();
if (probe_bake_thread_exit) {
break;
}
Instance *to_bake = nullptr;
probe_bake_mutex.lock();
if (!probe_bake_list.empty()) {
to_bake = probe_bake_list.front()->get();
probe_bake_list.pop_front();
}
probe_bake_mutex.unlock();
if (!to_bake) {
continue;
}
_bake_gi_probe(to_bake);
}
}
uint32_t VisualServerScene::_gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv) {
uint32_t cell = 0;
int ofs_x = 0;
int ofs_y = 0;
int ofs_z = 0;
int size = 1 << (p_cell_subdiv - 1);
int half = size / 2;
if (x < 0 || x >= size) {
return -1;
}
if (y < 0 || y >= size) {
return -1;
}
if (z < 0 || z >= size) {
return -1;
}
for (int i = 0; i < p_cell_subdiv - 1; i++) {
const GIProbeDataCell *bc = &cells[cell];
int child = 0;
if (x >= ofs_x + half) {
child |= 1;
ofs_x += half;
}
if (y >= ofs_y + half) {
child |= 2;
ofs_y += half;
}
if (z >= ofs_z + half) {
child |= 4;
ofs_z += half;
}
cell = bc->children[child];
if (cell == 0xFFFFFFFF) {
return 0xFFFFFFFF;
}
half >>= 1;
}
return cell;
}
static float _get_normal_advance(const Vector3 &p_normal) {
Vector3 normal = p_normal;
Vector3 unorm = normal.abs();
if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) {
// x code
unorm = normal.x > 0.0 ? Vector3(1.0, 0.0, 0.0) : Vector3(-1.0, 0.0, 0.0);
} else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) {
// y code
unorm = normal.y > 0.0 ? Vector3(0.0, 1.0, 0.0) : Vector3(0.0, -1.0, 0.0);
} else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) {
// z code
unorm = normal.z > 0.0 ? Vector3(0.0, 0.0, 1.0) : Vector3(0.0, 0.0, -1.0);
} else {
// oh-no we messed up code
// has to be
unorm = Vector3(1.0, 0.0, 0.0);
}
return 1.0 / normal.dot(unorm);
}
void VisualServerScene::_bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign) {
int light_r = int(light_cache.color.r * light_cache.energy * 1024.0) * p_sign;
int light_g = int(light_cache.color.g * light_cache.energy * 1024.0) * p_sign;
int light_b = int(light_cache.color.b * light_cache.energy * 1024.0) * p_sign;
float limits[3] = { float(header->width), float(header->height), float(header->depth) };
Plane clip[3];
int clip_planes = 0;
switch (light_cache.type) {
case VS::LIGHT_DIRECTIONAL: {
float max_len = Vector3(limits[0], limits[1], limits[2]).length() * 1.1;
Vector3 light_axis = -light_cache.transform.basis.get_axis(2).normalized();
for (int i = 0; i < 3; i++) {
if (Math::is_zero_approx(light_axis[i])) {
continue;
}
clip[clip_planes].normal[i] = 1.0;
if (light_axis[i] < 0) {
clip[clip_planes].d = limits[i] + 1;
} else {
clip[clip_planes].d -= 1.0;
}
clip_planes++;
}
float distance_adv = _get_normal_advance(light_axis);
int success_count = 0;
// uint64_t us = OS::get_singleton()->get_ticks_usec();
for (int i = 0; i < p_leaf_count; i++) {
uint32_t idx = leaves[i];
const GIProbeDataCell *cell = &cells[idx];
InstanceGIProbeData::LocalData *light = &local_data[idx];
Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5);
to += -light_axis.sign() * 0.47; //make it more likely to receive a ray
Vector3 norm(
(((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0,
(((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0,
(((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0);
float att = norm.dot(-light_axis);
if (att < 0.001) {
//not lighting towards this
continue;
}
Vector3 from = to - max_len * light_axis;
for (int j = 0; j < clip_planes; j++) {
clip[j].intersects_segment(from, to, &from);
}
float distance = (to - from).length();
distance += distance_adv - Math::fmod(distance, distance_adv); //make it reach the center of the box always
from = to - light_axis * distance;
uint32_t result = 0xFFFFFFFF;
while (distance > -distance_adv) { //use this to avoid precision errors
result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv);
if (result != 0xFFFFFFFF) {
break;
}
from += light_axis * distance_adv;
distance -= distance_adv;
}
if (result == idx) {
//cell hit itself! hooray!
