godot/scene/2d/tile_map_layer.cpp

2886 lines
110 KiB
C++

/**************************************************************************/
/* tile_map_layer.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "tile_map_layer.h"
#include "core/core_string_names.h"
#include "core/io/marshalls.h"
#include "scene/gui/control.h"
#include "scene/resources/world_2d.h"
#include "servers/navigation_server_2d.h"
#ifdef DEBUG_ENABLED
#include "servers/navigation_server_3d.h"
#endif // DEBUG_ENABLED
#ifdef DEBUG_ENABLED
/////////////////////////////// Debug //////////////////////////////////////////
constexpr int TILE_MAP_DEBUG_QUADRANT_SIZE = 16;
Vector2i TileMapLayer::_coords_to_debug_quadrant_coords(const Vector2i &p_coords) const {
return Vector2i(
p_coords.x > 0 ? p_coords.x / TILE_MAP_DEBUG_QUADRANT_SIZE : (p_coords.x - (TILE_MAP_DEBUG_QUADRANT_SIZE - 1)) / TILE_MAP_DEBUG_QUADRANT_SIZE,
p_coords.y > 0 ? p_coords.y / TILE_MAP_DEBUG_QUADRANT_SIZE : (p_coords.y - (TILE_MAP_DEBUG_QUADRANT_SIZE - 1)) / TILE_MAP_DEBUG_QUADRANT_SIZE);
}
void TileMapLayer::_debug_update() {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
RenderingServer *rs = RenderingServer::get_singleton();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid() || !tile_map_node->is_visible_in_tree();
if (forced_cleanup) {
for (KeyValue<Vector2i, Ref<DebugQuadrant>> &kv : debug_quadrant_map) {
// Free the quadrant.
Ref<DebugQuadrant> &debug_quadrant = kv.value;
if (debug_quadrant->canvas_item.is_valid()) {
rs->free(debug_quadrant->canvas_item);
}
}
debug_quadrant_map.clear();
_debug_was_cleaned_up = true;
return;
}
// Check if anything is dirty, in such a case, redraw debug.
bool anything_changed = false;
for (int i = 0; i < DIRTY_FLAGS_MAX; i++) {
if (dirty.flags[i]) {
anything_changed = true;
break;
}
}
// List all debug quadrants to update, creating new ones if needed.
SelfList<DebugQuadrant>::List dirty_debug_quadrant_list;
if (_debug_was_cleaned_up || anything_changed) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
CellData &cell_data = kv.value;
_debug_quadrants_update_cell(cell_data, dirty_debug_quadrant_list);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_debug_quadrants_update_cell(cell_data, dirty_debug_quadrant_list);
}
}
// Update those quadrants.
for (SelfList<DebugQuadrant> *quadrant_list_element = dirty_debug_quadrant_list.first(); quadrant_list_element;) {
SelfList<DebugQuadrant> *next_quadrant_list_element = quadrant_list_element->next(); // "Hack" to clear the list while iterating.
DebugQuadrant &debug_quadrant = *quadrant_list_element->self();
// Check if the quadrant has a tile.
bool has_a_tile = false;
RID &ci = debug_quadrant.canvas_item;
for (SelfList<CellData> *cell_data_list_element = debug_quadrant.cells.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
if (cell_data.cell.source_id != TileSet::INVALID_SOURCE) {
has_a_tile = true;
break;
}
}
if (has_a_tile) {
// Update the quadrant.
if (ci.is_valid()) {
rs->canvas_item_clear(ci);
} else {
ci = rs->canvas_item_create();
rs->canvas_item_set_z_index(ci, RS::CANVAS_ITEM_Z_MAX - 1);
rs->canvas_item_set_parent(ci, tile_map_node->get_canvas_item());
}
const Vector2 quadrant_pos = tile_map_node->map_to_local(debug_quadrant.quadrant_coords * TILE_MAP_DEBUG_QUADRANT_SIZE);
Transform2D xform(0, quadrant_pos);
rs->canvas_item_set_transform(ci, xform);
for (SelfList<CellData> *cell_data_list_element = debug_quadrant.cells.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
if (cell_data.cell.source_id != TileSet::INVALID_SOURCE) {
_rendering_draw_cell_debug(ci, quadrant_pos, cell_data);
_physics_draw_cell_debug(ci, quadrant_pos, cell_data);
_navigation_draw_cell_debug(ci, quadrant_pos, cell_data);
_scenes_draw_cell_debug(ci, quadrant_pos, cell_data);
}
}
} else {
// Free the quadrant.
if (ci.is_valid()) {
rs->free(ci);
}
quadrant_list_element->remove_from_list();
debug_quadrant_map.erase(debug_quadrant.quadrant_coords);
}
quadrant_list_element = next_quadrant_list_element;
}
dirty_debug_quadrant_list.clear();
_debug_was_cleaned_up = false;
}
void TileMapLayer::_debug_quadrants_update_cell(CellData &r_cell_data, SelfList<DebugQuadrant>::List &r_dirty_debug_quadrant_list) {
Vector2i quadrant_coords = _coords_to_debug_quadrant_coords(r_cell_data.coords);
if (!debug_quadrant_map.has(quadrant_coords)) {
// Create a new quadrant and add it to the quadrant map.
Ref<DebugQuadrant> new_quadrant;
new_quadrant.instantiate();
new_quadrant->quadrant_coords = quadrant_coords;
debug_quadrant_map[quadrant_coords] = new_quadrant;
}
// Add the cell to its quadrant, if it is not already in there.
Ref<DebugQuadrant> &debug_quadrant = debug_quadrant_map[quadrant_coords];
if (!r_cell_data.debug_quadrant_list_element.in_list()) {
debug_quadrant->cells.add(&r_cell_data.debug_quadrant_list_element);
}
// Mark the quadrant as dirty.
if (!debug_quadrant->dirty_quadrant_list_element.in_list()) {
r_dirty_debug_quadrant_list.add(&debug_quadrant->dirty_quadrant_list_element);
}
}
#endif // DEBUG_ENABLED
/////////////////////////////// Rendering //////////////////////////////////////
void TileMapLayer::_rendering_update() {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
RenderingServer *rs = RenderingServer::get_singleton();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid() || !tile_map_node->is_visible_in_tree();
// ----------- Layer level processing -----------
if (forced_cleanup) {
// Cleanup.
if (canvas_item.is_valid()) {
rs->free(canvas_item);
canvas_item = RID();
}
} else {
// Create/Update the layer's CanvasItem.
if (!canvas_item.is_valid()) {
RID ci = rs->canvas_item_create();
rs->canvas_item_set_parent(ci, tile_map_node->get_canvas_item());
canvas_item = ci;
}
RID &ci = canvas_item;
rs->canvas_item_set_draw_index(ci, layer_index_in_tile_map_node - (int64_t)0x80000000);
rs->canvas_item_set_sort_children_by_y(ci, y_sort_enabled);
rs->canvas_item_set_use_parent_material(ci, tile_map_node->get_use_parent_material() || tile_map_node->get_material().is_valid());
rs->canvas_item_set_z_index(ci, z_index);
rs->canvas_item_set_default_texture_filter(ci, RS::CanvasItemTextureFilter(tile_map_node->get_texture_filter_in_tree()));
rs->canvas_item_set_default_texture_repeat(ci, RS::CanvasItemTextureRepeat(tile_map_node->get_texture_repeat_in_tree()));
rs->canvas_item_set_light_mask(ci, tile_map_node->get_light_mask());
// Modulate the layer.
Color layer_modulate = modulate;
int selected_layer = tile_map_node->get_selected_layer();
if (selected_layer >= 0 && layer_index_in_tile_map_node != selected_layer) {
int z_selected = tile_map_node->get_layer_z_index(selected_layer);
if (z_index < z_selected || (z_index == z_selected && layer_index_in_tile_map_node < selected_layer)) {
layer_modulate = layer_modulate.darkened(0.5);
} else if (z_index > z_selected || (z_index == z_selected && layer_index_in_tile_map_node > selected_layer)) {
layer_modulate = layer_modulate.darkened(0.5);
layer_modulate.a *= 0.3;
}
}
rs->canvas_item_set_modulate(ci, layer_modulate);
}
// ----------- Quadrants processing -----------
// List all rendering quadrants to update, creating new ones if needed.
SelfList<RenderingQuadrant>::List dirty_rendering_quadrant_list;
// Check if anything changed that might change the quadrant shape.
// If so, recreate everything.
bool quandrant_shape_changed = dirty.flags[DIRTY_FLAGS_TILE_MAP_QUADRANT_SIZE] ||
(tile_map_node->is_y_sort_enabled() && y_sort_enabled && (dirty.flags[DIRTY_FLAGS_LAYER_Y_SORT_ENABLED] || dirty.flags[DIRTY_FLAGS_LAYER_Y_SORT_ORIGIN] || dirty.flags[DIRTY_FLAGS_TILE_MAP_Y_SORT_ENABLED] || dirty.flags[DIRTY_FLAGS_TILE_MAP_LOCAL_XFORM] || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET]));
// Free all quadrants.
if (forced_cleanup || quandrant_shape_changed) {
for (const KeyValue<Vector2i, Ref<RenderingQuadrant>> &kv : rendering_quadrant_map) {
for (int i = 0; i < kv.value->canvas_items.size(); i++) {
const RID &ci = kv.value->canvas_items[i];
if (ci.is_valid()) {
rs->free(ci);
}
}
kv.value->cells.clear();
}
rendering_quadrant_map.clear();
_rendering_was_cleaned_up = true;
}
if (!forced_cleanup) {
// List all quadrants to update, recreating them if needed.
if (dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET] || _rendering_was_cleaned_up) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
CellData &cell_data = kv.value;
_rendering_quadrants_update_cell(cell_data, dirty_rendering_quadrant_list);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_rendering_quadrants_update_cell(cell_data, dirty_rendering_quadrant_list);
}
}
// Update all dirty quadrants.
for (SelfList<RenderingQuadrant> *quadrant_list_element = dirty_rendering_quadrant_list.first(); quadrant_list_element;) {
SelfList<RenderingQuadrant> *next_quadrant_list_element = quadrant_list_element->next(); // "Hack" to clear the list while iterating.
const Ref<RenderingQuadrant> &rendering_quadrant = quadrant_list_element->self();
// Check if the quadrant has a tile.
bool has_a_tile = false;
for (SelfList<CellData> *cell_data_list_element = rendering_quadrant->cells.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
if (cell_data.cell.source_id != TileSet::INVALID_SOURCE) {
has_a_tile = true;
break;
}
}
if (has_a_tile) {
// Process the quadrant.
// First, clear the quadrant's canvas items.
for (RID &ci : rendering_quadrant->canvas_items) {
rs->free(ci);
}
rendering_quadrant->canvas_items.clear();
// Sort the quadrant cells.
if (tile_map_node->is_y_sort_enabled() && is_y_sort_enabled()) {
// For compatibility reasons, we use another comparator for Y-sorted layers.
rendering_quadrant->cells.sort_custom<CellDataYSortedComparator>();
} else {
rendering_quadrant->cells.sort();
}
// Those allow to group cell per material or z-index.
Ref<Material> prev_material;
int prev_z_index = 0;
RID prev_ci;
for (SelfList<CellData> *cell_data_quadrant_list_element = rendering_quadrant->cells.first(); cell_data_quadrant_list_element; cell_data_quadrant_list_element = cell_data_quadrant_list_element->next()) {
CellData &cell_data = *cell_data_quadrant_list_element->self();
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(*tile_set->get_source(cell_data.cell.source_id));
// Get the tile data.
const TileData *tile_data;
if (cell_data.runtime_tile_data_cache) {
tile_data = cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(cell_data.cell.get_atlas_coords(), cell_data.cell.alternative_tile);
}
Ref<Material> mat = tile_data->get_material();
int tile_z_index = tile_data->get_z_index();
// Quandrant pos.