light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0);
light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0);
light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0);
success_count++;
}
}
// print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0));
// print_line("valid cells: " + itos(success_count));
} break;
case VS::LIGHT_OMNI:
case VS::LIGHT_SPOT: {
// uint64_t us = OS::get_singleton()->get_ticks_usec();
Vector3 light_pos = light_cache.transform.origin;
Vector3 spot_axis = -light_cache.transform.basis.get_axis(2).normalized();
float local_radius = light_cache.radius * light_cache.transform.basis.get_axis(2).length();
for (int i = 0; i < p_leaf_count; i++) {
uint32_t idx = leaves[i];
const GIProbeDataCell *cell = &cells[idx];
InstanceGIProbeData::LocalData *light = &local_data[idx];
Vector3 to(light->pos[0] + 0.5, light->pos[1] + 0.5, light->pos[2] + 0.5);
to += (light_pos - to).sign() * 0.47; //make it more likely to receive a ray
Vector3 norm(
(((cells[idx].normal >> 16) & 0xFF) / 255.0) * 2.0 - 1.0,
(((cells[idx].normal >> 8) & 0xFF) / 255.0) * 2.0 - 1.0,
(((cells[idx].normal >> 0) & 0xFF) / 255.0) * 2.0 - 1.0);
Vector3 light_axis = (to - light_pos).normalized();
float distance_adv = _get_normal_advance(light_axis);
float att = norm.dot(-light_axis);
if (att < 0.001) {
//not lighting towards this
continue;
}
{
float d = light_pos.distance_to(to);
if (d + distance_adv > local_radius) {
continue; // too far away
}
float dt = CLAMP((d + distance_adv) / local_radius, 0, 1);
att *= powf(1.0 - dt, light_cache.attenuation);
}
if (light_cache.type == VS::LIGHT_SPOT) {
float angle = Math::rad2deg(acos(light_axis.dot(spot_axis)));
if (angle > light_cache.spot_angle) {
continue;
}
float d = CLAMP(angle / light_cache.spot_angle, 0, 1);
att *= powf(1.0 - d, light_cache.spot_attenuation);
}
clip_planes = 0;
for (int c = 0; c < 3; c++) {
if (Math::is_zero_approx(light_axis[c])) {
continue;
}
clip[clip_planes].normal[c] = 1.0;
if (light_axis[c] < 0) {
clip[clip_planes].d = limits[c] + 1;
} else {
clip[clip_planes].d -= 1.0;
}
clip_planes++;
}
Vector3 from = light_pos;
for (int j = 0; j < clip_planes; j++) {
clip[j].intersects_segment(from, to, &from);
}
float distance = (to - from).length();
distance -= Math::fmod(distance, distance_adv); //make it reach the center of the box always, but this tame make it closer
from = to - light_axis * distance;
uint32_t result = 0xFFFFFFFF;
while (distance > -distance_adv) { //use this to avoid precision errors
result = _gi_bake_find_cell(cells, int(floor(from.x)), int(floor(from.y)), int(floor(from.z)), header->cell_subdiv);
if (result != 0xFFFFFFFF) {
break;
}
from += light_axis * distance_adv;
distance -= distance_adv;
}
if (result == idx) {
//cell hit itself! hooray!