// --- CanvasItems ---
RID ci;
// Check if the material or the z_index changed.
if (prev_ci == RID() || prev_material != mat || prev_z_index != tile_z_index) {
// If so, create a new CanvasItem.
ci = rs->canvas_item_create();
if (mat.is_valid()) {
rs->canvas_item_set_material(ci, mat->get_rid());
}
rs->canvas_item_set_parent(ci, canvas_item);
rs->canvas_item_set_use_parent_material(ci, tile_map_node->get_use_parent_material() || tile_map_node->get_material().is_valid());
Transform2D xform(0, rendering_quadrant->canvas_items_position);
rs->canvas_item_set_transform(ci, xform);
rs->canvas_item_set_light_mask(ci, tile_map_node->get_light_mask());
rs->canvas_item_set_z_as_relative_to_parent(ci, true);
rs->canvas_item_set_z_index(ci, tile_z_index);
rs->canvas_item_set_default_texture_filter(ci, RS::CanvasItemTextureFilter(tile_map_node->get_texture_filter_in_tree()));
rs->canvas_item_set_default_texture_repeat(ci, RS::CanvasItemTextureRepeat(tile_map_node->get_texture_repeat_in_tree()));
rendering_quadrant->canvas_items.push_back(ci);
prev_ci = ci;
prev_material = mat;
prev_z_index = tile_z_index;
} else {
// Keep the same canvas_item to draw on.
ci = prev_ci;
}
const Vector2 local_tile_pos = tile_map_node->map_to_local(cell_data.coords);
// Random animation offset.
real_t random_animation_offset = 0.0;
if (atlas_source->get_tile_animation_mode(cell_data.cell.get_atlas_coords()) != TileSetAtlasSource::TILE_ANIMATION_MODE_DEFAULT) {
Array to_hash;
to_hash.push_back(local_tile_pos);
to_hash.push_back(get_instance_id()); // Use instance id as a random hash
random_animation_offset = RandomPCG(to_hash.hash()).randf();
}
// Drawing the tile in the canvas item.
tile_map_node->draw_tile(ci, local_tile_pos - rendering_quadrant->canvas_items_position, tile_set, cell_data.cell.source_id, cell_data.cell.get_atlas_coords(), cell_data.cell.alternative_tile, -1, tile_map_node->get_self_modulate(), tile_data, random_animation_offset);
}
} else {
// Free the quadrant.
for (int i = 0; i < rendering_quadrant->canvas_items.size(); i++) {
const RID &ci = rendering_quadrant->canvas_items[i];
if (ci.is_valid()) {
rs->free(ci);
}
}
rendering_quadrant->cells.clear();
rendering_quadrant_map.erase(rendering_quadrant->quadrant_coords);
}
quadrant_list_element = next_quadrant_list_element;
}
dirty_rendering_quadrant_list.clear();
// Reset the drawing indices.
{
int index = -(int64_t)0x80000000; // Always must be drawn below children.
// Sort the quadrants coords per local coordinates.
RBMap<Vector2, Ref<RenderingQuadrant>, RenderingQuadrant::CoordsWorldComparator> local_to_map;
for (KeyValue<Vector2i, Ref<RenderingQuadrant>> &kv : rendering_quadrant_map) {
Ref<RenderingQuadrant> &rendering_quadrant = kv.value;
local_to_map[tile_map_node->map_to_local(rendering_quadrant->quadrant_coords)] = rendering_quadrant;
}
// Sort the quadrants.
for (const KeyValue<Vector2, Ref<RenderingQuadrant>> &E : local_to_map) {
for (const RID &ci : E.value->canvas_items) {
RS::get_singleton()->canvas_item_set_draw_index(ci, index++);
}
}
}
// Updates on TileMap changes.
if (dirty.flags[DIRTY_FLAGS_TILE_MAP_LIGHT_MASK] ||
dirty.flags[DIRTY_FLAGS_TILE_MAP_USE_PARENT_MATERIAL] ||
dirty.flags[DIRTY_FLAGS_TILE_MAP_MATERIAL] ||
dirty.flags[DIRTY_FLAGS_TILE_MAP_TEXTURE_FILTER] ||
dirty.flags[DIRTY_FLAGS_TILE_MAP_TEXTURE_REPEAT]) {
for (KeyValue<Vector2i, Ref<RenderingQuadrant>> &kv : rendering_quadrant_map) {
Ref<RenderingQuadrant> &rendering_quadrant = kv.value;
for (const RID &ci : rendering_quadrant->canvas_items) {
rs->canvas_item_set_light_mask(ci, tile_map_node->get_light_mask());
rs->canvas_item_set_use_parent_material(ci, tile_map_node->get_use_parent_material() || tile_map_node->get_material().is_valid());
rs->canvas_item_set_default_texture_filter(ci, RS::CanvasItemTextureFilter(tile_map_node->get_texture_filter_in_tree()));
rs->canvas_item_set_default_texture_repeat(ci, RS::CanvasItemTextureRepeat(tile_map_node->get_texture_repeat_in_tree()));
}
}
}
}
// ----------- Occluders processing -----------
if (forced_cleanup) {
// Clean everything.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_rendering_occluders_clear_cell(kv.value);
}
} else {
if (_rendering_was_cleaned_up || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET]) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_rendering_occluders_update_cell(kv.value);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_rendering_occluders_update_cell(cell_data);
}
}
// Updates on TileMap changes.
if (dirty.flags[DIRTY_FLAGS_TILE_MAP_IN_CANVAS] || dirty.flags[DIRTY_FLAGS_TILE_MAP_VISIBILITY]) {
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
CellData &cell_data = kv.value;
for (const RID &occluder : cell_data.occluders) {
if (occluder.is_null()) {
continue;
}
Transform2D xform(0, tile_map_node->map_to_local(kv.key));
rs->canvas_light_occluder_attach_to_canvas(occluder, tile_map_node->get_canvas());
rs->canvas_light_occluder_set_transform(occluder, tile_map_node->get_global_transform() * xform);
}
}
}
}
// -----------
// Mark the rendering state as up to date.
_rendering_was_cleaned_up = forced_cleanup;
}
void TileMapLayer::_rendering_quadrants_update_cell(CellData &r_cell_data, SelfList<RenderingQuadrant>::List &r_dirty_rendering_quadrant_list) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
// Check if the cell is valid and retrieve its y_sort_origin.
bool is_valid = false;
int tile_y_sort_origin = 0;
TileSetSource *source;
if (tile_set->has_source(r_cell_data.cell.source_id)) {
source = *tile_set->get_source(r_cell_data.cell.source_id);
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source && atlas_source->has_tile(r_cell_data.cell.get_atlas_coords()) && atlas_source->has_alternative_tile(r_cell_data.cell.get_atlas_coords(), r_cell_data.cell.alternative_tile)) {
is_valid = true;
const TileData *tile_data;
if (r_cell_data.runtime_tile_data_cache) {
tile_data = r_cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(r_cell_data.cell.get_atlas_coords(), r_cell_data.cell.alternative_tile);
}
tile_y_sort_origin = tile_data->get_y_sort_origin();
}
}
if (is_valid) {
// Get the quadrant coords.
Vector2 canvas_items_position;
Vector2i quadrant_coords;
if (tile_map_node->is_y_sort_enabled() && is_y_sort_enabled()) {
canvas_items_position = Vector2(0, tile_map_node->map_to_local(r_cell_data.coords).y + tile_y_sort_origin + y_sort_origin);
quadrant_coords = canvas_items_position * 100;
} else {
int quad_size = tile_map_node->get_rendering_quadrant_size();
const Vector2i &coords = r_cell_data.coords;
// Rounding down, instead of simply rounding towards zero (truncating).
quadrant_coords = Vector2i(
coords.x > 0 ? coords.x / quad_size : (coords.x - (quad_size - 1)) / quad_size,
coords.y > 0 ? coords.y / quad_size : (coords.y - (quad_size - 1)) / quad_size);
canvas_items_position = tile_map_node->map_to_local(quad_size * quadrant_coords);
}
Ref<RenderingQuadrant> rendering_quadrant;
if (rendering_quadrant_map.has(quadrant_coords)) {
// Reuse existing rendering quadrant.
rendering_quadrant = rendering_quadrant_map[quadrant_coords];
} else {
// Create a new rendering quadrant.
rendering_quadrant.instantiate();
rendering_quadrant->quadrant_coords = quadrant_coords;
rendering_quadrant->canvas_items_position = canvas_items_position;
rendering_quadrant_map[quadrant_coords] = rendering_quadrant;
}
// Mark the old quadrant as dirty (if it exists).
if (r_cell_data.rendering_quadrant.is_valid()) {
if (!r_cell_data.rendering_quadrant->dirty_quadrant_list_element.in_list()) {
r_dirty_rendering_quadrant_list.add(&r_cell_data.rendering_quadrant->dirty_quadrant_list_element);
}
}
// Remove the cell from that quadrant.
if (r_cell_data.rendering_quadrant_list_element.in_list()) {
r_cell_data.rendering_quadrant_list_element.remove_from_list();
}
// Add the cell to its new quadrant.
r_cell_data.rendering_quadrant = rendering_quadrant;
r_cell_data.rendering_quadrant->cells.add(&r_cell_data.rendering_quadrant_list_element);
// Add the new quadrant to the dirty quadrant list.
if (!rendering_quadrant->dirty_quadrant_list_element.in_list()) {
r_dirty_rendering_quadrant_list.add(&rendering_quadrant->dirty_quadrant_list_element);
}
} else {
Ref<RenderingQuadrant> rendering_quadrant = r_cell_data.rendering_quadrant;
// Remove the cell from its quadrant.
r_cell_data.rendering_quadrant = Ref<RenderingQuadrant>();
if (r_cell_data.rendering_quadrant_list_element.in_list()) {
rendering_quadrant->cells.remove(&r_cell_data.rendering_quadrant_list_element);
}
if (rendering_quadrant.is_valid()) {
// Add the quadrant to the dirty quadrant list.
if (!rendering_quadrant->dirty_quadrant_list_element.in_list()) {
r_dirty_rendering_quadrant_list.add(&rendering_quadrant->dirty_quadrant_list_element);
}
}
}
}
void TileMapLayer::_rendering_occluders_clear_cell(CellData &r_cell_data) {
RenderingServer *rs = RenderingServer::get_singleton();
// Free the occluders.
for (const RID &rid : r_cell_data.occluders) {
rs->free(rid);
}
r_cell_data.occluders.clear();
}
void TileMapLayer::_rendering_occluders_update_cell(CellData &r_cell_data) {
bool node_visible = tile_map_node->is_visible_in_tree();
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
RenderingServer *rs = RenderingServer::get_singleton();
// Free unused occluders then resize the occluders array.
for (uint32_t i = tile_set->get_occlusion_layers_count(); i < r_cell_data.occluders.size(); i++) {
RID occluder_id = r_cell_data.occluders[i];
if (occluder_id.is_valid()) {
rs->free(occluder_id);
}
}
r_cell_data.occluders.resize(tile_set->get_occlusion_layers_count());
TileSetSource *source;
if (tile_set->has_source(r_cell_data.cell.source_id)) {
source = *tile_set->get_source(r_cell_data.cell.source_id);
if (source->has_tile(r_cell_data.cell.get_atlas_coords()) && source->has_alternative_tile(r_cell_data.cell.get_atlas_coords(), r_cell_data.cell.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Get the tile data.
const TileData *tile_data;
if (r_cell_data.runtime_tile_data_cache) {
tile_data = r_cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(r_cell_data.cell.get_atlas_coords(), r_cell_data.cell.alternative_tile);
}
// Transform flags.
bool flip_h = (r_cell_data.cell.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_H);
bool flip_v = (r_cell_data.cell.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_V);
bool transpose = (r_cell_data.cell.alternative_tile & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
// Create, update or clear occluders.
for (uint32_t occlusion_layer_index = 0; occlusion_layer_index < r_cell_data.occluders.size(); occlusion_layer_index++) {
Ref<OccluderPolygon2D> occluder_polygon = tile_data->get_occluder(occlusion_layer_index);
RID &occluder = r_cell_data.occluders[occlusion_layer_index];
if (occluder_polygon.is_valid()) {
// Create or update occluder.