light->energy[0] += int32_t(light_r * att * ((cell->albedo >> 16) & 0xFF) / 255.0);
light->energy[1] += int32_t(light_g * att * ((cell->albedo >> 8) & 0xFF) / 255.0);
light->energy[2] += int32_t(light_b * att * ((cell->albedo) & 0xFF) / 255.0);
}
}
//print_line("BAKE TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0));
} break;
}
}
void VisualServerScene::_bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate) {
//average light to upper level
float divisor = 0;
float sum[3] = { 0.0, 0.0, 0.0 };
for (int i = 0; i < 8; i++) {
uint32_t child = p_cells[p_idx].children[i];
if (child == 0xFFFFFFFF) {
continue;
}
if (p_level + 1 < (int)p_header->cell_subdiv - 1) {
_bake_gi_downscale_light(child, p_level + 1, p_cells, p_header, p_local_data, p_propagate);
}
sum[0] += p_local_data[child].energy[0];
sum[1] += p_local_data[child].energy[1];
sum[2] += p_local_data[child].energy[2];
divisor += 1.0;
}
divisor = Math::lerp((float)8.0, divisor, p_propagate);
sum[0] /= divisor;
sum[1] /= divisor;
sum[2] /= divisor;
//divide by eight for average
p_local_data[p_idx].energy[0] = Math::fast_ftoi(sum[0]);
p_local_data[p_idx].energy[1] = Math::fast_ftoi(sum[1]);
p_local_data[p_idx].energy[2] = Math::fast_ftoi(sum[2]);
}
void VisualServerScene::_bake_gi_probe(Instance *p_gi_probe) {
InstanceGIProbeData *probe_data = static_cast<InstanceGIProbeData *>(p_gi_probe->base_data);
PoolVector<int>::Read r = probe_data->dynamic.light_data.read();
const GIProbeDataHeader *header = (const GIProbeDataHeader *)r.ptr();
const GIProbeDataCell *cells = (const GIProbeDataCell *)&r[16];
int leaf_count = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].size();
const uint32_t *leaves = probe_data->dynamic.level_cell_lists[header->cell_subdiv - 1].ptr();
PoolVector<InstanceGIProbeData::LocalData>::Write ldw = probe_data->dynamic.local_data.write();
InstanceGIProbeData::LocalData *local_data = ldw.ptr();
//remove what must be removed
for (Map<RID, InstanceGIProbeData::LightCache>::Element *E = probe_data->dynamic.light_cache.front(); E; E = E->next()) {
RID rid = E->key();
const InstanceGIProbeData::LightCache &lc = E->get();
if ((!probe_data->dynamic.light_cache_changes.has(rid) || probe_data->dynamic.light_cache_changes[rid] != lc) && lc.visible) {
//erase light data
_bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, -1);
}
}
//add what must be added
for (Map<RID, InstanceGIProbeData::LightCache>::Element *E = probe_data->dynamic.light_cache_changes.front(); E; E = E->next()) {
RID rid = E->key();
const InstanceGIProbeData::LightCache &lc = E->get();
if ((!probe_data->dynamic.light_cache.has(rid) || probe_data->dynamic.light_cache[rid] != lc) && lc.visible) {
//add light data
_bake_gi_probe_light(header, cells, local_data, leaves, leaf_count, lc, 1);
}
}
SWAP(probe_data->dynamic.light_cache_changes, probe_data->dynamic.light_cache);
//downscale to lower res levels
_bake_gi_downscale_light(0, 0, cells, header, local_data, probe_data->dynamic.propagate);
//plot result to 3D texture!
if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_UNCOMPRESSED) {
for (int i = 0; i < (int)header->cell_subdiv; i++) {
int stage = header->cell_subdiv - i - 1;
if (stage >= probe_data->dynamic.mipmaps_3d.size()) {
continue; //no mipmap for this one
}
//print_line("generating mipmap stage: " + itos(stage));
int level_cell_count = probe_data->dynamic.level_cell_lists[i].size();
const uint32_t *level_cells = probe_data->dynamic.level_cell_lists[i].ptr();
PoolVector<uint8_t>::Write lw = probe_data->dynamic.mipmaps_3d.write[stage].write();
uint8_t *mipmapw = lw.ptr();
uint32_t sizes[3] = { header->width >> stage, header->height >> stage, header->depth >> stage };
for (int j = 0; j < level_cell_count; j++) {
uint32_t idx = level_cells[j];
uint32_t r2 = (uint32_t(local_data[idx].energy[0]) / probe_data->dynamic.bake_dynamic_range) >> 2;
uint32_t g = (uint32_t(local_data[idx].energy[1]) / probe_data->dynamic.bake_dynamic_range) >> 2;
uint32_t b = (uint32_t(local_data[idx].energy[2]) / probe_data->dynamic.bake_dynamic_range) >> 2;
uint32_t a = (cells[idx].level_alpha >> 8) & 0xFF;
uint32_t mm_ofs = sizes[0] * sizes[1] * (local_data[idx].pos[2]) + sizes[0] * (local_data[idx].pos[1]) + (local_data[idx].pos[0]);
mm_ofs *= 4; //for RGBA (4 bytes)