Transform2D xform;
xform.set_origin(tile_map_node->map_to_local(r_cell_data.coords));
if (!occluder.is_valid()) {
occluder = rs->canvas_light_occluder_create();
}
rs->canvas_light_occluder_set_enabled(occluder, node_visible);
rs->canvas_light_occluder_set_transform(occluder, tile_map_node->get_global_transform() * xform);
rs->canvas_light_occluder_set_polygon(occluder, tile_data->get_occluder(occlusion_layer_index, flip_h, flip_v, transpose)->get_rid());
rs->canvas_light_occluder_attach_to_canvas(occluder, tile_map_node->get_canvas());
rs->canvas_light_occluder_set_light_mask(occluder, tile_set->get_occlusion_layer_light_mask(occlusion_layer_index));
} else {
// Clear occluder.
if (occluder.is_valid()) {
rs->free(occluder);
occluder = RID();
}
}
}
return;
}
}
}
// If we did not return earlier, clear the cell.
_rendering_occluders_clear_cell(r_cell_data);
}
#ifdef DEBUG_ENABLED
void TileMapLayer::_rendering_draw_cell_debug(const RID &p_canvas_item, const Vector2i &p_quadrant_pos, const CellData &r_cell_data) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
if (!Engine::get_singleton()->is_editor_hint()) {
return;
}
// Draw a placeholder for tiles needing one.
RenderingServer *rs = RenderingServer::get_singleton();
const TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
Vector2i grid_size = atlas_source->get_atlas_grid_size();
if (!atlas_source->get_runtime_texture().is_valid() || c.get_atlas_coords().x >= grid_size.x || c.get_atlas_coords().y >= grid_size.y) {
// Generate a random color from the hashed values of the tiles.
Array to_hash;
to_hash.push_back(c.source_id);
to_hash.push_back(c.get_atlas_coords());
to_hash.push_back(c.alternative_tile);
uint32_t hash = RandomPCG(to_hash.hash()).rand();
Color color;
color = color.from_hsv(
(float)((hash >> 24) & 0xFF) / 256.0,
Math::lerp(0.5, 1.0, (float)((hash >> 16) & 0xFF) / 256.0),
Math::lerp(0.5, 1.0, (float)((hash >> 8) & 0xFF) / 256.0),
0.8);
// Draw a placeholder tile.
Transform2D cell_to_quadrant;
cell_to_quadrant.set_origin(tile_map_node->map_to_local(r_cell_data.coords) - p_quadrant_pos);
rs->canvas_item_add_set_transform(p_canvas_item, cell_to_quadrant);
rs->canvas_item_add_circle(p_canvas_item, Vector2(), MIN(tile_set->get_tile_size().x, tile_set->get_tile_size().y) / 4.0, color);
}
}
}
}
}
#endif // DEBUG_ENABLED
/////////////////////////////// Physics //////////////////////////////////////
void TileMapLayer::_physics_update() {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid();
if (forced_cleanup) {
// Clean everything.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_physics_clear_cell(kv.value);
}
} else {
if (_physics_was_cleaned_up || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET] || dirty.flags[DIRTY_FLAGS_TILE_MAP_COLLISION_ANIMATABLE]) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_physics_update_cell(kv.value);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_physics_update_cell(cell_data);
}
}
}
// -----------
// Mark the physics state as up to date.
_physics_was_cleaned_up = forced_cleanup;
}
void TileMapLayer::_physics_notify_tilemap_change(TileMapLayer::DirtyFlags p_what) {
Transform2D gl_transform = tile_map_node->get_global_transform();
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
bool in_editor = false;
#ifdef TOOLS_ENABLED
in_editor = Engine::get_singleton()->is_editor_hint();
#endif
if (p_what == DIRTY_FLAGS_TILE_MAP_XFORM) {
if (tile_map_node->is_inside_tree() && (!tile_map_node->is_collision_animatable() || in_editor)) {
// Move the collisison shapes along with the TileMap.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
const CellData &cell_data = kv.value;
for (RID body : cell_data.bodies) {
if (body.is_valid()) {
Transform2D xform(0, tile_map_node->map_to_local(bodies_coords[body]));
xform = gl_transform * xform;
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
}
}
}
}
} else if (p_what == DIRTY_FLAGS_TILE_MAP_LOCAL_XFORM) {
// With collisions animatable, move the collisison shapes along with the TileMap only on local xform change (they are synchornized on physics tick instead).
if (tile_map_node->is_inside_tree() && tile_map_node->is_collision_animatable() && !in_editor) {
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
const CellData &cell_data = kv.value;
for (RID body : cell_data.bodies) {
if (body.is_valid()) {
Transform2D xform(0, tile_map_node->map_to_local(bodies_coords[body]));
xform = gl_transform * xform;
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
}
}
}
}
} else if (p_what == DIRTY_FLAGS_TILE_MAP_IN_TREE) {
// Changes in the tree may cause the space to change (e.g. when reparenting to a SubViewport).
if (tile_map_node->is_inside_tree()) {
RID space = tile_map_node->get_world_2d()->get_space();
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
const CellData &cell_data = kv.value;
for (RID body : cell_data.bodies) {
if (body.is_valid()) {
ps->body_set_space(body, space);
}
}
}
}
}
}
void TileMapLayer::_physics_clear_cell(CellData &r_cell_data) {
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
// Clear bodies.
for (RID body : r_cell_data.bodies) {
if (body.is_valid()) {
bodies_coords.erase(body);
ps->free(body);
}
}
r_cell_data.bodies.clear();
}
void TileMapLayer::_physics_update_cell(CellData &r_cell_data) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
Transform2D gl_transform = tile_map_node->get_global_transform();
RID space = tile_map_node->get_world_2d()->get_space();
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
// Recreate bodies and shapes.
TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (r_cell_data.runtime_tile_data_cache) {
tile_data = r_cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
// Transform flags.
bool flip_h = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_H);
bool flip_v = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_V);
bool transpose = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
// Free unused bodies then resize the bodies array.
for (uint32_t i = tile_set->get_physics_layers_count(); i < r_cell_data.bodies.size(); i++) {
RID body = r_cell_data.bodies[i];
if (body.is_valid()) {
bodies_coords.erase(body);
ps->free(body);
}
}
r_cell_data.bodies.resize(tile_set->get_physics_layers_count());
for (uint32_t tile_set_physics_layer = 0; tile_set_physics_layer < (uint32_t)tile_set->get_physics_layers_count(); tile_set_physics_layer++) {
Ref<PhysicsMaterial> physics_material = tile_set->get_physics_layer_physics_material(tile_set_physics_layer);
uint32_t physics_layer = tile_set->get_physics_layer_collision_layer(tile_set_physics_layer);
uint32_t physics_mask = tile_set->get_physics_layer_collision_mask(tile_set_physics_layer);
RID body = r_cell_data.bodies[tile_set_physics_layer];
if (tile_data->get_collision_polygons_count(tile_set_physics_layer) == 0) {
// No body needed, free it if it exists.
if (body.is_valid()) {
bodies_coords.erase(body);
ps->free(body);
}
body = RID();
} else {
// Create or update the body.
if (!body.is_valid()) {
body = ps->body_create();
}
bodies_coords[body] = r_cell_data.coords;
ps->body_set_mode(body, tile_map_node->is_collision_animatable() ? PhysicsServer2D::BODY_MODE_KINEMATIC : PhysicsServer2D::BODY_MODE_STATIC);
ps->body_set_space(body, space);
Transform2D xform;
xform.set_origin(tile_map_node->map_to_local(r_cell_data.coords));
xform = gl_transform * xform;
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM, xform);
ps->body_attach_object_instance_id(body, tile_map_node->get_instance_id());
ps->body_set_collision_layer(body, physics_layer);
ps->body_set_collision_mask(body, physics_mask);
ps->body_set_pickable(body, false);
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_LINEAR_VELOCITY, tile_data->get_constant_linear_velocity(tile_set_physics_layer));
ps->body_set_state(body, PhysicsServer2D::BODY_STATE_ANGULAR_VELOCITY, tile_data->get_constant_angular_velocity(tile_set_physics_layer));
if (!physics_material.is_valid()) {
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_BOUNCE, 0);
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_FRICTION, 1);
} else {
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_BOUNCE, physics_material->computed_bounce());
ps->body_set_param(body, PhysicsServer2D::BODY_PARAM_FRICTION, physics_material->computed_friction());
}
// Clear body's shape if needed.
ps->body_clear_shapes(body);
// Add the shapes to the body.
int body_shape_index = 0;
for (int polygon_index = 0; polygon_index < tile_data->get_collision_polygons_count(tile_set_physics_layer); polygon_index++) {
// Iterate over the polygons.
bool one_way_collision = tile_data->is_collision_polygon_one_way(tile_set_physics_layer, polygon_index);
float one_way_collision_margin = tile_data->get_collision_polygon_one_way_margin(tile_set_physics_layer, polygon_index);
int shapes_count = tile_data->get_collision_polygon_shapes_count(tile_set_physics_layer, polygon_index);
for (int shape_index = 0; shape_index < shapes_count; shape_index++) {
// Add decomposed convex shapes.
Ref<ConvexPolygonShape2D> shape = tile_data->get_collision_polygon_shape(tile_set_physics_layer, polygon_index, shape_index, flip_h, flip_v, transpose);
ps->body_add_shape(body, shape->get_rid());
ps->body_set_shape_as_one_way_collision(body, body_shape_index, one_way_collision, one_way_collision_margin);
body_shape_index++;
}
}
}
// Set the body again.
r_cell_data.bodies[tile_set_physics_layer] = body;
}
return;
}
}
}
// If we did not return earlier, clear the cell.
_physics_clear_cell(r_cell_data);
}
#ifdef DEBUG_ENABLED
void TileMapLayer::_physics_draw_cell_debug(const RID &p_canvas_item, const Vector2i &p_quadrant_pos, const CellData &r_cell_data) {
// Draw the debug collision shapes.
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
if (!tile_map_node->get_tree()) {
return;
}
bool show_collision = false;
switch (tile_map_node->get_collision_visibility_mode()) {
case TileMap::VISIBILITY_MODE_DEFAULT:
show_collision = !Engine::get_singleton()->is_editor_hint() && tile_map_node->get_tree()->is_debugging_collisions_hint();
break;
case TileMap::VISIBILITY_MODE_FORCE_HIDE:
show_collision = false;
break;
case TileMap::VISIBILITY_MODE_FORCE_SHOW:
show_collision = true;
break;
}
if (!show_collision) {
return;
}
RenderingServer *rs = RenderingServer::get_singleton();
PhysicsServer2D *ps = PhysicsServer2D::get_singleton();
Color debug_collision_color = tile_map_node->get_tree()->get_debug_collisions_color();
Vector<Color> color;
color.push_back(debug_collision_color);
Transform2D quadrant_to_local(0, p_quadrant_pos);
Transform2D global_to_quadrant = (tile_map_node->get_global_transform() * quadrant_to_local).affine_inverse();
for (RID body : r_cell_data.bodies) {
if (body.is_valid()) {
Transform2D body_to_quadrant = global_to_quadrant * Transform2D(ps->body_get_state(body, PhysicsServer2D::BODY_STATE_TRANSFORM));
rs->canvas_item_add_set_transform(p_canvas_item, body_to_quadrant);
for (int shape_index = 0; shape_index < ps->body_get_shape_count(body); shape_index++) {
const RID &shape = ps->body_get_shape(body, shape_index);
const PhysicsServer2D::ShapeType &type = ps->shape_get_type(shape);
if (type == PhysicsServer2D::SHAPE_CONVEX_POLYGON) {
rs->canvas_item_add_polygon(p_canvas_item, ps->shape_get_data(shape), color);
} else {
WARN_PRINT("Wrong shape type for a tile, should be SHAPE_CONVEX_POLYGON.");
}
}
rs->canvas_item_add_set_transform(p_canvas_item, Transform2D());
}
}
};
#endif // DEBUG_ENABLED
/////////////////////////////// Navigation //////////////////////////////////////
void TileMapLayer::_navigation_update() {
ERR_FAIL_NULL(NavigationServer2D::get_singleton());
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
NavigationServer2D *ns = NavigationServer2D::get_singleton();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !navigation_enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid();
// ----------- Layer level processing -----------
if (forced_cleanup) {
if (navigation_map.is_valid() && !uses_world_navigation_map) {
ns->free(navigation_map);
navigation_map = RID();
}
} else {
// Update navigation maps.
if (!navigation_map.is_valid()) {
if (layer_index_in_tile_map_node == 0) {
// Use the default World2D navigation map for the first layer when empty.
navigation_map = tile_map_node->get_world_2d()->get_navigation_map();
uses_world_navigation_map = true;
} else {
RID new_layer_map = ns->map_create();
// Set the default NavigationPolygon cell_size on the new map as a mismatch causes an error.
ns->map_set_cell_size(new_layer_map, 1.0);
ns->map_set_active(new_layer_map, true);
navigation_map = new_layer_map;
uses_world_navigation_map = false;
}
}
}
// ----------- Navigation regions processing -----------
if (forced_cleanup) {
// Clean everything.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_navigation_clear_cell(kv.value);
}
} else {
if (_navigation_was_cleaned_up || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET]) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_navigation_update_cell(kv.value);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_navigation_update_cell(cell_data);
}
}
if (dirty.flags[DIRTY_FLAGS_TILE_MAP_XFORM]) {
Transform2D tilemap_xform = tile_map_node->get_global_transform();
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
const CellData &cell_data = kv.value;
// Update navigation regions transform.
for (const RID &region : cell_data.navigation_regions) {
if (!region.is_valid()) {
continue;
}
Transform2D tile_transform;
tile_transform.set_origin(tile_map_node->map_to_local(kv.key));
NavigationServer2D::get_singleton()->region_set_transform(region, tilemap_xform * tile_transform);
}
}
}
}
// -----------
// Mark the navigation state as up to date.
_navigation_was_cleaned_up = forced_cleanup;
}
void TileMapLayer::_navigation_clear_cell(CellData &r_cell_data) {
NavigationServer2D *ns = NavigationServer2D::get_singleton();
// Clear navigation shapes.
for (uint32_t i = 0; i < r_cell_data.navigation_regions.size(); i++) {
const RID &region = r_cell_data.navigation_regions[i];
if (region.is_valid()) {
ns->region_set_map(region, RID());
ns->free(region);
}
}
r_cell_data.navigation_regions.clear();
}
void TileMapLayer::_navigation_update_cell(CellData &r_cell_data) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
NavigationServer2D *ns = NavigationServer2D::get_singleton();
Transform2D tilemap_xform = tile_map_node->get_global_transform();
// Get the navigation polygons and create regions.
TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (r_cell_data.runtime_tile_data_cache) {
tile_data = r_cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
// Transform flags.
bool flip_h = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_H);
bool flip_v = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_V);
bool transpose = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
// Free unused regions then resize the regions array.
for (uint32_t i = tile_set->get_navigation_layers_count(); i < r_cell_data.navigation_regions.size(); i++) {
RID &region = r_cell_data.navigation_regions[i];
if (region.is_valid()) {
ns->region_set_map(region, RID());
ns->free(region);
region = RID();
}
}
r_cell_data.navigation_regions.resize(tile_set->get_navigation_layers_count());
// Create, update or clear regions.
for (uint32_t navigation_layer_index = 0; navigation_layer_index < r_cell_data.navigation_regions.size(); navigation_layer_index++) {
Ref<NavigationPolygon> navigation_polygon = tile_data->get_navigation_polygon(navigation_layer_index, flip_h, flip_v, transpose);
RID &region = r_cell_data.navigation_regions[navigation_layer_index];
if (navigation_polygon.is_valid() && (navigation_polygon->get_polygon_count() > 0 || navigation_polygon->get_outline_count() > 0)) {
// Create or update regions.
Transform2D tile_transform;
tile_transform.set_origin(tile_map_node->map_to_local(r_cell_data.coords));
if (!region.is_valid()) {
region = ns->region_create();
}
ns->region_set_owner_id(region, tile_map_node->get_instance_id());
ns->region_set_map(region, navigation_map);
ns->region_set_transform(region, tilemap_xform * tile_transform);
ns->region_set_navigation_layers(region, tile_set->get_navigation_layer_layers(navigation_layer_index));
ns->region_set_navigation_polygon(region, navigation_polygon);
} else {
// Clear region.
if (region.is_valid()) {
ns->region_set_map(region, RID());
ns->free(region);
region = RID();
}
}
}
return;
}
}
}
// If we did not return earlier, clear the cell.
_navigation_clear_cell(r_cell_data);
}
#ifdef DEBUG_ENABLED
void TileMapLayer::_navigation_draw_cell_debug(const RID &p_canvas_item, const Vector2i &p_quadrant_pos, const CellData &r_cell_data) {
// Draw the debug collision shapes.
bool show_navigation = false;
switch (tile_map_node->get_navigation_visibility_mode()) {
case TileMap::VISIBILITY_MODE_DEFAULT:
show_navigation = !Engine::get_singleton()->is_editor_hint() && tile_map_node->get_tree()->is_debugging_navigation_hint();
break;
case TileMap::VISIBILITY_MODE_FORCE_HIDE:
show_navigation = false;
break;
case TileMap::VISIBILITY_MODE_FORCE_SHOW:
show_navigation = true;
break;
}
if (!show_navigation) {
return;
}
// Check if the navigation is used.
if (r_cell_data.navigation_regions.is_empty()) {
return;
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
RenderingServer *rs = RenderingServer::get_singleton();
const NavigationServer2D *ns2d = NavigationServer2D::get_singleton();
bool enabled_geometry_face_random_color = ns2d->get_debug_navigation_enable_geometry_face_random_color();
bool enabled_edge_lines = ns2d->get_debug_navigation_enable_edge_lines();
Color debug_face_color = ns2d->get_debug_navigation_geometry_face_color();
Color debug_edge_color = ns2d->get_debug_navigation_geometry_edge_color();
RandomPCG rand;
const TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
const TileData *tile_data;
if (r_cell_data.runtime_tile_data_cache) {
tile_data = r_cell_data.runtime_tile_data_cache;
} else {
tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
}
Transform2D cell_to_quadrant;
cell_to_quadrant.set_origin(tile_map_node->map_to_local(r_cell_data.coords) - p_quadrant_pos);
rs->canvas_item_add_set_transform(p_canvas_item, cell_to_quadrant);
for (int layer_index = 0; layer_index < tile_set->get_navigation_layers_count(); layer_index++) {
bool flip_h = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_H);
bool flip_v = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_FLIP_V);
bool transpose = (c.alternative_tile & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
Ref<NavigationPolygon> navigation_polygon = tile_data->get_navigation_polygon(layer_index, flip_h, flip_v, transpose);
if (navigation_polygon.is_valid()) {
Vector<Vector2> navigation_polygon_vertices = navigation_polygon->get_vertices();
if (navigation_polygon_vertices.size() < 3) {
continue;
}
for (int i = 0; i < navigation_polygon->get_polygon_count(); i++) {
// An array of vertices for this polygon.
Vector<int> polygon = navigation_polygon->get_polygon(i);
Vector<Vector2> debug_polygon_vertices;
debug_polygon_vertices.resize(polygon.size());
for (int j = 0; j < polygon.size(); j++) {
ERR_FAIL_INDEX(polygon[j], navigation_polygon_vertices.size());
debug_polygon_vertices.write[j] = navigation_polygon_vertices[polygon[j]];
}
// Generate the polygon color, slightly randomly modified from the settings one.
Color random_variation_color = debug_face_color;
if (enabled_geometry_face_random_color) {
random_variation_color.set_hsv(
debug_face_color.get_h() + rand.random(-1.0, 1.0) * 0.1,
debug_face_color.get_s(),
debug_face_color.get_v() + rand.random(-1.0, 1.0) * 0.2);
}
random_variation_color.a = debug_face_color.a;
Vector<Color> debug_face_colors;
debug_face_colors.push_back(random_variation_color);
rs->canvas_item_add_polygon(p_canvas_item, debug_polygon_vertices, debug_face_colors);
if (enabled_edge_lines) {
Vector<Color> debug_edge_colors;
debug_edge_colors.push_back(debug_edge_color);
debug_polygon_vertices.push_back(debug_polygon_vertices[0]); // Add first again for closing polyline.
rs->canvas_item_add_polyline(p_canvas_item, debug_polygon_vertices, debug_edge_colors);
}
}
}
}
}
}
}
}
#endif // DEBUG_ENABLED
/////////////////////////////// Scenes //////////////////////////////////////
void TileMapLayer::_scenes_update() {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid();
if (forced_cleanup) {
// Clean everything.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_scenes_clear_cell(kv.value);
}
} else {
if (_scenes_was_cleaned_up || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET]) {
// Update all cells.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
_scenes_update_cell(kv.value);
}
} else {
// Update dirty cells.
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_scenes_update_cell(cell_data);
}
}
}
// -----------
// Mark the scenes state as up to date.
_scenes_was_cleaned_up = forced_cleanup;
}
void TileMapLayer::_scenes_clear_cell(CellData &r_cell_data) {
// Cleanup existing scene.
Node *node = tile_map_node->get_node_or_null(r_cell_data.scene);
if (node) {
node->queue_free();
}
r_cell_data.scene = "";
}
void TileMapLayer::_scenes_update_cell(CellData &r_cell_data) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
// Clear the scene in any case.
_scenes_clear_cell(r_cell_data);
// Create the scene.
const TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetScenesCollectionSource *scenes_collection_source = Object::cast_to<TileSetScenesCollectionSource>(source);
if (scenes_collection_source) {
Ref<PackedScene> packed_scene = scenes_collection_source->get_scene_tile_scene(c.alternative_tile);
if (packed_scene.is_valid()) {
Node *scene = packed_scene->instantiate();
Control *scene_as_control = Object::cast_to<Control>(scene);
Node2D *scene_as_node2d = Object::cast_to<Node2D>(scene);
if (scene_as_control) {
scene_as_control->set_position(tile_map_node->map_to_local(r_cell_data.coords) + scene_as_control->get_position());
} else if (scene_as_node2d) {
Transform2D xform;
xform.set_origin(tile_map_node->map_to_local(r_cell_data.coords));
scene_as_node2d->set_transform(xform * scene_as_node2d->get_transform());
}
tile_map_node->add_child(scene);
r_cell_data.scene = scene->get_name();
}
}
}
}
}
#ifdef DEBUG_ENABLED
void TileMapLayer::_scenes_draw_cell_debug(const RID &p_canvas_item, const Vector2i &p_quadrant_pos, const CellData &r_cell_data) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
if (!Engine::get_singleton()->is_editor_hint()) {
return;
}
// Draw a placeholder for scenes needing one.