mipmapw[mm_ofs + 0] = uint8_t(MIN(r2, 255));
mipmapw[mm_ofs + 1] = uint8_t(MIN(g, 255));
mipmapw[mm_ofs + 2] = uint8_t(MIN(b, 255));
mipmapw[mm_ofs + 3] = uint8_t(MIN(a, 255));
}
}
} else if (probe_data->dynamic.compression == RasterizerStorage::GI_PROBE_S3TC) {
int mipmap_count = probe_data->dynamic.mipmaps_3d.size();
for (int mmi = 0; mmi < mipmap_count; mmi++) {
PoolVector<uint8_t>::Write mmw = probe_data->dynamic.mipmaps_3d.write[mmi].write();
int block_count = probe_data->dynamic.mipmaps_s3tc[mmi].size();
PoolVector<InstanceGIProbeData::CompBlockS3TC>::Read mmr = probe_data->dynamic.mipmaps_s3tc[mmi].read();
for (int i = 0; i < block_count; i++) {
const InstanceGIProbeData::CompBlockS3TC &b = mmr[i];
uint8_t *blockptr = &mmw[b.offset * 16];
memcpy(blockptr, b.alpha, 8); //copy alpha part, which is precomputed
Vector3 colors[16];
for (uint32_t j = 0; j < b.source_count; j++) {
colors[j].x = (local_data[b.sources[j]].energy[0] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0;
colors[j].y = (local_data[b.sources[j]].energy[1] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0;
colors[j].z = (local_data[b.sources[j]].energy[2] / float(probe_data->dynamic.bake_dynamic_range)) / 1024.0;
}
//super quick and dirty compression
//find 2 most further apart
float distance = 0;
Vector3 from, to;
if (b.source_count == 16) {
//all cells are used so, find minmax between them
int further_apart[2] = { 0, 0 };
for (uint32_t j = 0; j < b.source_count; j++) {
for (uint32_t k = j + 1; k < b.source_count; k++) {
float d = colors[j].distance_squared_to(colors[k]);
if (d > distance) {
distance = d;
further_apart[0] = j;
further_apart[1] = k;
}
}
}
from = colors[further_apart[0]];
to = colors[further_apart[1]];
} else {
//if a block is missing, the priority is that this block remains black,
//otherwise the geometry will appear deformed
//correct shape wins over correct color in this case
//average all colors first
Vector3 average;
for (uint32_t j = 0; j < b.source_count; j++) {
average += colors[j];
}
average.normalize();
//find max distance in normal from average
for (uint32_t j = 0; j < b.source_count; j++) {
float d = average.dot(colors[j]);
distance = MAX(d, distance);
}
from = Vector3(); //from black
to = average * distance;
//find max distance
}
int indices[16];
uint16_t color_0 = 0;
color_0 = CLAMP(int(from.x * 31), 0, 31) << 11;
color_0 |= CLAMP(int(from.y * 63), 0, 63) << 5;
color_0 |= CLAMP(int(from.z * 31), 0, 31);
uint16_t color_1 = 0;
color_1 = CLAMP(int(to.x * 31), 0, 31) << 11;
color_1 |= CLAMP(int(to.y * 63), 0, 63) << 5;
color_1 |= CLAMP(int(to.z * 31), 0, 31);
if (color_1 > color_0) {
SWAP(color_1, color_0);
SWAP(from, to);
}
if (distance > 0) {
Vector3 dir = (to - from).normalized();
for (uint32_t j = 0; j < b.source_count; j++) {
float d = (colors[j] - from).dot(dir) / distance;
indices[j] = int(d * 3 + 0.5);
static const int index_swap[4] = { 0, 3, 1, 2 };
indices[j] = index_swap[CLAMP(indices[j], 0, 3)];
}
} else {
for (uint32_t j = 0; j < b.source_count; j++) {
indices[j] = 0;
}
}
//by default, 1 is black, otherwise it will be overridden by source
uint32_t index_block[16] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
for (uint32_t j = 0; j < b.source_count; j++) {
int x = local_data[b.sources[j]].pos[0] % 4;
int y = local_data[b.sources[j]].pos[1] % 4;
index_block[y * 4 + x] = indices[j];
}
uint32_t encode = 0;
for (int j = 0; j < 16; j++) {
encode |= index_block[j] << (j * 2);
}
blockptr[8] = color_0 & 0xFF;
blockptr[9] = (color_0 >> 8) & 0xFF;
blockptr[10] = color_1 & 0xFF;
blockptr[11] = (color_1 >> 8) & 0xFF;
blockptr[12] = encode & 0xFF;
blockptr[13] = (encode >> 8) & 0xFF;
blockptr[14] = (encode >> 16) & 0xFF;
blockptr[15] = (encode >> 24) & 0xFF;
}
}
}
//send back to main thread to update un little chunks
probe_bake_mutex.lock();
probe_data->dynamic.updating_stage = GI_UPDATE_STAGE_UPLOADING;
probe_bake_mutex.unlock();
}
bool VisualServerScene::_check_gi_probe(Instance *p_gi_probe) {
InstanceGIProbeData *probe_data = static_cast<InstanceGIProbeData *>(p_gi_probe->base_data);
probe_data->dynamic.light_cache_changes.clear();
bool all_equal = true;
for (List<Instance *>::Element *E = p_gi_probe->scenario->directional_lights.front(); E; E = E->next()) {