RenderingServer *rs = RenderingServer::get_singleton();
const TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (!source->has_tile(c.get_atlas_coords()) || !source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
return;
}
TileSetScenesCollectionSource *scenes_collection_source = Object::cast_to<TileSetScenesCollectionSource>(source);
if (scenes_collection_source) {
if (!scenes_collection_source->get_scene_tile_scene(c.alternative_tile).is_valid() || scenes_collection_source->get_scene_tile_display_placeholder(c.alternative_tile)) {
// Generate a random color from the hashed values of the tiles.
Array to_hash;
to_hash.push_back(c.source_id);
to_hash.push_back(c.alternative_tile);
uint32_t hash = RandomPCG(to_hash.hash()).rand();
Color color;
color = color.from_hsv(
(float)((hash >> 24) & 0xFF) / 256.0,
Math::lerp(0.5, 1.0, (float)((hash >> 16) & 0xFF) / 256.0),
Math::lerp(0.5, 1.0, (float)((hash >> 8) & 0xFF) / 256.0),
0.8);
// Draw a placeholder tile.
Transform2D cell_to_quadrant;
cell_to_quadrant.set_origin(tile_map_node->map_to_local(r_cell_data.coords) - p_quadrant_pos);
rs->canvas_item_add_set_transform(p_canvas_item, cell_to_quadrant);
rs->canvas_item_add_circle(p_canvas_item, Vector2(), MIN(tile_set->get_tile_size().x, tile_set->get_tile_size().y) / 4.0, color);
}
}
}
}
#endif // DEBUG_ENABLED
/////////////////////////////////////////////////////////////////////
void TileMapLayer::_build_runtime_update_tile_data() {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
// Check if we should cleanup everything.
bool forced_cleanup = in_destructor || !enabled || !tile_map_node->is_inside_tree() || !tile_set.is_valid() || !tile_map_node->is_visible_in_tree();
if (!forced_cleanup) {
if (tile_map_node->GDVIRTUAL_IS_OVERRIDDEN(_use_tile_data_runtime_update) && tile_map_node->GDVIRTUAL_IS_OVERRIDDEN(_tile_data_runtime_update)) {
if (_runtime_update_tile_data_was_cleaned_up || dirty.flags[DIRTY_FLAGS_TILE_MAP_TILE_SET]) {
for (KeyValue<Vector2i, CellData> &E : tile_map) {
_build_runtime_update_tile_data_for_cell(E.value);
}
} else if (dirty.flags[DIRTY_FLAGS_TILE_MAP_RUNTIME_UPDATE]) {
for (KeyValue<Vector2i, CellData> &E : tile_map) {
_build_runtime_update_tile_data_for_cell(E.value, true);
}
} else {
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
_build_runtime_update_tile_data_for_cell(cell_data);
}
}
}
}
// -----------
// Mark the navigation state as up to date.
_runtime_update_tile_data_was_cleaned_up = forced_cleanup;
}
void TileMapLayer::_build_runtime_update_tile_data_for_cell(CellData &r_cell_data, bool p_auto_add_to_dirty_list) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
TileMapCell &c = r_cell_data.cell;
TileSetSource *source;
if (tile_set->has_source(c.source_id)) {
source = *tile_set->get_source(c.source_id);
if (source->has_tile(c.get_atlas_coords()) && source->has_alternative_tile(c.get_atlas_coords(), c.alternative_tile)) {
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
bool ret = false;
if (tile_map_node->GDVIRTUAL_CALL(_use_tile_data_runtime_update, layer_index_in_tile_map_node, r_cell_data.coords, ret) && ret) {
TileData *tile_data = atlas_source->get_tile_data(c.get_atlas_coords(), c.alternative_tile);
// Create the runtime TileData.
TileData *tile_data_runtime_use = tile_data->duplicate();
tile_data_runtime_use->set_allow_transform(true);
r_cell_data.runtime_tile_data_cache = tile_data_runtime_use;
tile_map_node->GDVIRTUAL_CALL(_tile_data_runtime_update, layer_index_in_tile_map_node, r_cell_data.coords, tile_data_runtime_use);
if (p_auto_add_to_dirty_list) {
dirty.cell_list.add(&r_cell_data.dirty_list_element);
}
}
}
}
}
}
void TileMapLayer::_clear_runtime_update_tile_data() {
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
// Clear the runtime tile data.
if (cell_data.runtime_tile_data_cache) {
memdelete(cell_data.runtime_tile_data_cache);
cell_data.runtime_tile_data_cache = nullptr;
}
}
}
TileSet::TerrainsPattern TileMapLayer::_get_best_terrain_pattern_for_constraints(int p_terrain_set, const Vector2i &p_position, const RBSet<TerrainConstraint> &p_constraints, TileSet::TerrainsPattern p_current_pattern) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (!tile_set.is_valid()) {
return TileSet::TerrainsPattern();
}
// Returns all tiles compatible with the given constraints.
RBMap<TileSet::TerrainsPattern, int> terrain_pattern_score;
RBSet<TileSet::TerrainsPattern> pattern_set = tile_set->get_terrains_pattern_set(p_terrain_set);
ERR_FAIL_COND_V(pattern_set.is_empty(), TileSet::TerrainsPattern());
for (TileSet::TerrainsPattern &terrain_pattern : pattern_set) {
int score = 0;
// Check the center bit constraint.
TerrainConstraint terrain_constraint = TerrainConstraint(tile_map_node, p_position, terrain_pattern.get_terrain());
const RBSet<TerrainConstraint>::Element *in_set_constraint_element = p_constraints.find(terrain_constraint);
if (in_set_constraint_element) {
if (in_set_constraint_element->get().get_terrain() != terrain_constraint.get_terrain()) {
score += in_set_constraint_element->get().get_priority();
}
} else if (p_current_pattern.get_terrain() != terrain_pattern.get_terrain()) {
continue; // Ignore a pattern that cannot keep bits without constraints unmodified.
}
// Check the surrounding bits
bool invalid_pattern = false;
for (int i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
// Check if the bit is compatible with the constraints.
TerrainConstraint terrain_bit_constraint = TerrainConstraint(tile_map_node, p_position, bit, terrain_pattern.get_terrain_peering_bit(bit));
in_set_constraint_element = p_constraints.find(terrain_bit_constraint);
if (in_set_constraint_element) {
if (in_set_constraint_element->get().get_terrain() != terrain_bit_constraint.get_terrain()) {
score += in_set_constraint_element->get().get_priority();
}
} else if (p_current_pattern.get_terrain_peering_bit(bit) != terrain_pattern.get_terrain_peering_bit(bit)) {
invalid_pattern = true; // Ignore a pattern that cannot keep bits without constraints unmodified.
break;
}
}
}
if (invalid_pattern) {
continue;
}
terrain_pattern_score[terrain_pattern] = score;
}
// Compute the minimum score.
TileSet::TerrainsPattern min_score_pattern = p_current_pattern;
int min_score = INT32_MAX;
for (KeyValue<TileSet::TerrainsPattern, int> E : terrain_pattern_score) {
if (E.value < min_score) {
min_score_pattern = E.key;
min_score = E.value;
}
}
return min_score_pattern;
}
RBSet<TerrainConstraint> TileMapLayer::_get_terrain_constraints_from_added_pattern(const Vector2i &p_position, int p_terrain_set, TileSet::TerrainsPattern p_terrains_pattern) const {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (!tile_set.is_valid()) {
return RBSet<TerrainConstraint>();
}
// Compute the constraints needed from the surrounding tiles.
RBSet<TerrainConstraint> output;
output.insert(TerrainConstraint(tile_map_node, p_position, p_terrains_pattern.get_terrain()));
for (uint32_t i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) {
TileSet::CellNeighbor side = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, side)) {
TerrainConstraint c = TerrainConstraint(tile_map_node, p_position, side, p_terrains_pattern.get_terrain_peering_bit(side));
output.insert(c);
}
}
return output;
}
RBSet<TerrainConstraint> TileMapLayer::_get_terrain_constraints_from_painted_cells_list(const RBSet<Vector2i> &p_painted, int p_terrain_set, bool p_ignore_empty_terrains) const {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (!tile_set.is_valid()) {
return RBSet<TerrainConstraint>();
}
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), RBSet<TerrainConstraint>());
// Build a set of dummy constraints to get the constrained points.
RBSet<TerrainConstraint> dummy_constraints;
for (const Vector2i &E : p_painted) {
for (int i = 0; i < TileSet::CELL_NEIGHBOR_MAX; i++) { // Iterates over neighbor bits.
TileSet::CellNeighbor bit = TileSet::CellNeighbor(i);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
dummy_constraints.insert(TerrainConstraint(tile_map_node, E, bit, -1));
}
}
}
// For each constrained point, we get all overlapping tiles, and select the most adequate terrain for it.
RBSet<TerrainConstraint> constraints;
for (const TerrainConstraint &E_constraint : dummy_constraints) {
HashMap<int, int> terrain_count;
// Count the number of occurrences per terrain.
HashMap<Vector2i, TileSet::CellNeighbor> overlapping_terrain_bits = E_constraint.get_overlapping_coords_and_peering_bits();
for (const KeyValue<Vector2i, TileSet::CellNeighbor> &E_overlapping : overlapping_terrain_bits) {
TileData *neighbor_tile_data = nullptr;
TileMapCell neighbor_cell = get_cell(E_overlapping.key);
if (neighbor_cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(neighbor_cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
TileData *tile_data = atlas_source->get_tile_data(neighbor_cell.get_atlas_coords(), neighbor_cell.alternative_tile);
if (tile_data && tile_data->get_terrain_set() == p_terrain_set) {
neighbor_tile_data = tile_data;
}
}
}
int terrain = neighbor_tile_data ? neighbor_tile_data->get_terrain_peering_bit(TileSet::CellNeighbor(E_overlapping.value)) : -1;
if (!p_ignore_empty_terrains || terrain >= 0) {
if (!terrain_count.has(terrain)) {
terrain_count[terrain] = 0;
}
terrain_count[terrain] += 1;
}
}
// Get the terrain with the max number of occurrences.
int max = 0;
int max_terrain = -1;
for (const KeyValue<int, int> &E_terrain_count : terrain_count) {
if (E_terrain_count.value > max) {
max = E_terrain_count.value;
max_terrain = E_terrain_count.key;
}
}
// Set the adequate terrain.
if (max > 0) {
TerrainConstraint c = E_constraint;
c.set_terrain(max_terrain);
constraints.insert(c);
}
}
// Add the centers as constraints.
for (Vector2i E_coords : p_painted) {
TileData *tile_data = nullptr;
TileMapCell cell = get_cell(E_coords);
if (cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
}
}
int terrain = (tile_data && tile_data->get_terrain_set() == p_terrain_set) ? tile_data->get_terrain() : -1;
if (!p_ignore_empty_terrains || terrain >= 0) {
constraints.insert(TerrainConstraint(tile_map_node, E_coords, terrain));
}
}
return constraints;
}
void TileMapLayer::set_tile_map(TileMap *p_tile_map) {
tile_map_node = p_tile_map;
}
void TileMapLayer::set_layer_index_in_tile_map_node(int p_index) {
if (p_index == layer_index_in_tile_map_node) {
return;
}
layer_index_in_tile_map_node = p_index;
dirty.flags[DIRTY_FLAGS_LAYER_INDEX_IN_TILE_MAP_NODE] = true;
tile_map_node->queue_internal_update();
}
Rect2 TileMapLayer::get_rect(bool &r_changed) const {
// Compute the displayed area of the tilemap.
r_changed = false;
#ifdef DEBUG_ENABLED
if (rect_cache_dirty) {
Rect2 r_total;
bool first = true;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
Rect2 r;
r.position = tile_map_node->map_to_local(E.key);
r.size = Size2();
if (first) {
r_total = r;
first = false;
} else {
r_total = r_total.merge(r);
}
}
r_changed = rect_cache != r_total;
rect_cache = r_total;
rect_cache_dirty = false;
}
#endif
return rect_cache;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMapLayer::terrain_fill_constraints(const Vector<Vector2i> &p_to_replace, int p_terrain_set, const RBSet<TerrainConstraint> &p_constraints) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (!tile_set.is_valid()) {
return HashMap<Vector2i, TileSet::TerrainsPattern>();
}
// Copy the constraints set.
RBSet<TerrainConstraint> constraints = p_constraints;
// Output map.
HashMap<Vector2i, TileSet::TerrainsPattern> output;
// Add all positions to a set.
for (int i = 0; i < p_to_replace.size(); i++) {
const Vector2i &coords = p_to_replace[i];
// Select the best pattern for the given constraints.
TileSet::TerrainsPattern current_pattern = TileSet::TerrainsPattern(*tile_set, p_terrain_set);
TileMapCell cell = get_cell(coords);
if (cell.source_id != TileSet::INVALID_SOURCE) {
TileSetSource *source = *tile_set->get_source(cell.source_id);
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Get tile data.
TileData *tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
if (tile_data && tile_data->get_terrain_set() == p_terrain_set) {
current_pattern = tile_data->get_terrains_pattern();
}
}
}
TileSet::TerrainsPattern pattern = _get_best_terrain_pattern_for_constraints(p_terrain_set, coords, constraints, current_pattern);
// Update the constraint set with the new ones.
RBSet<TerrainConstraint> new_constraints = _get_terrain_constraints_from_added_pattern(coords, p_terrain_set, pattern);
for (const TerrainConstraint &E_constraint : new_constraints) {
if (constraints.has(E_constraint)) {
constraints.erase(E_constraint);
}
TerrainConstraint c = E_constraint;
c.set_priority(5);
constraints.insert(c);
}
output[coords] = pattern;
}
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMapLayer::terrain_fill_connect(const Vector<Vector2i> &p_coords_array, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Build list and set of tiles that can be modified (painted and their surroundings).
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
RBSet<Vector2i> painted_set;
for (int i = p_coords_array.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_coords_array[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
painted_set.insert(coords);
}
for (Vector2i coords : p_coords_array) {
// Find the adequate neighbor.
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_map_node->is_existing_neighbor(bit)) {
Vector2i neighbor = tile_map_node->get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
// Build a set, out of the possibly modified tiles, of the one with a center bit that is set (or will be) to the painted terrain.
RBSet<Vector2i> cells_with_terrain_center_bit;
for (Vector2i coords : can_modify_set) {
bool connect = false;
if (painted_set.has(coords)) {
connect = true;
} else {
// Get the center bit of the cell.
TileData *tile_data = nullptr;
TileMapCell cell = get_cell(coords);
if (cell.source_id != TileSet::INVALID_SOURCE) {
Ref<TileSetSource> source = tile_set->get_source(cell.source_id);
Ref<TileSetAtlasSource> atlas_source = source;
if (atlas_source.is_valid()) {
tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
}
}
if (tile_data && tile_data->get_terrain_set() == p_terrain_set && tile_data->get_terrain() == p_terrain) {
connect = true;
}
}
if (connect) {
cells_with_terrain_center_bit.insert(coords);
}
}
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_coords_array) {
// Constraints on the center bit.
TerrainConstraint c = TerrainConstraint(tile_map_node, coords, p_terrain);
c.set_priority(10);
constraints.insert(c);
// Constraints on the connecting bits.
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
c = TerrainConstraint(tile_map_node, coords, bit, p_terrain);
c.set_priority(10);
if ((int(bit) % 2) == 0) {
// Side peering bits: add the constraint if the center is of the same terrain.
Vector2i neighbor = tile_map_node->get_neighbor_cell(coords, bit);
if (cells_with_terrain_center_bit.has(neighbor)) {
constraints.insert(c);
}
} else {
// Corner peering bits: add the constraint if all tiles on the constraint has the same center bit.
HashMap<Vector2i, TileSet::CellNeighbor> overlapping_terrain_bits = c.get_overlapping_coords_and_peering_bits();
bool valid = true;
for (KeyValue<Vector2i, TileSet::CellNeighbor> kv : overlapping_terrain_bits) {
if (!cells_with_terrain_center_bit.has(kv.key)) {
valid = false;
break;
}
}
if (valid) {
constraints.insert(c);
}
}
}
}
}
// Fills in the constraint list from existing tiles.
for (TerrainConstraint c : _get_terrain_constraints_from_painted_cells_list(painted_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMapLayer::terrain_fill_path(const Vector<Vector2i> &p_coords_array, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Make sure the path is correct and build the peering bit list while doing it.
Vector<TileSet::CellNeighbor> neighbor_list;
for (int i = 0; i < p_coords_array.size() - 1; i++) {
// Find the adequate neighbor.
TileSet::CellNeighbor found_bit = TileSet::CELL_NEIGHBOR_MAX;
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_map_node->is_existing_neighbor(bit)) {
if (tile_map_node->get_neighbor_cell(p_coords_array[i], bit) == p_coords_array[i + 1]) {
found_bit = bit;
break;
}
}
}
ERR_FAIL_COND_V_MSG(found_bit == TileSet::CELL_NEIGHBOR_MAX, output, vformat("Invalid terrain path, %s is not a neighboring tile of %s", p_coords_array[i + 1], p_coords_array[i]));
neighbor_list.push_back(found_bit);
}
// Build list and set of tiles that can be modified (painted and their surroundings).
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
RBSet<Vector2i> painted_set;
for (int i = p_coords_array.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_coords_array[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
painted_set.insert(coords);
}
for (Vector2i coords : p_coords_array) {
// Find the adequate neighbor.
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
Vector2i neighbor = tile_map_node->get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_coords_array) {
// Constraints on the center bit.
TerrainConstraint c = TerrainConstraint(tile_map_node, coords, p_terrain);
c.set_priority(10);
constraints.insert(c);
}
for (int i = 0; i < p_coords_array.size() - 1; i++) {
// Constraints on the peering bits.
TerrainConstraint c = TerrainConstraint(tile_map_node, p_coords_array[i], neighbor_list[i], p_terrain);
c.set_priority(10);
constraints.insert(c);
}
// Fills in the constraint list from existing tiles.
for (TerrainConstraint c : _get_terrain_constraints_from_painted_cells_list(painted_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
HashMap<Vector2i, TileSet::TerrainsPattern> TileMapLayer::terrain_fill_pattern(const Vector<Vector2i> &p_coords_array, int p_terrain_set, TileSet::TerrainsPattern p_terrains_pattern, bool p_ignore_empty_terrains) {
HashMap<Vector2i, TileSet::TerrainsPattern> output;
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND_V(!tile_set.is_valid(), output);
ERR_FAIL_INDEX_V(p_terrain_set, tile_set->get_terrain_sets_count(), output);
// Build list and set of tiles that can be modified (painted and their surroundings).
Vector<Vector2i> can_modify_list;
RBSet<Vector2i> can_modify_set;
RBSet<Vector2i> painted_set;
for (int i = p_coords_array.size() - 1; i >= 0; i--) {
const Vector2i &coords = p_coords_array[i];
can_modify_list.push_back(coords);
can_modify_set.insert(coords);
painted_set.insert(coords);
}
for (Vector2i coords : p_coords_array) {
// Find the adequate neighbor.
for (int j = 0; j < TileSet::CELL_NEIGHBOR_MAX; j++) {
TileSet::CellNeighbor bit = TileSet::CellNeighbor(j);
if (tile_set->is_valid_terrain_peering_bit(p_terrain_set, bit)) {
Vector2i neighbor = tile_map_node->get_neighbor_cell(coords, bit);
if (!can_modify_set.has(neighbor)) {
can_modify_list.push_back(neighbor);
can_modify_set.insert(neighbor);
}
}
}
}
// Add constraint by the new ones.
RBSet<TerrainConstraint> constraints;
// Add new constraints from the path drawn.
for (Vector2i coords : p_coords_array) {
// Constraints on the center bit.
RBSet<TerrainConstraint> added_constraints = _get_terrain_constraints_from_added_pattern(coords, p_terrain_set, p_terrains_pattern);
for (TerrainConstraint c : added_constraints) {
c.set_priority(10);
constraints.insert(c);
}
}
// Fills in the constraint list from modified tiles border.
for (TerrainConstraint c : _get_terrain_constraints_from_painted_cells_list(painted_set, p_terrain_set, p_ignore_empty_terrains)) {
constraints.insert(c);
}
// Fill the terrains.
output = terrain_fill_constraints(can_modify_list, p_terrain_set, constraints);
return output;
}
TileMapCell TileMapLayer::get_cell(const Vector2i &p_coords, bool p_use_proxies) const {
if (!tile_map.has(p_coords)) {
return TileMapCell();
} else {
TileMapCell c = tile_map.find(p_coords)->value.cell;
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(c.source_id, c.get_atlas_coords(), c.alternative_tile);
c.source_id = proxyed[0];
c.set_atlas_coords(proxyed[1]);
c.alternative_tile = proxyed[2];
}
return c;
}
}
void TileMapLayer::set_tile_data(TileMapDataFormat p_format, const Vector<int> &p_data) {
ERR_FAIL_COND(p_format > TileMapDataFormat::FORMAT_3);
// Set data for a given tile from raw data.
int c = p_data.size();
const int *r = p_data.ptr();
int offset = (p_format >= TileMapDataFormat::FORMAT_2) ? 3 : 2;
ERR_FAIL_COND_MSG(c % offset != 0, vformat("Corrupted tile data. Got size: %s. Expected modulo: %s", offset));
clear();
#ifdef DISABLE_DEPRECATED
ERR_FAIL_COND_MSG(p_format != TileMapDataFormat::FORMAT_3, vformat("Cannot handle deprecated TileMap data format version %d. This Godot version was compiled with no support for deprecated data.", p_format));
#endif
for (int i = 0; i < c; i += offset) {
const uint8_t *ptr = (const uint8_t *)&r[i];
uint8_t local[12];
for (int j = 0; j < ((p_format >= TileMapDataFormat::FORMAT_2) ? 12 : 8); j++) {
local[j] = ptr[j];
}
#ifdef BIG_ENDIAN_ENABLED
SWAP(local[0], local[3]);
SWAP(local[1], local[2]);
SWAP(local[4], local[7]);
SWAP(local[5], local[6]);
//TODO: ask someone to check this...
if (FORMAT >= FORMAT_2) {
SWAP(local[8], local[11]);
SWAP(local[9], local[10]);
}
#endif
// Extracts position in TileMap.
int16_t x = decode_uint16(&local[0]);
int16_t y = decode_uint16(&local[2]);
if (p_format == TileMapDataFormat::FORMAT_3) {
uint16_t source_id = decode_uint16(&local[4]);
uint16_t atlas_coords_x = decode_uint16(&local[6]);
uint16_t atlas_coords_y = decode_uint16(&local[8]);
uint16_t alternative_tile = decode_uint16(&local[10]);
set_cell(Vector2i(x, y), source_id, Vector2i(atlas_coords_x, atlas_coords_y), alternative_tile);
} else {
#ifndef DISABLE_DEPRECATED
// Previous decated format.
uint32_t v = decode_uint32(&local[4]);
// Extract the transform flags that used to be in the tilemap.
bool flip_h = v & (1UL << 29);
bool flip_v = v & (1UL << 30);
bool transpose = v & (1UL << 31);
v &= (1UL << 29) - 1;
// Extract autotile/atlas coords.
int16_t coord_x = 0;
int16_t coord_y = 0;
if (p_format == TileMapDataFormat::FORMAT_2) {
coord_x = decode_uint16(&local[8]);
coord_y = decode_uint16(&local[10]);
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (tile_set.is_valid()) {
Array a = tile_set->compatibility_tilemap_map(v, Vector2i(coord_x, coord_y), flip_h, flip_v, transpose);
if (a.size() == 3) {
set_cell(Vector2i(x, y), a[0], a[1], a[2]);
} else {
ERR_PRINT(vformat("No valid tile in Tileset for: tile:%s coords:%s flip_h:%s flip_v:%s transpose:%s", v, Vector2i(coord_x, coord_y), flip_h, flip_v, transpose));
}
} else {
int compatibility_alternative_tile = ((int)flip_h) + ((int)flip_v << 1) + ((int)transpose << 2);
set_cell(Vector2i(x, y), v, Vector2i(coord_x, coord_y), compatibility_alternative_tile);
}
#endif
}
}
}
Vector<int> TileMapLayer::get_tile_data() const {
// Export tile data to raw format.