if (VSG::storage->light_get_bake_mode(E->get()->base) == VS::LightBakeMode::LIGHT_BAKE_DISABLED) {
continue;
}
InstanceGIProbeData::LightCache lc;
lc.type = VSG::storage->light_get_type(E->get()->base);
lc.color = VSG::storage->light_get_color(E->get()->base);
lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY);
lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE);
lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION);
lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE);
lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION);
lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform;
lc.visible = E->get()->visible;
if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) {
all_equal = false;
}
probe_data->dynamic.light_cache_changes[E->get()->self] = lc;
}
for (Set<Instance *>::Element *E = probe_data->lights.front(); E; E = E->next()) {
if (VSG::storage->light_get_bake_mode(E->get()->base) == VS::LightBakeMode::LIGHT_BAKE_DISABLED) {
continue;
}
InstanceGIProbeData::LightCache lc;
lc.type = VSG::storage->light_get_type(E->get()->base);
lc.color = VSG::storage->light_get_color(E->get()->base);
lc.energy = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ENERGY) * VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_INDIRECT_ENERGY);
lc.radius = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_RANGE);
lc.attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_ATTENUATION);
lc.spot_angle = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ANGLE);
lc.spot_attenuation = VSG::storage->light_get_param(E->get()->base, VS::LIGHT_PARAM_SPOT_ATTENUATION);
lc.transform = probe_data->dynamic.light_to_cell_xform * E->get()->transform;
lc.visible = E->get()->visible;
if (!probe_data->dynamic.light_cache.has(E->get()->self) || probe_data->dynamic.light_cache[E->get()->self] != lc) {
all_equal = false;
}
probe_data->dynamic.light_cache_changes[E->get()->self] = lc;
}
//lighting changed from after to before, must do some updating
return !all_equal || probe_data->dynamic.light_cache_changes.size() != probe_data->dynamic.light_cache.size();
}
void VisualServerScene::render_probes() {
/* REFLECTION PROBES */
SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
bool busy = false;
while (ref_probe) {
SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
RID base = ref_probe->self()->owner->base;
switch (VSG::storage->reflection_probe_get_update_mode(base)) {
case VS::REFLECTION_PROBE_UPDATE_ONCE: {
if (busy) { //already rendering something
break;
}
bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
if (done) {
reflection_probe_render_list.remove(ref_probe);
} else {
ref_probe->self()->render_step++;
}
busy = true; //do not render another one of this kind
} break;
case VS::REFLECTION_PROBE_UPDATE_ALWAYS: {
int step = 0;
bool done = false;
while (!done) {
done = _render_reflection_probe_step(ref_probe->self()->owner, step);
step++;
}
reflection_probe_render_list.remove(ref_probe);
} break;
}
ref_probe = next;
}
/* GI PROBES */
SelfList<InstanceGIProbeData> *gi_probe = gi_probe_update_list.first();
while (gi_probe) {
SelfList<InstanceGIProbeData> *next = gi_probe->next();
InstanceGIProbeData *probe = gi_probe->self();
Instance *instance_probe = probe->owner;
//check if probe must be setup, but don't do if on the lighting thread
bool force_lighting = false;
if (probe->invalid || (probe->dynamic.updating_stage == GI_UPDATE_STAGE_CHECK && probe->base_version != VSG::storage->gi_probe_get_version(instance_probe->base))) {
_setup_gi_probe(instance_probe);
force_lighting = true;
}
float propagate = VSG::storage->gi_probe_get_propagation(instance_probe->base);
if (probe->dynamic.propagate != propagate) {
probe->dynamic.propagate = propagate;
force_lighting = true;
}
if (!probe->invalid && probe->dynamic.enabled) {
switch (probe->dynamic.updating_stage) {
case GI_UPDATE_STAGE_CHECK: {
if (_check_gi_probe(instance_probe) || force_lighting) { //send to lighting thread
#ifndef NO_THREADS
probe_bake_mutex.lock();
probe->dynamic.updating_stage = GI_UPDATE_STAGE_LIGHTING;
probe_bake_list.push_back(instance_probe);
probe_bake_mutex.unlock();
probe_bake_sem.post();
#else
_bake_gi_probe(instance_probe);
#endif
}
} break;
case GI_UPDATE_STAGE_LIGHTING: {
//do none, wait til done!