Vector<int> tile_data;
tile_data.resize(tile_map.size() * 3);
int *w = tile_data.ptrw();
// Save in highest format.
int idx = 0;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
uint8_t *ptr = (uint8_t *)&w[idx];
encode_uint16((int16_t)(E.key.x), &ptr[0]);
encode_uint16((int16_t)(E.key.y), &ptr[2]);
encode_uint16(E.value.cell.source_id, &ptr[4]);
encode_uint16(E.value.cell.coord_x, &ptr[6]);
encode_uint16(E.value.cell.coord_y, &ptr[8]);
encode_uint16(E.value.cell.alternative_tile, &ptr[10]);
idx += 3;
}
return tile_data;
}
void TileMapLayer::notify_tile_map_change(DirtyFlags p_what) {
dirty.flags[p_what] = true;
tile_map_node->queue_internal_update();
_physics_notify_tilemap_change(p_what);
}
void TileMapLayer::internal_update() {
// Find TileData that need a runtime modification.
// This may add cells to the dirty list is a runtime modification has been notified.
_build_runtime_update_tile_data();
// Update all subsystems.
_rendering_update();
_physics_update();
_navigation_update();
_scenes_update();
#ifdef DEBUG_ENABLED
_debug_update();
#endif // DEBUG_ENABLED
_clear_runtime_update_tile_data();
// Clear the "what is dirty" flags.
for (int i = 0; i < DIRTY_FLAGS_MAX; i++) {
dirty.flags[i] = false;
}
// List the cells to delete definitely.
Vector<Vector2i> to_delete;
for (SelfList<CellData> *cell_data_list_element = dirty.cell_list.first(); cell_data_list_element; cell_data_list_element = cell_data_list_element->next()) {
CellData &cell_data = *cell_data_list_element->self();
// Select the the cell from tile_map if it is invalid.
if (cell_data.cell.source_id == TileSet::INVALID_SOURCE) {
to_delete.push_back(cell_data.coords);
}
}
// Remove cells that are empty after the cleanup.
for (const Vector2i &coords : to_delete) {
tile_map.erase(coords);
}
// Clear the dirty cells list.
dirty.cell_list.clear();
}
void TileMapLayer::set_cell(const Vector2i &p_coords, int p_source_id, const Vector2i p_atlas_coords, int p_alternative_tile) {
// Set the current cell tile (using integer position).
Vector2i pk(p_coords);
HashMap<Vector2i, CellData>::Iterator E = tile_map.find(pk);
int source_id = p_source_id;
Vector2i atlas_coords = p_atlas_coords;
int alternative_tile = p_alternative_tile;
if ((source_id == TileSet::INVALID_SOURCE || atlas_coords == TileSetSource::INVALID_ATLAS_COORDS || alternative_tile == TileSetSource::INVALID_TILE_ALTERNATIVE) &&
(source_id != TileSet::INVALID_SOURCE || atlas_coords != TileSetSource::INVALID_ATLAS_COORDS || alternative_tile != TileSetSource::INVALID_TILE_ALTERNATIVE)) {
source_id = TileSet::INVALID_SOURCE;
atlas_coords = TileSetSource::INVALID_ATLAS_COORDS;
alternative_tile = TileSetSource::INVALID_TILE_ALTERNATIVE;
}
if (!E) {
if (source_id == TileSet::INVALID_SOURCE) {
return; // Nothing to do, the tile is already empty.
}
// Insert a new cell in the tile map.
CellData new_cell_data;
new_cell_data.coords = pk;
E = tile_map.insert(pk, new_cell_data);
} else {
if (E->value.cell.source_id == source_id && E->value.cell.get_atlas_coords() == atlas_coords && E->value.cell.alternative_tile == alternative_tile) {
return; // Nothing changed.
}
}
TileMapCell &c = E->value.cell;
c.source_id = source_id;
c.set_atlas_coords(atlas_coords);
c.alternative_tile = alternative_tile;
// Make the given cell dirty.
if (!E->value.dirty_list_element.in_list()) {
dirty.cell_list.add(&(E->value.dirty_list_element));
}
tile_map_node->queue_internal_update();
used_rect_cache_dirty = true;
}
void TileMapLayer::erase_cell(const Vector2i &p_coords) {
set_cell(p_coords, TileSet::INVALID_SOURCE, TileSetSource::INVALID_ATLAS_COORDS, TileSetSource::INVALID_TILE_ALTERNATIVE);
}
int TileMapLayer::get_cell_source_id(const Vector2i &p_coords, bool p_use_proxies) const {
// Get a cell source id from position.
HashMap<Vector2i, CellData>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSet::INVALID_SOURCE;
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.cell.source_id, E->value.cell.get_atlas_coords(), E->value.cell.alternative_tile);
return proxyed[0];
}
return E->value.cell.source_id;
}
Vector2i TileMapLayer::get_cell_atlas_coords(const Vector2i &p_coords, bool p_use_proxies) const {
// Get a cell source id from position.
HashMap<Vector2i, CellData>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSetSource::INVALID_ATLAS_COORDS;
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.cell.source_id, E->value.cell.get_atlas_coords(), E->value.cell.alternative_tile);
return proxyed[1];
}
return E->value.cell.get_atlas_coords();
}
int TileMapLayer::get_cell_alternative_tile(const Vector2i &p_coords, bool p_use_proxies) const {
// Get a cell source id from position.
HashMap<Vector2i, CellData>::ConstIterator E = tile_map.find(p_coords);
if (!E) {
return TileSetSource::INVALID_TILE_ALTERNATIVE;
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
if (p_use_proxies && tile_set.is_valid()) {
Array proxyed = tile_set->map_tile_proxy(E->value.cell.source_id, E->value.cell.get_atlas_coords(), E->value.cell.alternative_tile);
return proxyed[2];
}
return E->value.cell.alternative_tile;
}
TileData *TileMapLayer::get_cell_tile_data(const Vector2i &p_coords, bool p_use_proxies) const {
int source_id = get_cell_source_id(p_coords, p_use_proxies);
if (source_id == TileSet::INVALID_SOURCE) {
return nullptr;
}
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
Ref<TileSetAtlasSource> source = tile_set->get_source(source_id);
if (source.is_valid()) {
return source->get_tile_data(get_cell_atlas_coords(p_coords, p_use_proxies), get_cell_alternative_tile(p_coords, p_use_proxies));
}
return nullptr;
}
void TileMapLayer::clear() {
// Remove all tiles.
for (KeyValue<Vector2i, CellData> &kv : tile_map) {
erase_cell(kv.key);
}
used_rect_cache_dirty = true;
}
Ref<TileMapPattern> TileMapLayer::get_pattern(TypedArray<Vector2i> p_coords_array) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND_V(!tile_set.is_valid(), nullptr);
Ref<TileMapPattern> output;
output.instantiate();
if (p_coords_array.is_empty()) {
return output;
}
Vector2i min = Vector2i(p_coords_array[0]);
for (int i = 1; i < p_coords_array.size(); i++) {
min = min.min(p_coords_array[i]);
}
Vector<Vector2i> coords_in_pattern_array;
coords_in_pattern_array.resize(p_coords_array.size());
Vector2i ensure_positive_offset;
for (int i = 0; i < p_coords_array.size(); i++) {
Vector2i coords = p_coords_array[i];
Vector2i coords_in_pattern = coords - min;
if (tile_set->get_tile_shape() != TileSet::TILE_SHAPE_SQUARE) {
if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(min.y % 2) && bool(coords_in_pattern.y % 2)) {
coords_in_pattern.x -= 1;
if (coords_in_pattern.x < 0) {
ensure_positive_offset.x = 1;
}
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(min.x % 2) && bool(coords_in_pattern.x % 2)) {
coords_in_pattern.y -= 1;
if (coords_in_pattern.y < 0) {
ensure_positive_offset.y = 1;
}
}
} else if (tile_set->get_tile_layout() == TileSet::TILE_LAYOUT_STACKED_OFFSET) {
if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_HORIZONTAL && bool(min.y % 2) && bool(coords_in_pattern.y % 2)) {
coords_in_pattern.x += 1;
} else if (tile_set->get_tile_offset_axis() == TileSet::TILE_OFFSET_AXIS_VERTICAL && bool(min.x % 2) && bool(coords_in_pattern.x % 2)) {
coords_in_pattern.y += 1;
}
}
}
coords_in_pattern_array.write[i] = coords_in_pattern;
}
for (int i = 0; i < coords_in_pattern_array.size(); i++) {
Vector2i coords = p_coords_array[i];
Vector2i coords_in_pattern = coords_in_pattern_array[i];
output->set_cell(coords_in_pattern + ensure_positive_offset, get_cell_source_id(coords), get_cell_atlas_coords(coords), get_cell_alternative_tile(coords));
}
return output;
}
void TileMapLayer::set_pattern(const Vector2i &p_position, const Ref<TileMapPattern> p_pattern) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(tile_set.is_null());
ERR_FAIL_COND(p_pattern.is_null());
TypedArray<Vector2i> used_cells = p_pattern->get_used_cells();
for (int i = 0; i < used_cells.size(); i++) {
Vector2i coords = tile_map_node->map_pattern(p_position, used_cells[i], p_pattern);
set_cell(coords, p_pattern->get_cell_source_id(used_cells[i]), p_pattern->get_cell_atlas_coords(used_cells[i]), p_pattern->get_cell_alternative_tile(used_cells[i]));
}
}
void TileMapLayer::set_cells_terrain_connect(TypedArray<Vector2i> p_cells, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
ERR_FAIL_INDEX(p_terrain_set, tile_set->get_terrain_sets_count());
Vector<Vector2i> cells_vector;
HashSet<Vector2i> painted_set;
for (int i = 0; i < p_cells.size(); i++) {
cells_vector.push_back(p_cells[i]);
painted_set.insert(p_cells[i]);
}
HashMap<Vector2i, TileSet::TerrainsPattern> terrain_fill_output = terrain_fill_connect(cells_vector, p_terrain_set, p_terrain, p_ignore_empty_terrains);
for (const KeyValue<Vector2i, TileSet::TerrainsPattern> &kv : terrain_fill_output) {
if (painted_set.has(kv.key)) {
// Paint a random tile with the correct terrain for the painted path.
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, kv.value);
set_cell(kv.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
} else {
// Avoids updating the painted path from the output if the new pattern is the same as before.
TileSet::TerrainsPattern in_map_terrain_pattern = TileSet::TerrainsPattern(*tile_set, p_terrain_set);
TileMapCell cell = get_cell(kv.key);
if (cell.source_id != TileSet::INVALID_SOURCE) {
TileSetSource *source = *tile_set->get_source(cell.source_id);
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Get tile data.
TileData *tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
if (tile_data && tile_data->get_terrain_set() == p_terrain_set) {
in_map_terrain_pattern = tile_data->get_terrains_pattern();
}
}
}
if (in_map_terrain_pattern != kv.value) {
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, kv.value);
set_cell(kv.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
}
}
}
}
void TileMapLayer::set_cells_terrain_path(TypedArray<Vector2i> p_path, int p_terrain_set, int p_terrain, bool p_ignore_empty_terrains) {
const Ref<TileSet> &tile_set = tile_map_node->get_tileset();
ERR_FAIL_COND(!tile_set.is_valid());
ERR_FAIL_INDEX(p_terrain_set, tile_set->get_terrain_sets_count());
Vector<Vector2i> vector_path;
HashSet<Vector2i> painted_set;
for (int i = 0; i < p_path.size(); i++) {
vector_path.push_back(p_path[i]);
painted_set.insert(p_path[i]);
}
HashMap<Vector2i, TileSet::TerrainsPattern> terrain_fill_output = terrain_fill_path(vector_path, p_terrain_set, p_terrain, p_ignore_empty_terrains);
for (const KeyValue<Vector2i, TileSet::TerrainsPattern> &kv : terrain_fill_output) {
if (painted_set.has(kv.key)) {
// Paint a random tile with the correct terrain for the painted path.
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, kv.value);
set_cell(kv.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
} else {
// Avoids updating the painted path from the output if the new pattern is the same as before.
TileSet::TerrainsPattern in_map_terrain_pattern = TileSet::TerrainsPattern(*tile_set, p_terrain_set);
TileMapCell cell = get_cell(kv.key);
if (cell.source_id != TileSet::INVALID_SOURCE) {
TileSetSource *source = *tile_set->get_source(cell.source_id);
TileSetAtlasSource *atlas_source = Object::cast_to<TileSetAtlasSource>(source);
if (atlas_source) {
// Get tile data.
TileData *tile_data = atlas_source->get_tile_data(cell.get_atlas_coords(), cell.alternative_tile);
if (tile_data && tile_data->get_terrain_set() == p_terrain_set) {
in_map_terrain_pattern = tile_data->get_terrains_pattern();
}
}
}
if (in_map_terrain_pattern != kv.value) {
TileMapCell c = tile_set->get_random_tile_from_terrains_pattern(p_terrain_set, kv.value);
set_cell(kv.key, c.source_id, c.get_atlas_coords(), c.alternative_tile);
}
}
}
}
TypedArray<Vector2i> TileMapLayer::get_used_cells() const {
// Returns the cells used in the tilemap.
TypedArray<Vector2i> a;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
const TileMapCell &c = E.value.cell;
if (c.source_id == TileSet::INVALID_SOURCE) {
continue;
}
a.push_back(E.key);
}
return a;
}
TypedArray<Vector2i> TileMapLayer::get_used_cells_by_id(int p_source_id, const Vector2i p_atlas_coords, int p_alternative_tile) const {
// Returns the cells used in the tilemap.
TypedArray<Vector2i> a;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
const TileMapCell &c = E.value.cell;
if (c.source_id == TileSet::INVALID_SOURCE) {
continue;
}
if ((p_source_id == TileSet::INVALID_SOURCE || p_source_id == c.source_id) &&
(p_atlas_coords == TileSetSource::INVALID_ATLAS_COORDS || p_atlas_coords == c.get_atlas_coords()) &&
(p_alternative_tile == TileSetSource::INVALID_TILE_ALTERNATIVE || p_alternative_tile == c.alternative_tile)) {
a.push_back(E.key);
}
}
return a;
}
Rect2i TileMapLayer::get_used_rect() const {
// Return the rect of the currently used area.
if (used_rect_cache_dirty) {
used_rect_cache = Rect2i();
bool first = true;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
const TileMapCell &c = E.value.cell;
if (c.source_id == TileSet::INVALID_SOURCE) {
continue;
}
if (first) {
used_rect_cache = Rect2i(E.key.x, E.key.y, 0, 0);
first = false;
} else {
used_rect_cache.expand_to(E.key);
}
}
if (!first) {
// Only if we have at least one cell.
// The cache expands to top-left coordinate, so we add one full tile.
used_rect_cache.size += Vector2i(1, 1);
}
used_rect_cache_dirty = false;
}
return used_rect_cache;
}
void TileMapLayer::set_name(String p_name) {
if (name == p_name) {
return;
}
name = p_name;
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
}
String TileMapLayer::get_name() const {
return name;
}
void TileMapLayer::set_enabled(bool p_enabled) {
if (enabled == p_enabled) {
return;
}
enabled = p_enabled;
dirty.flags[DIRTY_FLAGS_LAYER_ENABLED] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
tile_map_node->update_configuration_warnings();
}
bool TileMapLayer::is_enabled() const {
return enabled;
}
void TileMapLayer::set_modulate(Color p_modulate) {
if (modulate == p_modulate) {
return;
}
modulate = p_modulate;
dirty.flags[DIRTY_FLAGS_LAYER_MODULATE] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
}
Color TileMapLayer::get_modulate() const {
return modulate;
}
void TileMapLayer::set_y_sort_enabled(bool p_y_sort_enabled) {
if (y_sort_enabled == p_y_sort_enabled) {
return;
}
y_sort_enabled = p_y_sort_enabled;
dirty.flags[DIRTY_FLAGS_LAYER_Y_SORT_ENABLED] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
tile_map_node->update_configuration_warnings();
}
bool TileMapLayer::is_y_sort_enabled() const {
return y_sort_enabled;
}
void TileMapLayer::set_y_sort_origin(int p_y_sort_origin) {
if (y_sort_origin == p_y_sort_origin) {
return;
}
y_sort_origin = p_y_sort_origin;
dirty.flags[DIRTY_FLAGS_LAYER_Y_SORT_ORIGIN] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
}
int TileMapLayer::get_y_sort_origin() const {
return y_sort_origin;
}
void TileMapLayer::set_z_index(int p_z_index) {
if (z_index == p_z_index) {
return;
}
z_index = p_z_index;
dirty.flags[DIRTY_FLAGS_LAYER_Z_INDEX] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
tile_map_node->update_configuration_warnings();
}
int TileMapLayer::get_z_index() const {
return z_index;
}
void TileMapLayer::set_navigation_enabled(bool p_enabled) {
if (navigation_enabled == p_enabled) {
return;
}
navigation_enabled = p_enabled;
dirty.flags[DIRTY_FLAGS_LAYER_NAVIGATION_ENABLED] = true;
tile_map_node->queue_internal_update();
tile_map_node->emit_signal(CoreStringNames::get_singleton()->changed);
}
bool TileMapLayer::is_navigation_enabled() const {
return navigation_enabled;
}
void TileMapLayer::set_navigation_map(RID p_map) {
ERR_FAIL_COND_MSG(!tile_map_node->is_inside_tree(), "A TileMap navigation map can only be changed while inside the SceneTree.");
navigation_map = p_map;
uses_world_navigation_map = p_map == tile_map_node->get_world_2d()->get_navigation_map();
}
RID TileMapLayer::get_navigation_map() const {
if (navigation_map.is_valid()) {
return navigation_map;
}
return RID();
}
void TileMapLayer::fix_invalid_tiles() {
Ref<TileSet> tileset = tile_map_node->get_tileset();
ERR_FAIL_COND_MSG(tileset.is_null(), "Cannot call fix_invalid_tiles() on a TileMap without a valid TileSet.");
RBSet<Vector2i> coords;
for (const KeyValue<Vector2i, CellData> &E : tile_map) {
TileSetSource *source = *tileset->get_source(E.value.cell.source_id);
if (!source || !source->has_tile(E.value.cell.get_atlas_coords()) || !source->has_alternative_tile(E.value.cell.get_atlas_coords(), E.value.cell.alternative_tile)) {
coords.insert(E.key);
}
}
for (const Vector2i &E : coords) {
set_cell(E, TileSet::INVALID_SOURCE, TileSetSource::INVALID_ATLAS_COORDS, TileSetSource::INVALID_TILE_ALTERNATIVE);
}
}
bool TileMapLayer::has_body_rid(RID p_physics_body) const {
return bodies_coords.has(p_physics_body);
}
Vector2i TileMapLayer::get_coords_for_body_rid(RID p_physics_body) const {
return bodies_coords[p_physics_body];
}
TileMapLayer::~TileMapLayer() {
if (!tile_map_node) {
// Temporary layer.
return;
}
in_destructor = true;
clear();
internal_update();
}
HashMap<Vector2i, TileSet::CellNeighbor> TerrainConstraint::get_overlapping_coords_and_peering_bits() const {
HashMap<Vector2i, TileSet::CellNeighbor> output;
ERR_FAIL_COND_V(is_center_bit(), output);
Ref<TileSet> ts = tile_map->get_tileset();
ERR_FAIL_COND_V(!ts.is_valid(), output);
TileSet::TileShape shape = ts->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_CORNER)] = TileSet::CELL_NEIGHBOR_TOP_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_RIGHT_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else {
// Half offset shapes.
TileSet::TileOffsetAxis offset_axis = ts->get_tile_offset_axis();
if (offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_SIDE;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_CORNER;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 4:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER;
break;
case 5:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
} else {
switch (bit) {
case 1:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
break;
case 2:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE;
break;
case 3:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE)] = TileSet::CELL_NEIGHBOR_LEFT_CORNER;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER;
break;
case 4:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_SIDE;
break;
case 5:
output[base_cell_coords] = TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE;
output[tile_map->get_neighbor_cell(base_cell_coords, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE)] = TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE;
break;
default:
ERR_FAIL_V(output);
}
}
}
return output;
}
TerrainConstraint::TerrainConstraint(const TileMap *p_tile_map, const Vector2i &p_position, int p_terrain) {
tile_map = p_tile_map;
Ref<TileSet> ts = tile_map->get_tileset();
ERR_FAIL_COND(!ts.is_valid());
bit = 0;
base_cell_coords = p_position;
terrain = p_terrain;
}
TerrainConstraint::TerrainConstraint(const TileMap *p_tile_map, const Vector2i &p_position, const TileSet::CellNeighbor &p_bit, int p_terrain) {
// The way we build the constraint make it easy to detect conflicting constraints.
tile_map = p_tile_map;
Ref<TileSet> ts = tile_map->get_tileset();
ERR_FAIL_COND(!ts.is_valid());
TileSet::TileShape shape = ts->get_tile_shape();
if (shape == TileSet::TILE_SHAPE_SQUARE) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER);
break;
case TileSet::CELL_NEIGHBOR_TOP_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else if (shape == TileSet::TILE_SHAPE_ISOMETRIC) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_CORNER);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else {
// Half-offset shapes.
TileSet::TileOffsetAxis offset_axis = ts->get_tile_offset_axis();
if (offset_axis == TileSet::TILE_OFFSET_AXIS_HORIZONTAL) {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_SIDE:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_CORNER:
bit = 4;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 5;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_LEFT_SIDE:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_CORNER:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 5;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
} else {
switch (p_bit) {
case TileSet::CELL_NEIGHBOR_RIGHT_CORNER:
bit = 1;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_SIDE:
bit = 2;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_RIGHT_CORNER:
bit = 3;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_SIDE:
bit = 4;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_CORNER:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_BOTTOM_LEFT_SIDE:
bit = 5;
base_cell_coords = p_position;
break;
case TileSet::CELL_NEIGHBOR_LEFT_CORNER:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE:
bit = 2;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_LEFT_CORNER:
bit = 1;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_LEFT_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_SIDE:
bit = 4;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_CORNER:
bit = 3;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_SIDE);
break;
case TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE:
bit = 5;
base_cell_coords = p_tile_map->get_neighbor_cell(p_position, TileSet::CELL_NEIGHBOR_TOP_RIGHT_SIDE);
break;
default:
ERR_FAIL();
break;
}
}
}
terrain = p_terrain;
}