} break;
case GI_UPDATE_STAGE_UPLOADING: {
//uint64_t us = OS::get_singleton()->get_ticks_usec();
for (int i = 0; i < (int)probe->dynamic.mipmaps_3d.size(); i++) {
PoolVector<uint8_t>::Read r = probe->dynamic.mipmaps_3d[i].read();
VSG::storage->gi_probe_dynamic_data_update(probe->dynamic.probe_data, 0, probe->dynamic.grid_size[2] >> i, i, r.ptr());
}
probe->dynamic.updating_stage = GI_UPDATE_STAGE_CHECK;
//print_line("UPLOAD TIME: " + rtos((OS::get_singleton()->get_ticks_usec() - us) / 1000000.0));
} break;
}
}
//_update_gi_probe(gi_probe->self()->owner);
gi_probe = next;
}
}
void VisualServerScene::_update_dirty_instance(Instance *p_instance) {
if (p_instance->update_aabb) {
_update_instance_aabb(p_instance);
}
if (p_instance->update_materials) {
if (p_instance->base_type == VS::INSTANCE_MESH) {
//remove materials no longer used and un-own them
int new_mat_count = VSG::storage->mesh_get_surface_count(p_instance->base);
for (int i = p_instance->materials.size() - 1; i >= new_mat_count; i--) {
if (p_instance->materials[i].is_valid()) {
VSG::storage->material_remove_instance_owner(p_instance->materials[i], p_instance);
}
}
p_instance->materials.resize(new_mat_count);
int new_blend_shape_count = VSG::storage->mesh_get_blend_shape_count(p_instance->base);
if (new_blend_shape_count != p_instance->blend_values.size()) {
p_instance->blend_values.resize(new_blend_shape_count);
for (int i = 0; i < new_blend_shape_count; i++) {
p_instance->blend_values.write().ptr()[i] = 0;
}
}
}
if ((1 << p_instance->base_type) & VS::INSTANCE_GEOMETRY_MASK) {
InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
bool can_cast_shadows = true;
bool is_animated = false;
if (p_instance->cast_shadows == VS::SHADOW_CASTING_SETTING_OFF) {
can_cast_shadows = false;
} else if (p_instance->material_override.is_valid()) {
can_cast_shadows = VSG::storage->material_casts_shadows(p_instance->material_override);
is_animated = VSG::storage->material_is_animated(p_instance->material_override);
} else {
if (p_instance->base_type == VS::INSTANCE_MESH) {
RID mesh = p_instance->base;
if (mesh.is_valid()) {
bool cast_shadows = false;
for (int i = 0; i < p_instance->materials.size(); i++) {
RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : VSG::storage->mesh_surface_get_material(mesh, i);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (VSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (VSG::storage->material_is_animated(mat)) {
is_animated = true;
}
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
} else if (p_instance->base_type == VS::INSTANCE_MULTIMESH) {
RID mesh = VSG::storage->multimesh_get_mesh(p_instance->base);
if (mesh.is_valid()) {
bool cast_shadows = false;
int sc = VSG::storage->mesh_get_surface_count(mesh);
for (int i = 0; i < sc; i++) {
RID mat = VSG::storage->mesh_surface_get_material(mesh, i);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (VSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (VSG::storage->material_is_animated(mat)) {
is_animated = true;
}
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
} else if (p_instance->base_type == VS::INSTANCE_IMMEDIATE) {
RID mat = VSG::storage->immediate_get_material(p_instance->base);
can_cast_shadows = !mat.is_valid() || VSG::storage->material_casts_shadows(mat);
if (mat.is_valid() && VSG::storage->material_is_animated(mat)) {
is_animated = true;
}
} else if (p_instance->base_type == VS::INSTANCE_PARTICLES) {
bool cast_shadows = false;
int dp = VSG::storage->particles_get_draw_passes(p_instance->base);
for (int i = 0; i < dp; i++) {
RID mesh = VSG::storage->particles_get_draw_pass_mesh(p_instance->base, i);
if (!mesh.is_valid()) {
continue;
}
int sc = VSG::storage->mesh_get_surface_count(mesh);
for (int j = 0; j < sc; j++) {
RID mat = VSG::storage->mesh_surface_get_material(mesh, j);
if (!mat.is_valid()) {
cast_shadows = true;
} else {
if (VSG::storage->material_casts_shadows(mat)) {
cast_shadows = true;
}
if (VSG::storage->material_is_animated(mat)) {
is_animated = true;
}
}
}
}
if (!cast_shadows) {
can_cast_shadows = false;
}
}
}
if (can_cast_shadows != geom->can_cast_shadows) {
//ability to cast shadows change, let lights now
for (List<Instance *>::Element *E = geom->lighting.front(); E; E = E->next()) {
InstanceLightData *light = static_cast<InstanceLightData *>(E->get()->base_data);
light->shadow_dirty = true;
}
geom->can_cast_shadows = can_cast_shadows;
}
geom->material_is_animated = is_animated;
}
}
_instance_update_list.remove(&p_instance->update_item);
_update_instance(p_instance);
p_instance->update_aabb = false;
p_instance->update_materials = false;
}
void VisualServerScene::update_dirty_instances() {
VSG::storage->update_dirty_resources();
// this is just to get access to scenario so we can update the spatial partitioning scheme
Scenario *scenario = nullptr;
if (_instance_update_list.first()) {
scenario = _instance_update_list.first()->self()->scenario;
}
while (_instance_update_list.first()) {
_update_dirty_instance(_instance_update_list.first()->self());
}
if (scenario) {
scenario->sps->update();
}
}
bool VisualServerScene::free(RID p_rid) {
if (camera_owner.owns(p_rid)) {
Camera *camera = camera_owner.get(p_rid);
camera_owner.free(p_rid);
memdelete(camera);
} else if (scenario_owner.owns(p_rid)) {
Scenario *scenario = scenario_owner.get(p_rid);
while (scenario->instances.first()) {
instance_set_scenario(scenario->instances.first()->self()->self, RID());
}
VSG::scene_render->free(scenario->reflection_probe_shadow_atlas);
VSG::scene_render->free(scenario->reflection_atlas);
scenario_owner.free(p_rid);
memdelete(scenario);
} else if (instance_owner.owns(p_rid)) {
// delete the instance
update_dirty_instances();
Instance *instance = instance_owner.get(p_rid);
instance_set_use_lightmap(p_rid, RID(), RID(), -1, Rect2(0, 0, 1, 1));
instance_set_scenario(p_rid, RID());
instance_set_base(p_rid, RID());
instance_geometry_set_material_override(p_rid, RID());
instance_attach_skeleton(p_rid, RID());
update_dirty_instances(); //in case something changed this
instance_owner.free(p_rid);
memdelete(instance);
} else if (room_owner.owns(p_rid)) {
Room *room = room_owner.get(p_rid);
room_owner.free(p_rid);
memdelete(room);
} else if (portal_owner.owns(p_rid)) {
Portal *portal = portal_owner.get(p_rid);
portal_owner.free(p_rid);
memdelete(portal);
} else if (ghost_owner.owns(p_rid)) {
Ghost *ghost = ghost_owner.get(p_rid);
ghost_owner.free(p_rid);
memdelete(ghost);
} else if (roomgroup_owner.owns(p_rid)) {
RoomGroup *roomgroup = roomgroup_owner.get(p_rid);
roomgroup_owner.free(p_rid);
memdelete(roomgroup);
} else if (occluder_owner.owns(p_rid)) {
Occluder *ro = occluder_owner.get(p_rid);
occluder_owner.free(p_rid);
memdelete(ro);
} else {
return false;
}
return true;
}
VisualServerScene *VisualServerScene::singleton = nullptr;
VisualServerScene::VisualServerScene() {
probe_bake_thread.start(_gi_probe_bake_threads, this);
probe_bake_thread_exit = false;
render_pass = 1;
singleton = this;
_use_bvh = GLOBAL_DEF("rendering/quality/spatial_partitioning/use_bvh", true);
_visual_server_callbacks = nullptr;
}
VisualServerScene::~VisualServerScene() {
probe_bake_thread_exit = true;
probe_bake_sem.post();
probe_bake_thread.wait_to_finish();
}